Андрей Смирнов
Время чтения: ~23 мин.
Просмотров: 1

Операционный усилитель

Содержание

Неинвертирующий сумматор

В продолжение темы неинвертрующих усилителей расскажу о неинвертирующем сумматоре, который выполняет функцию сложения входных сигналов и находит своё применение в качестве линейных смесителей сигналов (микшеров), например, когда сигналы из нескольких источников необходимо скомбинировать и подать на вход усилителя мощности. Схема неинвертирующего сумматора представлена ниже

Данная схема представляет собой неинвертирующий усилитель с двумя входами и состоит из ОУ DA1, токоограничительных входных резисторов R1 и R2, резистора смещения R3 и резистора обратной связи R4.

Для данной схемы основные соотношения соответствуют схеме простого неинвертирующего усилителя, с учётом того что входное напряжение в схеме соответствует среднему напряжению входных выводов

А сопротивление резисторов должны соответствовать следующему условию

Коэффициенты усиления по разным каналам определяются следующим выражением

R N – сопротивление входного резистора,

K N – коэффициент усиления соответствующего канала усиления.

Основным недостатком схемы неинвертирующего сумматора является отсутствие точки нулевого потенциала, поэтому коэффициент усиления по различным входам не являются независимыми. Данный недостаток проявляет себя в тех случаях, когда внутреннее сопротивление источников входных напряжений или только одного из них известно приблизительно или изменяется в процессе работы.

Теория это хорошо, но без практического применения это просто слова.

Приветствую вас дорогие друзья! Вот наконец добрался я до своего компьютера, приготовил себе чайку с печеньками и понеслась…

Для тех кто впервые на моем блоге и не совсем понимает что здесь происходит спешу напомнить, меня зовут Владимир Васильев и на этих страницах я делюсь со своими читателями сакральными знаниями из области электроники и не только электроники. Так что может быть и вы здесь найдете для себя что-то полезное, по крайней мере я на это надеюсь. Обязательно подпишитесь , тогда вы ничего не пропустите.

А сегодня речь пойдет о таком электронном устройстве как операционный усилитель. Эти усилители применяются повсеместно, везде где требуется усилить сигнал по мощности найдется работенка для операционника.

Особенно распространено применение операционных усилителей в аудиотехнике. Каждый аудиофилл стремится усилить звучание своих музыкальных колонок и поэтому старается прикрутить усилитель по мощнее. Вот здесь мы и сталкиваемся с операционными усилителями, ведь многие аудиосистемы просто нашпигованы ими. Благодаря свойству операционного усилителя усиливать сигнал по мощности мы ощущаем более мощное давление на свои барабанные перепонки когда слушаем композиции на своих аудио колонках. Вот так вот в быту мы оцениваем качество работы операционного усилителя на слух.

В этой статье на слух мы оценивать ничего не будем но постараемся рассмотреть все детально и разложим все по полочкам чтобы стало понятно даже самому самоварному чайнику.

Каскады усиления мощности.

Каскад
усиления мощности класса
А.

Для
усилителя мощности класса А
применяют трансформаторную связь с
нагрузкой. В режиме покоя за счет
напряжения смещения UCM
,подаваемого на базу, протекают токи
IБ,
П

и IК,
П

(ток базы покоя и ток коллектора покоя).
IК,
П
=IБ,
П
+(+1)IКБО.

+Максимальный
КПД достигается при больших значениях
,
т.е. при усилении больших сигналов.

+Мощность
потребляемая от источника Р,не
зависит от передаваемого сигнала.

+Максимальная
мощность потерь РК
имеет место в режиме покоя, т.к. UВХ=0.


низкий КПД, особенно при малых значениях
вх напряжения, мощность Р
не зависит от вх. сигнала и при малых
сигналах затрачивается впустую. Каскад
должен иметь трансформаторную связь
с нагрузкой, → невозможность передачи
однополярных сигналов.

Однотактный
каскад класса В
.

В
режиме покоя смещение на базу транзистора
не подается и ток коллектора покоя
равен IКЭО0.
Мощность РК=0,
т.е. нагрева транзистора в режиме покоя
практически не происходит. При подаче
на базу транзистора положительного вх
сигнала вых напряжение равно: UВЫХ=iКRН.
При отрицательном напряжении на входе
транзистор заперт: UВЫХ
=0. Такой усилитель класса Б
может усиливать только однополярные
сигналы. Определим КПД каскада: UВЫХ=
UВЫХ
m.(UВЫХ
m
амплитуда выхода, является действующим
значением). PН=UВЫХ
m/RН=(EК)2/R.
P=EКIК=EКUВЫХ
m/RН=EК2/RН.
=.

+КПД
каскада класса В выше, чем класса А
особенно для малых и средних сигналов
UВХ.

+Мощность
потребляемая от источника ЕК
минимальна в режиме покоя и увеличивается
при росте UВХ.

+Мощность
потерь максимальна при средних значениях
,
но меньше чем максимальная мощность
потерь в усилителях класса А.

Двухтактный
каскад усиления мощности класса В

– усиливает двухполярные сигналы.

1)Двухтактный
каскад усиления с транзисторами разной
проводимости. В режиме покоя оба
транзистора заперты. При подаче
положительного UВХ
схема работает как однотактный каскад
класса В, транзистор V2
заперт. При UВХ<0,
V1
заперт. Т.о. транзисторы вступают в
работу поочередно в зависимости от
полярности усиливаемого сигнала. Для
двухтактного каскада усиления мощности
класса В справедливы соотношения
однотактного усилителя класса В.

2)
На транзисторах одной проводимости.
При UВХ>0,
V­1
открыт, V­2
заперт обратным напряжением на входе
(–кUВХ).
При UВХ<0,
V­1
заперт, кUВХотпирает
транзистор V­2
и
транзистор работает как эмиттерный
повторитель.

В
схеме один источник питания, но наличие
транф-ра в ней обязательно. Оба транзистора
работают по схеме с общим эмиттером.
На их базы подаются сигналы +UВХ
и –UВХ
, что обеспечивает при UВХ
>0, отпирание V1,
при UВХ<0
– отпирание V2.

АЧХ и ФЧХ неинвертирующего усилителя на LM358

На практике, для того, чтобы снять АЧХ, нам надо на вход нашего усилителя подать частоту от 0 Герц и до какого-то конечного значения, а на выходе в это время следить за изменением амплитуды сигнала. В Proteus все это делается с помощью функции Frequency Responce:

По оси Y у нас коэффициент усиления, а по оси Х – частота. Как вы могли заметить, коэффициент усиления почти не изменялся до частоты 10 кГц, потом стал стремительно падать с ростом частоты. На частоте в 1МегаГерц коэффициент усиления был равен единице. Этот параметр в ОУ называется частотой единичного усиления и обозначается как f1. То есть по сути на этой частоте усилитель не усиливает сигнал. Что подали на вход, то и вышло на выходе.

В проектировании усилителей важен такой параметр, как граничная частота среза fгр . Для того, чтобы ее вычислить, нам надо знать коэффициент усиления на частоте Kгр

Kгр= KUo / √2 либо = KUo х 0,707 , где  KUo  – это коэффициент усиления на частоте в 0 Герц (постоянный ток).

Если смотреть на АЧХ, мы увидим, что на нулевой частоте (на постоянном токе) у нас коэффициент усиления равен 10. Вычисляем Kгр.

Kгр = 10 х 0,707 = 7,07

Теперь проводим горизонтальную линию на уровне 7,07 и смотрим пересечение с графиком. У меня получилось около 104 кГц. Строить усилитель с частотой среза, более, чем fгр не имеет смысла, так как в этом случае выходной сигнал усилителя будет сильно затухать.

Также очень просто определить граничную частоту, если построить график в децибелах. Граничная частота будет находиться на уровне  KUo-3dB. То есть в нашем случае на уровне в 17dB. Как вы видите, в этом случае мы также получили частоту среза в 104 кГц.

Ну ладно, с частотой среза вроде бы разобрались. Теперь нам важен такой параметр, как ФЧХ. В нашем случае мы вроде бы как получили НЕинвертирующий усилитель. То есть сдвиг фаз между входным и выходным сигналом должен быть равен нулю. Но  как поведет себя усилитель на высоких частотах (ВЧ)?

Берем такой же диапазон частот от 0 и до 100 МГц и смотрим на ФЧХ:

Как вы видите, до частоты в 1 кГц неинвертирующий усилитель действительно работает как надо. То есть входной и выходной сигнал двигаются синфазно. Но после частоты в 1 кГц, мы видим, что фаза выходного сигнала начинает отставать. На частоте в 100 кГц она уже отстает примерно на 40 градусов.

Для наглядности АЧХ и ФЧХ можно разместить на одном графике:

Также в схемах  с  неинвертирующим  усилителем  часто  вводят  компенсирующий резистор RK .

Он определяется по формуле:

и служит для того, чтобы обеспечить равенство сопротивлений между каждым из входов и землей. Более подробно мы это разберем в следующей статье.

При участии Jeer

Высокочастотные операционные усилители

EL5166,EL5167 – операционные усилители с полосой частот до 1400 МГц

Микросхемы рассчитаны на работу в сверхшироком диапазоне частот – до 1.4GHz при единичном усилении и 800MHz при усилении, равном 2.

Области применения – видеооборудование, мониторы, аппаратура RF и IF диапазонов.

Основные характеристики

Напряжение питанияОт 5 до 12 В
Ток потребления8.5 мА
Низкий уровень шумов1.7 нВ/ÖHz
Полоса частот12 МГц (на уровне -3 дБ)
Рабочий диапазон температурот -40 до +125°C

Наличие входа разрешения (только в EL5166), потребляемый ток уменьшается до 13 мкА

EL5160,EL5161,EL5260,EL5261,EL5360 – серия недорогих 200-МГц ОУ

В данную группу входят также следующие микросхемы ОУ:

  • EL5164 и EL5165 — полоса частот до 600 МГц
  • EL5162 и EL5163 — полоса частот до 400 МГц
  • EL5160 и EL5161- полоса частот до 200 МГц

Микросхема ISL55211 характеризуется также низкими уровнями собственных шумов и искажений сигнала. Имеется вход Power Down.

Основные характеристики

Напряжение питанияот 3 до 4,5 В
Ток потребления37 мА
Выходной ток±30 мА
Полоса частотдо 1600 МГц (на уровне -3 дБ при к-те усиления 2)
Фиксированные значения коэффициентов усиления2, 4, или 5 В/В
Уровень собственных шумов12 nV/√Hz
КорпусTQFN-16

EL5111T – недорогой RRIOОУ с полосой частот 60 МГц и большим выходным током

Основные характеристики

Напряжение питанияот 4,5 до 19 В
Ток потребления3 мА
Выходной ток±70 мА
Полоса частот60 МГц (на уровне -3 дБ)

Обозначения


Обозначение операционного усилителя на схемах

На рисунке показано схематичное изображение операционного усилителя. Выводы имеют следующее значение:

  • V+{\displaystyle V_{\mathrm {+} }} — неинвертирующий вход;
  • V — инвертирующий вход;
  • Vout — выход;
  • VS+ — плюс источника питания (также может обозначаться как VDD{\displaystyle V_{\mathrm {DD} }}, VCC{\displaystyle V_{\mathrm {CC} }}, или VCC+{\displaystyle V_{\mathrm {CC+} }});
  • VS− — минус источника питания (также может обозначаться как VSS{\displaystyle V_{\mathrm {SS} }}, VEE{\displaystyle V_{\mathrm {EE} }}, или VCC−{\displaystyle V_{\mathrm {CC-} }}).

Указанные пять выводов присутствуют в любом ОУ и необходимы для его функционирования. Однако, существуют операционные усилители, не имеющие неинвертирующего входа. В частности, такие ОУ находят применение в аналоговых вычислительных машинах (АВМ).

ОУ, применяемые в АВМ, принято делить на пять классов, из которых ОУ первого и второго класса имеют только один вход.

Операционные усилители первого класса — усилители высокой точности (УВТ) с одним входом. Предназначены для работы в составе интеграторов, сумматоров, устройств слежения-хранения. Высокий коэффициент усиления, предельно малые значения смещения нуля, входного тока и дрейфа нуля, высокое быстродействие обеспечивают снижение погрешности, вносимой усилителем, ниже 0,01 %.

Операционные усилители второго класса — усилители средней точности (УСТ), имеющие один вход, обладающие меньшим коэффициентом усиления и большими значениями смещения и дрейфа нуля. Эти ОУ предназначены для применения в составе электронных устройств установки коэффициентов, инверторов, электронных переключателей, в функциональных преобразователях, в множительных устройствах.

Помимо этого, некоторые ОУ могут иметь дополнительные выводы (предназначенные, например, для установки тока покоя, частотной коррекции, балансировки или других функций).

Выводы питания (VS+ и VS−) могут быть обозначены по-разному (см. выводы питания интегральных схем). Часто выводы питания не рисуют на схеме, чтобы не загромождать её несущественными деталями, при этом способ подключения этих выводов явно не указывается или считается очевидным (особенно часто это происходит при изображении одного усилителя из микросхемы с четырьмя усилителями с общими выводами питания). При обозначении ОУ на схемах можно менять местами инвертирующий и неинвертирующий входы, если это удобно; выводы питания, как правило, всегда располагают единственным способом (положительный вверху).

Инвертирующий усилитель с однополярным питанием

В некоторых случаях нам даже иногда нужно переместить нулевой уровень на более высокий “пьедестал”, чтобы мы могли полностью усиливать сигнал, если дело касается однополярного питания. Работать с однополярным питанием всегда проще и удобнее, чем с двухполярным. Поэтому, в этом случае надо поднять нулевой уровень на некоторый пьедестал, чтобы полностью усиливать переменный сигнал. То есть добавить постоянную составляющую в сигнал. В этом случае схема примет чуть-чуть другой вид:

Как можно увидеть, сейчас мы питаем наш ОУ однополярным питанием. Что будет, если мы НЕинвертирующий выход посадим на землю?

То есть мы получили базовую схему инвертирующего усилителя, но только с однополярным питанием. Давайте ппросимулируем такую схему. Коэффициент усиления в данном случае будет равен-10, так как мы взяли соотношение резисторов 10 килоом и 1 килоом. Загоняю на вход сигнал амплитудой в 1 В.

Что имеем в итоге на виртуальном осциллографе?

Как вы видите, в этом случае усиленная полуволна сигнала вырезается полностью. Оно и понятно, так как напряжение питания у нас однополярное и проломить “пол” нулевого потенциала невозможно. Но можно сделать одну хитрость: поднять “уровень пола” и дать сигналу место для размаха.

В этом случае нам надо добавить Uсм , для того, чтобы поднять сигнал над уровнем “пола”. Но не все так просто, дорогие друзья!

Здесь уже будет использоваться более хитрая формула, а не просто вольтдобавка. Приблизительная формула выглядит вот так:

Итак, мы хотим усилить наш сигнал полностью без среза. Какое же должно быть значение Uвых ? Оно должно иметь значение половины Uпит , чтобы сигнал ходил туда-сюда без срезов. Но также надо учитывать и коэффициент усиления, иначе получится насыщение выхода, о чем мы писали выше.

В нашем случае мы хотим увеличить сигнал амплитудой в 1 В в 10 раз. То есть Uпит должно быть как минимум 20 Вольт. Так как ОУ поддерживают однополярное питание до 32 В, то давайте для красоты выставим Uпит = 30 В. Рассчитываем Uсм :

Проверяем симуляцию, все ок!

Как здесь можно увидеть, желтый выходной сигнал поднялся над нулевым уровнем и усилился без искажений. В данном случае желтый сигнал – это сумма постоянного напряжения и переменного синусоидального сигнала.

То есть получилось что-то типа вот этого:

Хорошо это или плохо, когда в переменном сигнале есть постоянная составляющая, то есть постоянное напряжение? В некоторых случаях это плохо, потому как такой сигнал трудно использовать, и поэтому чаще всего его прогоняют через конденсатор, так как он пропускает через себя только переменный ток и блокирует прохождение постоянного тока. А еще лучше поставить фильтр из , с помощью которого можно отсекать лишние частоты.

История

Операционный усилитель изначально был спроектирован для выполнения математических операций (отсюда его название), путём использования напряжения как аналоговой величины. Такой подход лежит в основе аналоговых компьютеров, в которых ОУ использовались для моделирования базовых математических операций (сложение, вычитание, интегрирование, дифференцирование и т. д.). Однако идеальный ОУ является многофункциональным схемотехническим решением, он имеет множество применений помимо математических операций. Реальные ОУ, основанные на транзисторах, электронных лампах или других компонентах, выполненные в виде дискретных или интегральных схем, являются приближением к идеальным.

Ламповый операционный усилитель K2-W

Первые промышленные ламповые ОУ (1940-е годы) выполнялись на паре двойных триодов, в том числе в виде отдельных конструктивных сборок в корпусах с октальным цоколем. В 1963 году Роберт Видлар, инженер фирмы «Fairchild Semiconductor», спроектировал первый интегральный ОУ — μA702. При цене в 300 долларов, прибор, содержавший 9 транзисторов, использовался только в военных применениях. Первый доступный интегральный ОУ, μA709, также спроектированный Видларом, был выпущен в 1965 году; вскоре после выпуска его цена упала ниже 10 долларов, что было всё ещё слишком дорого для бытового применения, но вполне доступно для массовой промышленной автоматики и т. п. гражданских задач.

В 1967 году фирма «National Semiconductor», куда перешёл работать Видлар, выпустила LM101, а в 1968 году фирма Fairchild выпустила ОУ, практически идентичный μA741 — первый ОУ со встроенной частотной коррекцией. ОУ LM101/μA741 был более стабилен и прост в использовании, чем предшественники. Многие производители до сих пор выпускают версии этого классического чипа (их можно узнать по числу «741» в наименовании). Позднее были разработаны ОУ и на другой элементной базе: на полевых транзисторах с p-n переходом (конец 1970-х годов) и с изолированным затвором (начало 1980-х годов), что позволило существенно улучшить ряд характеристик. Многие из более современных ОУ могут быть установлены в схемы, спроектированные для 741 без каких-либо доработок, при этом характеристики схемы только улучшатся.

Применение ОУ в электронике чрезвычайно широко. Операционный усилитель, вероятно, наиболее часто встречающийся элемент в аналоговой схемотехнике. Добавление лишь нескольких внешних компонентов делает из ОУ конкретную схему аналоговой обработки сигналов. Многие стандартные ОУ сто́ят всего несколько центов в крупных партиях (1000 шт), но усилители с нестандартными характеристиками (в интегральном или дискретном исполнении) могут стоить $100 и выше.

Простейшие схемы с обратной связью

Из рассмотрения принципа работы идеального ОУ следует очень простая методика проектирования схем:

Таким образом, требуемое состояние системы будет устойчивым состоянием равновесия, и система будет в нем находиться неограниченно долго. Пользуясь этим упрощённым подходом, несложно получить простейшую схему неинвертирующего усилителя.

От усилителя требуется наличие на выходе напряжения, отличающегося от входного в K{\displaystyle K} раз, то есть Uout=Uin⋅K{\displaystyle U_{out}=U_{in}\cdot K}. В соответствии с приведённой выше методикой подадим на неинвертирующий вход ОУ сам входной сигнал, а на инвертирующий — часть выходного сигнала с резистивного делителя.

Неинвертирующий усилитель

Расчёт реального коэффициента усиления для идеального (или реального, но который можно с определёнными допущениями считать идеальным) усилителя очень прост. Заметим, что в том случае, когда усилитель находится в состоянии равновесия, напряжения на его входах можно считать одинаковыми. Исходя из этого следует, что падение напряжения на резисторе R1{\displaystyle R_{1}} равно Vin{\displaystyle V_{in}}, а на всём делителе сопротивлением R1+R2{\displaystyle R_{1}+R_{2}}, падает Vout{\displaystyle V_{out}}. Заметим, что, поскольку входное сопротивление операционного усилителя очень велико, то током, поступающим на инвертирующий (−) вход усилителя, можно пренебречь, и ток, протекающий через резисторы делителя, можно принять одинаковым. Ток через R1{\displaystyle R_{1}} равен IR1=VinR1{\displaystyle I_{R_{1}}={\frac {V_{in}}{R_{1}}}}, а через весь делитель IR1+R2=VoutR1+R2{\displaystyle I_{R_{1}+R_{2}}={\frac {V_{out}}{R_{1}+R_{2}}}}.

Таким образом:

IR1=IR1+R2{\displaystyle I_{R_{1}}=I_{R_{1}+R_{2}}}

Откуда:

VinR1=VoutR1+R2{\displaystyle {\frac {V_{in}}{R_{1}}}={\frac {V_{out}}{R_{1}+R_{2}}}}

Vout=Vin⋅R1+R2R1=Vin⋅(1+R2R1){\displaystyle V_{out}=V_{in}\cdot {\frac {R_{1}+R_{2}}{R_{1}}}=V_{in}\cdot \left(1+{\frac {R_{2}}{R_{1}}}\right)}

Можно рассуждать немного проще, сразу заметив, что VoutVin=R1+R2R1{\displaystyle {\frac {V_{out}}{V_{in}}}={\frac {R_{1}+R_{2}}{R_{1}}}}.

Следует обратить внимание, что в неинвертирующей схеме включения коэффициент усиления напряжения всегда больше или равен 1, вне зависимости от номиналов используемых резисторов. Если сопротивление R2{\displaystyle R_{2}} равно нулю, то мы получаем неинвертирующий повторитель напряжения, имеющий коэффициент усиления напряжения 1.. А поскольку:

А поскольку:

∀n∈R+limn→∞n={\displaystyle \forall n\in \mathbb {R} ^{+}\lim _{n\to \infty }{\frac {0}{n}}=0},

то сопротивление R1{\displaystyle R_{1}} можно попросту убрать, приняв его равным бесконечности.

Таким образом, коэффициент передачи усилителя, построенного на ОУ с достаточно большим усилением, практически зависит только от параметров обратной связи. Это полезное свойство позволяет проектировать системы с очень стабильным коэффициентом передачи, необходимые, например, при измерениях и обработке сигналов.

Инвертирующий усилитель

Для операционного усилителя, включенного по инвертирующей схеме, расчёт при принятых допущениях тоже не представляет сложности. Для этого следует заметить, что напряжение в средней точке делителя, а именно на инвертирующем входе (−) усилителя равно 0 (так называемая виртуальная земля). Отсюда падения напряжения на резисторах равны, соответственно, входному и выходному напряжениям. Ток через резисторы тоже можно принять одинаковым, поскольку через инвертирующий вход (−) ток практически отсутствует, как было указано выше.

Отсюда:

VinRin=−VoutRf{\displaystyle {\frac {V_{in}}{R_{in}}}=-{\frac {V_{out}}{R_{f}}}}

Vout=−Vin⋅RfRin{\displaystyle V_{out}=-V_{in}\cdot {\frac {R_{f}}{R_{in}}}}

Следует обратить внимание, что в инвертирующей схеме включения коэффициент усиления может быть как больше, так и меньше единицы и зависит от номиналов резисторов делителя. То есть, усилитель может использоваться как активный аттенюатор (ослабитель) входного напряжения

Преимуществом этого решения над пассивным аттенюатором заключается в том, что с точки зрения источника сигнала аттенюатор выглядит как обычный резистор нагрузки, подключенный между сигналом и землёй (в данном случае так называемой «виртуальной»), то есть является обычной активной нагрузкой (разумеется, без учёта паразитных ёмкостей и индуктивностей). Это значительно упрощает расчёт влияния нагрузки на источник сигнала и их взаимное согласование.

Обобщенная схема усилителя

Она  выглядит примерно вот так:

Как мы можем видеть на схеме, ко входу усилительного каскада  через клеммы 1 и 2 подсоединяется какой-либо источник слабого сигнала  с ЭДС  EИ   и внутренним сопротивлением RИ . Именно этот слабый сигнал с этого источника мы будем усиливать. Далее, как и полагается, каждый усилитель обладает своим каким-либо входным сопротивлением Rвх . Сила тока Iвх в цепи  EИ —>RИ—>Rвх , как ни трудно догадаться, будет зависеть от  входного сопротивления усилительного каскада Rвх .

Как вы уже знаете, источник питания играет главную роль в усилительном каскаде. Маломощный слабый сигнал управляет расходом энергии источника питания. В результате на выходе мы получаем умощненную копию входного слабого сигнала. Усиление произошло благодаря тому, что источник питания давал свою мощность для усиления входного сигнала. Ну как-то вот так).

В выходной цепи усилителя мы получаем усиленный сигнал с ЭДС Eвых и выходным сопротивлением Rвых . Через клеммники 3 и 4 мы цепляем нагрузку Rн , которая уже будет потреблять энергию усиленного сигнала. Сила тока в цепи Eвых —> Rвых —> Rн  будет зависеть от сопротивления нагрузки Rн .

Принцип работы операционного усилителя

Давайте рассмотрим, как работает ОУ

Принцип работы ОУ очень прост. Он сравнивает два напряжения и на выходе уже выдает отрицательный, либо положительный потенциал питания. Все зависит от того, на каком входе потенциал больше. Если потенциал на НЕинвертирующем входе U1 больше, чем на инвертирующем U2, то на выходе будет +Uпит, если же на инвертирующем входе U2 потенциал будет больше, чем на НЕинвертирующем U1, то на выходе будет -Uпит. Вот и весь принцип ;-).

Давайте рассмотрим этот принцип в симуляторе Proteus. Для этого выберем самый простой и распространенный операционный усилитель LM358 (аналоги 1040УД1, 1053УД2, 1401УД5) и соберем примитивную схему, показывающую принцип работы

Подадим на НЕинвертирующий вход 2 Вольта, а на инвертирующий вход 1 Вольт. Так как на НЕинвертирующем входе потенциал больше, то следовательно, на выходе мы должны получить +Uпит. Мы получили 13,5 Вольт, что близко к этому значению

Но почему не 15 Вольт? Виновата во всем сама внутренняя схемотехника ОУ. Максимальное значение ОУ не всегда может равняться положительному либо отрицательному напряжению питания. Оно может отклоняться от 0,5 и до 1,5 Вольт в зависимости от типа ОУ.

Но, как говорится, в семье не без уродов, и поэтому на рынке уже давно появились ОУ, которые могут выдавать на выходе допустимое напряжение питания, то есть в  нашем случае это значения, близкие к +15 и -15 Вольтам. Такая фишка называется Rail-to-Rail, что в дословном переводе с англ. “от рельса до рельса”, а на языке электроники “от одной шины питания и до другой”.

Давайте теперь на инвертирующий вход подадим потенциал больше, чем на НЕинвертирущий. На инвертирующий подаем 2 Вольта, а на НЕинвертирующий подаем 1 Вольт:

Как вы видите, в данный момент выход “лег” на -Uпит, так как на инвертирующем входе потенциал был больше, чем на НЕинвертирующем.

Чтобы не качать лишний раз программный комплекс Proteus, можно в онлайне с помощью программы Falstad сэмулировать работу идеального ОУ. Для этого выбираем вкладку Circuits—Op-Amps—>OpAmp. В результате на вашем экране появится вот такая схемка:

На правой панели управления увидите бегунки для добавления напряжения на входы ОУ и уже можете визуально увидеть, что получится на выходе ОУ при изменении напряжения на входах.

Характеристики операционных усилителей

Идеальный
операционный усилитель

Эквивалентная
схема операционного усилителя в которой
смоделированы некоторые неидеальные
резистивные параметры

Идеальный
операционный усилитель может работать
при любых входных напряжениях и имеет
следующие свойства:

  • Коэффициент
    усиления с разомкнутой петлёй обратной
    связи равен бесконечности (при
    теоретическом анализе полагают
    коэффициент усиления при разомкнутой
    петле обратной связи AOL
    стремящимся к бесконечности).

  • Диапазон
    выходных напряжений Vout
    равен бесконечности (на практике
    диапазон выходных напряжений ограничивают
    величиной напряжения питания Vs+
    и Vs-).

  • Бесконечно
    широкая полоса пропускания (т.е.
    амплитудно-частотная характеристика
    является идеально плоской с нулевым
    фазовым сдвигом).

  • Бесконечно
    большое входное сопротивление (Rin
    = ∞, ток из V+
    в V
    не течёт).

  • Нулевой
    входной ток (т.е. предполагается
    отсутствие токов утечки и токов
    смещения).

  • Нулевое
    напряжение смещения, т.е. когда входы
    соединены между собой V+ = V,
    то на выходе присутствует виртуальный
    ноль (Vout = 0).

  • Бесконечно
    большая скорость нарастания напряжения
    на выходе (т.е. скорость изменения
    выходного напряжения не ограничена) и
    бесконечно большая пропускная мощность
    (напряжение и ток не ограничены на всех
    частотах).

  • Нулевое
    выходное сопротивление (Rout
    = 0, так что выходное напряжение не
    меняется при изменении выходного тока).

  • Отсутствие
    собственных шумов.

  • Бесконечно
    большая степень подавления синфазных
    сигналов.

  • Бесконечно
    большая степень подавления пульсаций
    питающих напряжений.

Эти
свойства сводятся к двум «золотым
правилам»:

  1. Выход
    операционного усилителя стремится к
    тому, что бы разница между входными
    напряжениями стала равной нулю.

  2. Оба
    входа операционного усилителя не
    потребляют ток.

Первое
правило применимо к операционному
усилителю, включённому в схему с замкнутой
петлёй отрицательной обратной связи.
Эти правила обычно применяются для
анализа и проектирования схем с
операционными усилителями в первом
приближении.

На
практике ни одно из идеальных свойств
не может быть полностью достигнуто,
поэтому приходится идти на различные
компромиссы. В зависимости от желаемых
параметров, при моделировании реального
операционного усилителя учитывают
некоторые неидеальности, используя
эквивалентные цепи из резисторов и
конденсаторов в его модели. Разработчик
может заложить эти нежелательные, но
реальные эффекты в общую характеристику
проектируемой схемы. Влияние одних
параметров может быть пренебрежительно
мало, а другие параметры могут налагать
ограничение на общие характеристики
схемы.

Что такое четырехполюсник

В электронике черным ящиком является четырехполюсник. Что вообще такое четырехполюсник? Четырехполюсник – это черный ящик, внутри которого имеется неизвестная электрическая цепь. Здесь мы видим две клеммы на вход, через которые подается входное воздействие и две клеммы на выход, с которых мы уже будем снимать отклик нашего “электрического черного ящика”.

Пассивный четырехполюсник

Например, RC-цепь является пассивным четырехполюсником, так как она имеет четыре вывода: два на вход и два на выход, и как мы видим, она не содержит в себе какой-либо источник питания. Эта RC цепочка является пассивным фильтром низкой частоты (ФНЧ).

В пассивных четырехполюсниках напряжение или ток на выходе могут быть больше, чем на входе, но мощность при этом не увеличивается. Как же напряжение или ток на выходе могут быть больше, чем на входе? Здесь достаточно вспомнить трансформатор, а также последовательный и параллельный колебательные контура. Для них точнее было бы определение преобразователи напряжения, но никак не усилитель, так как усилитель должен иметь в своем составе обязательно источник питания, у которого он будет брать энергию для усиления слабого входного сигнала.

Также в пассивном четырехполюснике мощность на выходе никак не будет больше мощности, чем на входе. Если вы этого добьетесь, то сразу же получите вечный источник энергии и Нобелевскую премию в придачу. Но помните, что закон сохранения энергии, который впервые был еще сформулирован Лейбницем в 17 веке, никто не отменял.

Активный четырехполюсник

А вот этот четырехполюсник мы будем уже называть активным, так как он имеет в своем составе источник питания +Uпит , которое требуется для того, чтобы усиливать сигнал.

То есть мы здесь видим две клеммы на вход, на которые загоняется сигнал Uвх , а также видим две клеммы на выход, где снимается напряжение Uвых . Питается наш четырехполюсник через +Uпит , в результате чего, в данном случае, сигнал на выходе будет больше, чем сигнал на входе.

Загоняя на вход такой схемы синусоиду, на выходе мы получим ту же самую синусоиду, но ее амплитуда будет в разы больше.

Это, конечно же, верно для идеального усилителя, т.е. абсолютно линейного и без ограничения на амплитуду входного и выходного сигнала. В реальных усилителях, требуется чтобы амплитуда не превышала допустимую и усилитель был правильно спроектирован. Кроме того, любой реальный усилитель вносит искажения и характеризуется коэффициентом нелинейных искажений (КНИ) и еще многими другими параметрами, которые мы рассмотрим в следующей статье.

В активном четырехполюснике, одним из которых является усилитель мощности, мощность на выходе будет больше, чем на входе. Естественно, при этом не нарушается закон сохранения энергии, так как мощность, которая выделяется на нагрузке – это преобразованная мощность источника питания. Входной слабый сигнал просто управляет этой мощностью. Более подробно можно прочитать в статье про принцип усиления транзистора.

В электронике мы будем рассматривать усилитель, как активный четырехполюсник, на вход которого подается маломощный сигнал Uвх, а к выходу цепляется нагрузка Rн .

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации