Андрей Смирнов
Время чтения: ~16 мин.
Просмотров: 0

Устройство и принцип работы симистора

Номенклатура и корпуса

Промышленный ряд тиристоров Philips начинается с 0,8 A в SOT54 (TO92) и заканчивается 25 A в SOT78 (TO220AB).

Промышленный ряд триаков (симисторов) Philips начинается с 0,8 A в SOT223 и заканчивается 25 A в SOT78.

Самый маленький корпус триака (тиристора) для поверхностного монтажа — SOT223 (рис. 11). Мощность рассеивания зависит от степени рассеивания тепла печатной платой, на которую устанавливается прибор.

Тот же кристалл устанавливается в неизолированный корпус SOT82 (рис. 13). Улучшенная теплоотдача этого корпуса позволяет использовать его при более высоких номинальных токах и большей мощности.

На рис. 12 показан наименьший корпус для обычного монтажа — SOT54. В этот корпус ставится кристалл, которым оснащаются SOT223.

SOT78 — самый распространенный неизолированный корпус, большинство устройств для бытовой техники производится с использованием этого корпуса (рис. 14).

На рис. 15 показан SOT186 (F-корпус). Этот корпус допускает в обычных условиях разность потенциалов 1500 В между прибором и теплоотводом.

Один из последних корпусов — SOT186A (X-корпус), показанный на рис. 16. Он обладает несколькими преимуществами перед предыдущими типами:

  1. Корпус имеет те же размеры, что и корпус SOT78 в зазорах выводов и монтажной поверхности, поэтому он может непосредственно заменять SOT78 без изменений в монтаже.
  2. Корпус допускает в обычных условиях разность потенциалов 2500 В между прибором и теплоотводом.

Электронные ключи

В настоящее время применяются следующие типы:

  • Ключи на биполярных транзисторах;
  • Ключи на полевых транзисторах;
  • Ключи на управляемых диодах — тиристорах;
  • Ключи на симметричных управляемых диодах — симисторах.

Рассмотрим подробно каждый из типов:

На транзисторах

Простейшим электронным ключом является биполярный транзистор. Как известно, биполярный транзистор имеет структуру n-p-n или р-n-p с двумя p-n переходами и тремя выводами: эмиттер, база и коллектор.

Если ток базы отсутствует, ток коллектора равен нулю. Транзистор находится в состоянии отсечки. Это соответствует разомкнутому состоянию.

Если в базу подать ток достаточной величины, транзистор войдет в насыщение, и напряжение на коллекторе будет близко к нулю, независимо от тока коллектора. Это соответствует замкнутому состоянию.

До появления полевых транзисторов ключи на биполярных транзисторах были основой всей полупроводниковой схемотехники.

В полевых транзисторах между выводами стока и истока существует проводящий канал n или р типа. К этому каналу через диэлектрический слой окисла подключен управляющий электрод — затвор. Меняя напряжение на затворе, можно воздействовать на ширину проводящего канала и тем самым менять его проводимость. Управляя затвором, можно переводить ключ в открытое и закрытое состояние.

Ключи на полевых транзисторах превосходят ключи на биполярных по быстродействию, поскольку биполярные транзисторы медленно выходят из режима насыщения.

Сегодня все компьютеры, смартфоны и прочие гаджеты собраны на комплиментарных (то есть разнополярных) МОП транзисторах. В быстродействующей силовой электронике также применяются мощные полевые транзисторы.

На тиристорах

Если добавить к структуре биполярного транзистора еще один p-n переход, можно получить прибор с очень интересными свойствами — управляемый диод, или тиристор.

Тиристор — это полупроводниковый прибор со структурой p-n-p-n или n-p-n-p. Он имеет три или реже четыре вывода. Вывод, подключенный к внешнему слою p, называется анод, к внешнему слою n — катод. Управляющий электрод, называемый базой, подключается к одному из внутренних слоев, обычно к тому, который примыкает к катоду. Тиристор может иметь и две базы, но это не принципиально.

Эта структура эквивалентна соединению двух, транзисторов с разным типом проводимости, показанному на рисунке.

Это два транзисторных ключа, включенных навстречу друг другу. База каждого из транзисторов подключена к коллектору другого. Эта схема напоминает триггер — элемент с памятью. Если подать в базу отпирающий ток, то тиристор откроется, но из-за эффекта памяти останется в этом состоянии до тех пор, пока ток через него не снизится практически до нуля.

У тиристора очень необычная вольт-амперная характеристика. Она имеет S — образную форму.

Характеристика показывает зависимость тока через тиристор от напряжения между анодом и катодом при различных значениях тока базы IG. Напряжение Vbo соответствует напряжению включения тиристора. Vbr соответствует напряжению пробоя.

При достаточно большом токе базы тиристор ведет себя как диод. Иногда тиристор называют управляемым диодом, что соответствует его графическому обозначению на схемах. Тиристор проводит ток в одном направлении.

Плюсы и минусы устройства

После того как мы разобрались, что такое симистор, давайте изучим достоинства и недостатки этого управляющего прибора. К достоинствам относят:

Основной плюс триака – в приборе отсутствуют механические контакты. Из этого исходят остальные преимущества устройства;
Длительный срок эксплуатации, при этом поломки практически не случаются;
Принцип работы симистров исключает искрение в процессе эксплуатации даже при больших мощностях проходящего тока

Это особенно важно в релейных схемах: не создаются дополнительные радиопомехи;
Кроме этого, такие полупроводниковые приборы имеют невысокую стоимость.

Но, как и любое устройство, симметричные тиристоры не лишены некоторых минусов:

  • Значительное тепловыделение в процессе работы;
  • Чувствительность к электромагнитным помехам и шумам;
  • Неспособность работать при высоких частотах переменного тока;
  • Падение напряжения до двух вольт на приборе, находящемся в открытом состоянии. При этом этот показатель не зависит от мощности проходящего тока. Этот фактор является препятствием для применения симисторов в маломощных установках;

В то же время, симисторы при больших токах греются, что требует применения радиаторов для охлаждения корпуса. В промышленности встречается охлаждение мощных триаков активным способом – при помощи вентилятора.

Развитие технологий

Особенностью четырех-квадрантных симисторов является их ложное срабатывание, что может привести к выходу из строя. Это требовало применения дополнительной защитной цепочки, включающей различные элементы. Относительно недавно были разработаны трех-квадрантные устройства, которые обладают определенными преимуществами:

  • За счет уменьшения количества необходимых элементов, плата стала еще более компактной;
  • Как следствие, снижение потерь напряжения и уменьшение стоимости готового изделия;
  • За счет отсутствия демпфера и дросселя, стало возможным использовать симметричные тиристоры в цепях с повышенной частотой.

Также упрощение схемы позволило использовать трех-квадрантный симистор в нагревательных приборах: такая конструкция меньше греется и не реагирует на окружающую температуру.

Способы управления

Управлять яркостью свечения светодиодов можно с помощью:

регулировки скважности импульсов, с использованием широтно-импульсной модуляции;

отсечением начала или конца полуволны переменного напряжения на входе диммера.

В первом случае меняется соотношение длительности включенного и выключенного состояния светодиода. Процесс идет на частоте следования импульсов от сотен кГц, до 2 МГц, поэтому глаз человека этих мельканий не замечает.

Во втором случае, т. е. при работе диммера для светодиодной ленты TRIAC, процесс идет на частоте – 50 или 60Гц, т. е. достаточно низкой и глаз также не успевает отследить включение/выключение светодиодов. Но на очень малых яркостях иногда заметно их мерцание.

Обрезание симистором TRIAC диммера начала каждой полуволны называется отсечкой по переднему фронту или передней кромке, а окончания полуволны – отсечкой по заднему фронту. Международные названия: Leading Edge, переводится как «передняя кромка» и Trailing Edge – «задняя кромка». Ознакомьтесь с другими вариантами TRIAC диммеров  с питанием от сети 220v. 

Обычно современные импульсные драйверы значительно лучше работают со специальными низковольтными электронными диммерами, обозначаемыми аббревиатурой ELV. Эти конструкции подключаются точно так же, как и традиционные диммеры для ламп накаливания. Отличие лишь в том, что имеется дополнительная цепь – «нейтраль», по которой на диммер подается напряжение даже при выключенном светодиодном светильнике.

Большинство используемых в светодиодной светотехнике диммеров работают по процедуре отсечки задней кромки – Trailing Edge. Это объясняется более высокой надежностью работы устройств этой разновидности.

Ограничения

При использовании симистора накладываются ограничения, в частности при индуктивной нагрузке. Ограничения касаются скорости изменения напряжения (dU/dt) между основными электродами симистора и скорости изменения рабочего тока di/dt. Превышение скорости изменения напряжения на симисторе (из-за наличия его внутренней ёмкости), а также величины этого напряжения, могут приводить к нежелательному открыванию симистора. Превышение скорости нарастания тока между основными электродами, а также величины этого тока, может привести к повреждению симистора. Существуют и другие параметры, на которые накладываются ограничения в соответствии с предельно-допустимыми режимами эксплуатации. К таким параметрам относятся ток и напряжение управляющего электрода, температура корпуса, рассеиваемая прибором мощность и пр.

Опасность превышения по скорости нарастания тока заключается в следующем. Благодаря глубокой положительной обратной связи переход симистора в открытое состояние происходит лавинообразно, но, несмотря на это, процесс отпирания может длиться до нескольких микросекунд, в течение которых к симистору оказываются приложены одновременно большие значения тока и напряжения. Поэтому, даже несмотря на то, что падение напряжения на полностью открытом симисторе невелико, мгновенная мощность во время открывания симистора может достигнуть большой величины. Это сопровождается выделением тепловой энергии, которая не успевает рассеяться и может привести к перегреву и повреждению кристалла.

Одним из способов защиты симистора от выбросов напряжения при работе с индуктивной нагрузкой является включение варистора параллельно основным выводам симистора. Для защиты симистора от превышения скорости изменения напряжения применяют так называемую снабберную цепочку (RC-цепь), подключаемую аналогично.

Устойчивость симистора к разрушению при превышении допустимой скорости нарастания тока (dI/dt) зависит от внутреннего сопротивления и индуктивности источника питания и нагрузки.
При работе на емкостную нагрузку необходимо внести в цепь соответствующую индуктивность.

Использование микросхемы К1182 ПМ1

Для построения тиристорных и симисторных регуляторов выпускается специальная микросхема К1182 ПМ1. На кристалле микросхемы реализована почти законченная схема фазового регулятора мощности.

Два тиристора включены параллельно и навстречу друг другу. Их управляющие входы подключены чрез развязывающие диоды к выходу блока управления. Встроенный диодный мост вырабатывает напряжение питания для блока управления.

На выводы AC1 и AC2 подается напряжение 220 В. К выводам UST1+ и UST2+ подключаются конденсаторы, формирующие задержку включения тиристоров. К выводам С+ и C- подключается элемент управления — переменный резистор или RС цепочка.

Ниже приведены рекомендованные производителем схемы включения маломощных нагрузок непосредственно к микросхеме.

При необходимости подключения мощных нагрузок используются внешние тиристоры или симисторы.

Вариант с двумя тиристорами.

Вариант с симистором.

Микросхема выпускается в трех типах корпусов:

  • 16 выводной Power DIP-(12+4);
  • 8 выводной DIP-8;
  • 8 выводной планарный SO-8.

Собрать симисторный регулятор мощности своими руками может любой радиолюбитель.

Что такое тиристор, его устройство и обозначение на схеме

Тиристор — полупроводниковый элемент, имеющий только два состояния: «открыто» (ток проходит) и «закрыто» (тока нет). Причем оба состояния устойчивые, то есть переход происходит только при определенных условиях. Само переключение происходит очень быстро, хоть и не мгновенно.

Так выглядят тиристоры

По способу действия его можно сравнить с переключателем или ключом. Вот только переключается тиристор при помощи напряжения, а отключается пропаданием тока или снятием нагрузки. Так что принцип работы тиристора понять несложно. Можно представлять его как ключ с электрическим управлением. Так, да не совсем.

Тиристор, как правило, имеет три выхода. Один управляющий и два, через которые протекает ток. Можно попробовать коротко описать принцип работы. При подаче напряжения на управляющий выход, коммутируется цепь через анод-коллектор. То есть, он сравним с транзистором. Только с той разницей, что у транзистора величина пропускаемого тока зависит от поданного на управляющий вывод напряжения. А тиристор либо полностью открыт, либо полностью закрыт.

Внешний вид

Внешний вид тиристора зависит от даты его производства. Элементы времен Советского Союза — металлические, в виде «летающей тарелки» с тремя выводами. Два вывода — катод и управляющий электрод — находятся на «дне» или «крышке» (это с какой стороны смотреть). Причем электрод управления меньше по размерам. Анод может находиться с противоположной стороны от катода, или торчать вбок из-под шайбы, которая есть на корпусе.

Два вида тиристоров — современные и советские, обозначение на схемах

Современные тиристоры выглядят по-другому. Это небольшой пластиковый прямоугольник с металлической пластиной сверху и тремя выводами-ножками снизу. В современном варианте есть одно неудобство: надо смотреть в описании какой из выводов анод, где катод и управляющий электрод. Как правило, первый — анод, затем катод и крайний правый — это электрод. Но это как правило, то есть, не всегда.

Принцип работы

По принципу действия, тиристор можно еще сравнить с диодом. Пропускать ток он будет в одном направлении — от анода к катоду, но происходить это будет только в состоянии «открыто». На схемах тиристор похож на диод. Также имеется анод и катод, но есть еще дополнительный элемент — управляющий электрод. Понятное дело, есть отличия и в выходном напряжении (если сравнивать с диодом).

Принцип работы тиристора в устройствах переменного напряжения: на выходе есть только верхняя часть синусоиды

В схемах переменного напряжения тиристор будет пропускать только одну полуволну — верхнюю. Когда приходит нижняя полуволна, он сбрасывается в состояние «закрыто».

Схема регуляторов мощности на симисторе

Простейшая схема симисторного регулятора приведена ниже. Емкость C1 заряжается через резисторы R1 и R2.

Когда напряжение на емкости достигнет величины напряжения открытия динистора, через открытый динистор на управляющий вход симистора подается отпирающий ток, симистор открывается и остается в открытом состоянии до конца полупериода. Емкость тем временем разряжается через открытый динистор и базу симистора. Напряжение на емкости падает, и динистор закрывается.

На втором полупериоде все повторяется. Меняя сопротивление R1, можно изменять скорость заряда емкости и, соответственно, момент срабатывания динистора и открытия ключа.

Демпферные схемы

При использовании для управления реактивными ( индуктивными или емкостными) нагрузками необходимо следить за тем, чтобы симистор правильно отключался в конце каждого полупериода переменного тока в главной цепи. TRIAC могут быть чувствительны к быстрым изменениям напряжения (dv / dt) между MT1 и MT2, поэтому фазовый сдвиг между током и напряжением, вызванный реактивными нагрузками, может привести к скачку напряжения, который может привести к ошибочному включению тиристора. Электродвигатель обычно представляет собой индуктивную нагрузку, а автономные источники питания, которые используются в большинстве телевизоров и компьютеров, являются емкостными.

Нежелательных включений можно избежать, используя демпфирующую цепь (обычно типа резистор / конденсатор или резистор / конденсатор / индуктор) между MT1 и MT2. Демпферные цепи также используются для предотвращения преждевременного срабатывания, вызванного, например, скачками напряжения в сети.

Поскольку включения вызваны внутренними емкостными токами, протекающими в затвор как следствие высокого d v / d t (т. Е. Быстрого изменения напряжения), резистор затвора или конденсатор (или оба параллельно) могут быть подключены между затвором. и MT1 для обеспечения низкоомного пути к MT1 и дальнейшего предотвращения ложного срабатывания. Однако это увеличивает требуемый ток срабатывания или увеличивает задержку из-за зарядки конденсатора. С другой стороны, резистор между затвором и MT1 помогает отводить токи утечки из устройства, тем самым улучшая характеристики TRIAC при высокой температуре, где максимально допустимое значение d v / d t ниже. Для этой цели обычно подходят резисторы менее 1 кОм и конденсаторы 100 нФ, хотя точная настройка должна выполняться на конкретной модели устройства.

Для более мощных и требовательных нагрузок можно использовать два тиристора, включенных в обратную параллель, вместо одного тиристора . Поскольку к каждому тиристору будет приложен полный полупериод напряжения обратной полярности, отключение тиристоров гарантировано независимо от характера нагрузки. Однако из-за отдельных вентилей надлежащий запуск SCR более сложен, чем запуск TRIAC.

TRIAC может также не включиться надежно с реактивной нагрузкой, если текущий приводит к тому, что ток основной цепи становится ниже во время запуска. Чтобы решить эту проблему, можно использовать постоянный ток или последовательность импульсов, чтобы многократно запускать TRIAC, пока он не включится.

Достоинства и недостатки

Для чего нужен рассматриваемый полупроводниковый прибор? Самый популярный вариант использования – коммутация в цепях переменного тока. В этом плане симистор очень удобен – используя небольшой элемент можно обеспечить управление высоковольтного питания.

Популярны решения, когда им заменяют обычное электромеханическое реле. Плюс такого решения – отсутствует физический контакт, благодаря чему включение питания становится надежнее, переключение бесшумным, ресурс на порядки больше, быстродействие выше. Еще одно достоинство симистора – относительно невысокая цена, что вместе с высокой надёжностью схемы и временем наработки на отказ выглядит привлекательно.

Полностью избежать минусов разработчикам не удалось. Так, приборы сильно нагреваются под нагрузкой. Приходится обеспечивать отвод тепла. Мощные (или «силовые») симисторы устанавливают на радиаторы. Ещё один недостаток, влияющий на использование, это создание гармонических помех в электросети некоторыми схемами симисторных регуляторов (например, бытовой диммер для регулировки освещенности).

Отметим, что напряжение на нагрузки будет отличаться от синусоиды, что связано с минимальным напряжением и током, при которых возможно включение. Из-за этого подключать следует только нагрузку, не предъявляющую высоких требований к электропитанию. При постановке задачи добиться синусоиды такой способ коммутации не подойдёт. Симисторы сильно подвержены влиянию шумов, переходных процессов и помех. Также не поддерживаются высокие частоты переключения.

Драйвер полевого транзистора

Если всё же требуется подключать нагрузку к n-канальному транзистору
между стоком и землёй, то решение есть. Можно использовать готовую
микросхему — драйвер верхнего плеча. Верхнего — потому что транзистор
сверху.

Выпускаются и драйверы сразу верхнего и нижнего плеч (например,
IR2151) для построения двухтактной схемы, но для простого включения
нагрузки это не требуется. Это нужно, если нагрузку нельзя оставлять
«висеть в воздухе», а требуется обязательно подтягивать к земле.

Рассмотрим схему драйвера верхнего плеча на примере IR2117.

Схема не сильно сложная, а использование драйвера позволяет наиболее
эффективно использовать транзистор.

Область применения

Характеристики, небольшая стоимость и простота устройства позволяет успешно применять симисторы в промышленности и быту. Их можно найти:

  1. В стиральной машине.
  2. В печи.
  3. В духовках.
  4. В электродвигателе.
  5. В перфораторах и дрелях.
  6. В посудомоечной машине.
  7. В регуляторах освещения.
  8. В пылесосе.

На этом перечень, где используется этот полупроводниковый прибор, не ограничивается. Применение рассматриваемого проводникового прибора осуществляется практически во всех электроприборах, что только есть в доме. На него возложена функция управления вращением приводного двигателя в стиральных машинках, они используются на плате управления для запуска работы всевозможных устройств – легче сказать, где их нет.

Плюсы и минусы в использовании

Симисторы обладают следующими достоинствами:

  • относительно небольшая стоимость прибора;
  • увеличенный срок службы;
  • отсутствие механических контактов.

При использовании симисторов в релейных схемах благодаря отсутствию механических контактов не бывает искрения, являющегося источником радиопомех.

Недостатки прибора:

  • для защиты от перегрева прибора необходимо использовать радиатор;
  • чувствительность к переходным процессам;
  • не работает на больших частотах;
  • чувствителен к помехам и шумам.

Особенностью симистора является то, что падение напряжения на приборе в открытом состоянии не зависит от протекающего тока и составляет около 2 В.

Поэтому без теплоотвода симисторы могут быть использованы только при малых нагрузках. В противном случае необходимо использовать радиатор. При этом наилучшим способом крепления симистора к радиатору является крепление с помощью винта.

При высокой скорости изменения переключаемого симистором напряжения может возникать эффект самопроизвольного включения прибора без наличия управляющего напряжения. Это может привести к разрушению устройства. Причиной резкого повышения скорости изменения напряжения может быть появление помехи или выбросы напряжения при работе с нагрузкой, имеющей индуктивный характер. Для предотвращения разрушения симистора в таких случаях рекомендуется включение шунтирующей RC цепочки.

В некоторых цепях возможно появление электрических помех и шумов. Если напряжение этих шумов на затворе достигнет значения включения, то симистор может сработать в неподходящий момент. Для предотвращения этого рекомендуется уменьшить длину проводов, ведущих к затвору или заменить их экранированным кабелем. Кроме того, для уменьшения влияния шумов между затвором и электродом МТ1 можно включить резистор величиной в 1 кОм.

IGBT

Ещё один интересный класс полупроводниковых приборов, которые можно
использовать в качестве ключа — это биполярные транзисторы с
изолированным затвором (IGBT).

Они сочетают в себе преимущества как МОП-, так и биполярных
транзисторов: управляются напряжением, имеют большие значения
предельно допустимых напряжений и токов.

Управлять ключом на IGBT можно так же, как и ключом на MOSFET. Из-за
того, что IGBT применяются больше в силовой электронике, они обычно
используются вместе с драйверами.

Например, согласно даташиту, IR2117 можно использовать для управления
IGBT.

Пример IGBT — IRG4BC30F.

Управление нагрузкой переменного тока

Все предыдущие схемы отличало то, что нагрузка хоть и была мощной, но
работала от постоянного тока. В схемах была чётко выраженные земля и
линия питания (или две линии — для контроллера и нагрузки).

Для цепей переменного тока нужно использовать другие подходы. Самые
распространённые — это использование тиристоров, симисторов и реле.
Реле рассмотрим чуть позже, а пока поговорим о первых двух.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации