Андрей Смирнов
Время чтения: ~17 мин.
Просмотров: 333

Оптосимистор и его применение

Достоинства и недостатки

Для чего нужен рассматриваемый полупроводниковый прибор? Самый популярный вариант использования – коммутация в цепях переменного тока. В этом плане симистор очень удобен – используя небольшой элемент можно обеспечить управление высоковольтного питания. Популярны решения, когда им заменяют обычное электромеханическое реле. Плюс такого решения – отсутствует физический контакт, благодаря чему включение питания становится надежнее, переключение бесшумным, ресурс на порядки больше, быстродействие выше. Еще одно достоинство симистора – относительно невысокая цена, что вместе с высокой надёжностью схемы и временем наработки на отказ выглядит привлекательно.

Полностью избежать минусов разработчикам не удалось. Так, приборы сильно нагреваются под нагрузкой. Приходится обеспечивать отвод тепла. Мощные (или «силовые») симисторы устанавливают на радиаторы. Ещё один недостаток, влияющий на использование, это создание гармонических помех в электросети некоторыми схемами симисторных регуляторов (например, бытовой диммер для регулировки освещенности).

Отметим, что напряжение на нагрузки будет отличаться от синусоиды, что связано с минимальным напряжением и током, при которых возможно включение. Из-за этого подключать следует только нагрузку, не предъявляющую высоких требований к электропитанию. При постановке задачи добиться синусоиды такой способ коммутации не подойдёт. Симисторы сильно подвержены влиянию шумов, переходных процессов и помех. Также не поддерживаются высокие частоты переключения.

Схема подключения активной нагрузки к оптосимистору

В этой схеме имеется два компонента, которые необходимо вычислить, но фактически подобные расчеты параметров выполняются не всегда. Но все, же приведем эти расчеты параметров для информации.

Расчет параметра резистора RD . Вычисление сопротивления данного резистора влияет от наименьшего прямого тока ИК светодиода, обеспечивающего открытие симистора. Таким образом,

Допустим, для схемы с транзисторным контролем (которое применяется довольно часто в схемах регуляторов температуры), имеющим питания 12В и напряжение на открытом транзисторе (Uкэ) 0,3 В; VDD = 11,7 B и следовательно диапазон If приблизительно равен 15мА для MOC3041.

Необходимо сделать If = 20 мА с учетом понижения эффективности свечения светодиода в течении срока службы (добавить 5 мА) получаем:

RD=(11,7В — 1,5В)/0,02А = 510 Ом.

Расчет параметра сопротивления R . Управляющий электрод оптосимистора может выдержать определенный максимальный ток. Увеличение данного параметра выводит из строя оптрон. Следовательно, нужно вычислить сопротивление, чтобы при наибольшем напряжении сети (к примеру, 220 В) ток не был больше максимально допустимого параметра.

Для примера возьмем максимально-допустимый ток в 1А, тогда сопротивление будет равно:

R=220 В * 1,44 / 1 А = 311 Ом.

Нужно иметь в виду, что слишком большое сопротивление данного резистора может оказать нарушение в стабильности включения оптосимистора.

Расчет параметра сопротивления Rg . Резистор Rg подключается, только если электрод симистора имеет повышенную чувствительность. Как правило, сопротивление Rg находится в диапазоне от 100 Ом до 5 кОм. Желательно применять 1 кОм.

В случае если в управляемой нагрузке есть индуктивная составляющая, то необходимо применять другую схему подключения с защитой силового симистора и оптосимистора.

Схема переключения симистора

Приведенная выше схема показывает простую схему переключения симистора с триггером постоянного тока. При разомкнутом переключателе SW1 ток не поступает в затвор симистора, и поэтому лампа выключена. Когда SW1 замкнут, ток затвора подается на триак от батареи V G через резистор R, и триак приводится в полную проводимость, действуя как замкнутый переключатель, и полная мощность потребляется лампой от синусоидального источника питания.

Поскольку батарея подает положительный ток затвора на триак всякий раз, когда переключатель SW1 замкнут, триак постоянно находится в режимах g + и ΙΙΙ + независимо от полярности клеммы MT 2 .

Конечно, проблема с этой простой схемой переключения симистора состоит в том, что нам потребовался бы дополнительный положительный или отрицательный источник питания затвора, чтобы запустить триак в проводимость. Но мы также можем активировать триак, используя фактическое напряжение питания переменного тока в качестве напряжения срабатывания затвора. Рассмотрим схему ниже.

Схема показывает триак, используемый как простой статический выключатель питания переменного тока, обеспечивающий функцию «ВКЛ» — «ВЫКЛ», аналогичную в работе предыдущей схеме постоянного тока. Когда переключатель SW1 разомкнут, триак действует как разомкнутый переключатель, и лампа пропускает нулевой ток. Когда SW1 замкнут, триак отключается от «ВКЛ» через токоограничивающий резистор R и самоблокируется вскоре после начала каждого полупериода, таким образом переключая полную мощность на нагрузку лампы.

Поскольку источник питания является синусоидальным переменным током, триак автоматически отключается в конце каждого полупериода переменного тока в качестве мгновенного напряжения питания, и, таким образом, ток нагрузки кратковременно падает до нуля, но повторно фиксируется снова, используя противоположную половину тиристора в следующем полупериоде, пока выключатель остается замкнутым. Этот тип управления переключением обычно называется двухполупериодным управлением, поскольку контролируются обе половины синусоидальной волны.

Поскольку симистор фактически представляет собой две SCR, подключенные друг к другу, мы можем продолжить эту схему переключения симистора, изменив способ срабатывания затвора, как показано ниже.

Модифицированная цепь переключения симистора

Как и выше, если переключатель SW1 разомкнут в положении A, то ток затвора отсутствует, а лампа выключена. Если переключатель находится в положении B, то ток затвора протекает в каждом полупериоде так же, как и раньше, и лампа получает полную мощность, когда триак работает в режимах Ι + и ΙΙΙ–.

Однако на этот раз, когда переключатель подключен к положению C, диод предотвратит срабатывание затвора, когда MT 2 будет отрицательным, так как диод имеет обратное смещение. Таким образом, симистор работает только в положительных полупериодах, работающих только в режиме I +, и лампа загорается при половине мощности. Затем, в зависимости от положения переключателя, нагрузка выключена при половине мощности или полностью включена .

Симисторный ключ

Для гальванической развязки цепей управления и питания лучше
использовать оптопару или специальный симисторный драйвер. Например,
MOC3023M или MOC3052.

Эти оптопары состоят из инфракрасного светодиода и фотосимистора. Этот
фотосимистор можно использовать для управления мощным симисторным
ключом.

В MOC3052 падение напряжения на светодиоде равно 3 В, а ток — 60 мА,
поэтому при подключении к микроконтроллеру, возможно, придётся
использовать дополнительный транзисторный ключ.

Встроенный симистор же рассчитан на напряжение до 600 В и ток до
1 А. Этого достаточно для управления мощными бытовыми приборами через
второй силовой симистор.

Рассмотрим схему управления резистивной нагрузкой (например, лампой
накаливания).

Таким образом, эта оптопара выступает в роли драйвера
симистора.

Существуют и драйверы с детектором нуля — например, MOC3061. Они
переключаются только в начале периода, что снижает помехи в
электросети.

Резисторы R1 и R2 рассчитываются как обычно. Сопротивление же
резистора R3 определяется исходя из пикового напряжения в сети питания
и отпирающего тока силового симистора. Если взять слишком большое —
симистор не откроется, слишком маленькое — ток будет течь
напрасно. Резистор может потребоваться мощный.

Нелишним будет напомнить, что 230 В в электросети (текущий стандарт для
России, Украины и многих других стран) — это значение
действующего напряжения. Пиковое напряжение равно .

Электродвигатели, работающие на постоянном токе

Эти механизмы обладают довольно широким спектром использования:

  • вентиляторы компьютерных устройств;
  • стартеры транспортных средств;
  • мощные дизельные станции;
  • зерноуборочные комбайны и т. п.

Магнитное поле статора данных механизмов создается двумя электромагнитами, которые собраны на специальных сердечниках (магнитопроводах). Вокруг них располагаются катушки с обмотками.

Магнитное поле подвижного элемента формируется током, который проходит через щетки коллекторного узла вдоль обмотки, уложенной в пазах якоря. Тему неисправности ротора электродвигателя мы обязательно затронем, но немного позднее.

Транзистор Дарлингтона

Если нагрузка очень мощная, то ток через неё может достигать
нескольких ампер. Для мощных транзисторов коэффициент может
быть недостаточным. (Тем более, как видно из таблицы, для мощных
транзисторов он и так невелик.)

В этом случае можно применять каскад из двух транзисторов. Первый
транзистор управляет током, который открывает второй транзистор. Такая
схема включения называется схемой Дарлингтона.

В этой схеме коэффициенты двух транзисторов умножаются, что
позволяет получить очень большой коэффициент передачи тока.

Для повышения скорости выключения транзисторов можно у каждого соединить
эмиттер и базу резистором.

Сопротивления должны быть достаточно большими, чтобы не влиять на ток
база — эмиттер. Типичные значения — 5…10 кОм для напряжений 5…12 В.

Выпускаются транзисторы Дарлингтона в виде отдельного прибора. Примеры
таких транзисторов приведены в таблице.

Модель
КТ829В 750 8 А 60 В
BDX54C 750 8 А 100 В

В остальном работа ключа остаётся такой же.

Поддержка

Особенности применения

Оптроны выпускаются в пластмассовых корпусах с шестью выводами. Вывод 1 помечен точкой на корпусе.

Производитель рекомендует включать последовательно с фототиристором в схемах управления силовыми тиристорами резистор 360 Ом для удержания тока через высоковольтную часть оптрона на безопасном уровне. Но эта рекомендация представляется странной, так как оптрон может открываться только, если напряжение вблизи нулевого значения (меньше 20 В или около того). Чтобы обеспечить безопасное значение силы тока потребуется резистор всего в 20 Ом при условии, что время открывания силового тиристора меньше 100 мкс. Ведь после открывания силового тиристора напряжение на оптотиристоре оптрона падает до минимального значения. Для распространенных силовых тиристоров, например, КУ201, КУ202, время открывания составляет 10 — 20 мкс.

Последнее замечание представляется важным, так как позволяет использовать эти оптопары с распространенными силовыми тиристорами, для которых 360 Ом — слишком большое сопротивление, не позволяющее обеспечить открывание силового тиристора в самом начале полуволны с минимальной задержкой. Для силовых тиристоров имеет смысл выбирать этот резистор равным резистору, соединяющему управляющий электрод и катод, который в свою очередь обычно выбирается 50 — 100 Ом.

(читать дальше…) :: (в начало статьи)

 1   2 

:: ПоискТехника безопасности :: Помощь

 

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи. сообщений.

Скажите пожалуйста, можно ли управлять МОС306х питанием 3В или только 5В? Читать ответ…

Еще статьи

Схемотехника — тиристорные, динисторные, симисторные, тринисторные схе…
Схемотехника тиристорных устройств. Практические примеры. …

Применение полевых транзисторов, МОП, FET, MOSFET. Использование. Схем…
Типичные схемы с полевыми транзисторами. Применение МОП….

Импульсный источник питания. Своими руками. Самодельный. Сделать. Лабо…
Схема импульсного блока питания. Расчет на разные напряжения и токи….

Тиристорное переключение нагрузки, коммутация (включение / выключение)…
Применение тиристоров в качестве реле (переключателей) напряжения переменного то…

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида…
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при…

Преобразователь однофазного напряжения в трехфазное. Принцип действия,…
Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех…

Тиристорный выключатель, переключатель, коммутатор. Тиристор (тринисто…
Тиристор в переключательных схемах переменного тока. Схема твердотельного реле. …

Повышающий импульсный преобразователь напряжения, источник питания. Ко…
Как сконструировать повышающий импульсный преобразователь. Как выбрать частоту р…

Способы регулирования мощности

Соотношение напряжения на входе и выходе определяется числом витков в первичной и вторичной обмотках. Сделав много отводов на вторичной обмотке, можно осуществить ступенчатое регулирование. По такой схеме работают релейные стабилизаторы напряжения.

Плюсов у такой схемы немало. В первую очередь, это ее простота. А также высокий КПД трансформатора, гальваническая развязка входа и выхода, чисто синусоидальная форма выходного тока.

Однако, на частоте сети 50 Гц мощные трансформаторы становятся тяжелыми и громоздкими, невозможно плавно регулировать мощность, определенные проблемы возникают при коммутации обмоток.

Другой способ регулирования мощности называется методом фазового регулирования. При этом способе нагрузка подключается к источнику через электронный ключ.

Ключ прерывает цепь питания на определенную долю периода синусоиды переменного тока. Меняя время закрытого состояния ключа, можно регулировать величину мощности, передаваемой в нагрузку и действующее значение напряжения на выходе.

Как он работает и для чего нужен

Симистор является полупроводниковым прибором. Его полное название – симметричный триодный тиристор. Его особенность – возможно проводить ток в обе стороны. Данный элемент цепи имеет три вывода: один является управляющим, а два других силовыми. В этой статье мы рассмотрим принцип работы, устройство и назначение симистора в различных схемах электроприборов. В таблице ниже представлены характеристики популярных симисторов:

Таблица характеристик популярных симисторов.

Конструкция и принцип действия

Особенность симистора является двунаправленной проводимости идущего через прибор электрического тока. Конструкция устройства строится на использовании двух встречно-параллельных тиристоров с общим управлением. Такой принцип работы дал название от сокращенного «симметрические тиристоры». Поскольку электроток может протекать в обе стороны, нет смысла обозначать силовые выводы как анод и катод. Дополняет общую картину управляющий электрод. В симисторе есть пять переходов, позволяющих организовать две структуры. Какая из них будет использоваться зависит от места образования (конкретный силовой вывод) отрицательной полярности.

Симистор.

Оптосимистор: параметры и схемы подключения

Оптосимисторы относится к виду оптронов с отличными электрическими параметрами. Они создают крайне надежную гальваническую развязку, выдерживающую напряжение порядка 7,5кВ, имеющуюся между подключенной управляемой нагрузкой и схемой управления.

Данные радиокомпоненты построены из арсенид-галлиевого ИК светодиода, имеющего связь с кремниевым двухканальным переключателем. В свою очередь этот переключатель может иметь в своем составе отпирающий элемент, который включается в момент перехода через ноль питающего переменного напряжения.

Оптосимисторы необычно полезны при осуществлении контроля за более мощными симисторами. Аналогичные оптосимисторы были спроектированы для реализации связи между нагрузкой, которая питается переменным напряжением 220 вольт и логикой с низким уровнем напряжения.

Оптосимистор, как правило, выпускаются в компактном DIP-корпусе, имеющий шесть контактов. Его внутренняя схема, параметры, а так же распиновка, показаны ниже.

Электронные ключи

В настоящее время применяются следующие типы:

  • Ключи на биполярных транзисторах;
  • Ключи на полевых транзисторах;
  • Ключи на управляемых диодах — тиристорах;
  • Ключи на симметричных управляемых диодах — симисторах.

Рассмотрим подробно каждый из типов:

На транзисторах

Простейшим электронным ключом является биполярный транзистор. Как известно, биполярный транзистор имеет структуру n-p-n или р-n-p с двумя p-n переходами и тремя выводами: эмиттер, база и коллектор.

Если ток базы отсутствует, ток коллектора равен нулю. Транзистор находится в состоянии отсечки. Это соответствует разомкнутому состоянию.

Если в базу подать ток достаточной величины, транзистор войдет в насыщение, и напряжение на коллекторе будет близко к нулю, независимо от тока коллектора. Это соответствует замкнутому состоянию.

До появления полевых транзисторов ключи на биполярных транзисторах были основой всей полупроводниковой схемотехники.

В полевых транзисторах между выводами стока и истока существует проводящий канал n или р типа. К этому каналу через диэлектрический слой окисла подключен управляющий электрод — затвор. Меняя напряжение на затворе, можно воздействовать на ширину проводящего канала и тем самым менять его проводимость. Управляя затвором, можно переводить ключ в открытое и закрытое состояние.

Ключи на полевых транзисторах превосходят ключи на биполярных по быстродействию, поскольку биполярные транзисторы медленно выходят из режима насыщения.

Сегодня все компьютеры, смартфоны и прочие гаджеты собраны на комплиментарных (то есть разнополярных) МОП транзисторах. В быстродействующей силовой электронике также применяются мощные полевые транзисторы.

На тиристорах

Если добавить к структуре биполярного транзистора еще один p-n переход, можно получить прибор с очень интересными свойствами — управляемый диод, или тиристор.

Тиристор — это полупроводниковый прибор со структурой p-n-p-n или n-p-n-p. Он имеет три или реже четыре вывода. Вывод, подключенный к внешнему слою p, называется анод, к внешнему слою n — катод. Управляющий электрод, называемый базой, подключается к одному из внутренних слоев, обычно к тому, который примыкает к катоду. Тиристор может иметь и две базы, но это не принципиально.

Эта структура эквивалентна соединению двух, транзисторов с разным типом проводимости, показанному на рисунке.

Это два транзисторных ключа, включенных навстречу друг другу. База каждого из транзисторов подключена к коллектору другого. Эта схема напоминает триггер — элемент с памятью. Если подать в базу отпирающий ток, то тиристор откроется, но из-за эффекта памяти останется в этом состоянии до тех пор, пока ток через него не снизится практически до нуля.

У тиристора очень необычная вольт-амперная характеристика. Она имеет S — образную форму.

Характеристика показывает зависимость тока через тиристор от напряжения между анодом и катодом при различных значениях тока базы IG. Напряжение Vbo соответствует напряжению включения тиристора. Vbr соответствует напряжению пробоя.

При достаточно большом токе базы тиристор ведет себя как диод. Иногда тиристор называют управляемым диодом, что соответствует его графическому обозначению на схемах. Тиристор проводит ток в одном направлении.

Полупроводниковая структура симистора

Структура симистора состоит из пластины, состоящей из чередующихся слоев с электропроводностями p- и n- типа и из контактов электродов основного и управляющего действия. Всего в структуре полупроводника содержится пять слоев p- и n-типа. Область между слоями называется p-n-переходом, который обладает нелинейной ВАХ с небольшим сопротивлением в обратном направлении, где минус – это n-слой, а плюс – p-слой и высокое значение сопротивления в обратном направлении. Пробой p-n-перехода происходит при напряжении равном несколько тысяч вольт.

Во время включения симистора в прямом направлении в работу вступает правая половина структуры. Левая область структуры выключена, она считается для тока, с обладанием очень высоким сопротивлением. Характеристики симистора динамического и статического плана при его действии в прямом направлении, при поступлении положительного управляющего сигнала соответствуют аналогичным характеристикам тиристора, работающего в прямом направлении.

По этой схеме к СЭУ прилагается напряжение со знаком плюс, относительно СЭ, а p—n-переходы j2  и j подключаются в прямом, а p—n-переходы j1  и j– в обратную сторону. Благодаря этому структура может рассматриваться, как структура тиристора, подключенная в обратном направлении, не принимающая участие в работе по пропусканию тока. В этом случае действие прибора определяется при помощи левой части структуры и представляет собой обратно ориентированную p—n—p—n структуру с добавочным пятым слоем n, который граничит со слоем p1.

Использование микросхемы К1182 ПМ1

Для построения тиристорных и симисторных регуляторов выпускается специальная микросхема К1182 ПМ1. На кристалле микросхемы реализована почти законченная схема фазового регулятора мощности.

Два тиристора включены параллельно и навстречу друг другу. Их управляющие входы подключены чрез развязывающие диоды к выходу блока управления. Встроенный диодный мост вырабатывает напряжение питания для блока управления.

На выводы AC1 и AC2 подается напряжение 220 В. К выводам UST1+ и UST2+ подключаются конденсаторы, формирующие задержку включения тиристоров. К выводам С+ и C- подключается элемент управления — переменный резистор или RС цепочка.

Ниже приведены рекомендованные производителем схемы включения маломощных нагрузок непосредственно к микросхеме.

При необходимости подключения мощных нагрузок используются внешние тиристоры или симисторы.

Вариант с двумя тиристорами.

Вариант с симистором.

Микросхема выпускается в трех типах корпусов:

  • 16 выводной Power DIP-(12+4);
  • 8 выводной DIP-8;
  • 8 выводной планарный SO-8.

Собрать симисторный регулятор мощности своими руками может любой радиолюбитель.

Схема подключения индуктивной нагрузки к оптосимистору

Сигнал, поступающий от оптосимистора на управляющий электрод симистора, нужен только для его открывания. Но при большой частоте переключения коммутируемого напряжения, возникает большая вероятность спонтанного включения управляемого симистора, даже если отсутствует сигнал управления.

Факторами ложных срабатываний могут быть выбросы напряжения при включении ключа, подключенного к индуктивной нагрузке, импульсные помехи в линиях питания нагрузки. Действенный способ устранения данных неприятных моментов – применение в схеме снабберной (демпфирующей) RC – цепочки, которая подключается параллельно выходу ключевого блока.

Конденсатор в снабберной RC-цепи — металлопленочный с номиналом от 0,01 до 0,1 мкФ, сопротивление резистора составляет 20…500 Ом. Данные параметры элементов необходимо рассматривать исключительно в качестве приблизительных величин.

http://electrik.info/main/praktika/1490-sposoby-i-shemy-upravleniya-tiristorom-ili-simistorom.htmlhttp://nauchebe.net/2014/05/upravlenie-simistorami-v-sxemax-na-mikrokontrollere/http://www.joyta.ru/4692-optosimistory-parametry-i-sxemy-podklyucheniya/http://go-radio.ru/simistor.htmlhttp://www.joyta.ru/4692-optosimistory-parametry-i-sxemy-podklyucheniya/

Простейший ключ

В дальнейшем полевым транзистором мы будет называть конкретно MOSFET,
то есть полевые транзисторы с изолированным
затвором
(они же МОП, они же МДП). Они удобны тем, что управляются
исключительно напряжением: если напряжение на затворе больше
порогового, то транзистор открывается. При этом управляющий ток через
транзистор пока он открыт или закрыт не течёт. Это значительное
преимущество перед биполярными транзисторами, у которых ток течёт всё
время, пока открыт транзистор.

Также в дальнейшем мы будем использовать только n-канальные MOSFET
(даже для двухтактных схем). Это связано с тем, что n-канальные
транзисторы дешевле и имеют лучшие характеристики.

Простейшая схема ключа на MOSFET приведена ниже.

Опять же, нагрузка подключена «сверху», к стоку. Если подключить её
«снизу», то схема не будет работать. Дело в том, что транзистор
открывается, если напряжение между затвором и истоком превышает
пороговое. При подключении «снизу» нагрузка будет давать
дополнительное падение напряжения, и транзистор может не открыться или
открыться не полностью.

Несмотря на то, что MOSFET управляется только напряжением и ток через
затвор не идёт, затвор образует с подложкой паразитный
конденсатор. Когда транзистор открывается или закрывается, этот
конденсатор заряжается или разряжается через вход ключевой схемы. И
если этот вход подключен к push-pull выходу микросхемы, через неё
потечёт довольно большой ток, который может вывести её из строя.

При управлении типа push-pull схема разряда конденсатора образует,
фактически, RC-цепочку, в которой максимальный ток разряда будет равен

где — напряжение, которым управляется транзистор.

Таким образом, достаточно будет поставить резистор на 100 Ом, чтобы
ограничить ток заряда — разряда до 10 мА. Но чем больше сопротивление
резистора, тем медленнее он будет открываться и закрываться, так как
постоянная времени увеличится

Это важно, если транзистор
часто переключается. Например, в ШИМ-регуляторе

Основные параметры, на которые следует обращать внимание — это
пороговое напряжение , максимальный ток через сток и
сопротивление сток — исток у открытого транзистора. Ниже приведена таблица с примерами характеристик МОП-транзисторов

Ниже приведена таблица с примерами характеристик МОП-транзисторов.

Модель
2N7000 3 В 200 мА 5 Ом
IRFZ44N 4 В 35 А 0,0175 Ом
IRF630 4 В 9 А 0,4 Ом
IRL2505 2 В 74 А 0,008 Ом

Для приведены максимальные значения. Дело в том, что у разных
транзисторов даже из одной партии этот параметр может сильно
отличаться. Но если максимальное значение равно, скажем, 3 В, то этот
транзистор гарантированно можно использовать в цифровых схемах с
напряжением питания 3,3 В или 5 В.

Сопротивление сток — исток у приведённых моделей транзисторов
достаточно маленькое, но следует помнить, что при больших напряжениях
управляемой нагрузки даже оно может привести к выделению значительной
мощности в виде тепла.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации