Андрей Смирнов
Время чтения: ~23 мин.
Просмотров: 25

Как проверить тиристор не выпаивая из схемы

Проверка с помощью метода лампочки и батарейки

Для этого метода достаточно иметь под рукой лишь лампочку, батарейку, 3 проводка и паяльник, чтобы припаять провода к электродам. Такой набор найдется в доме у каждого.

При проверке прибора с помощью метода батарейки и лампочки, нужно оценить нагрузку тока сто mA, которую создает лампочка, на внутренней цепи. Применять нагрузку следует кратковременно. При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях.

Проверка методом лампочки и батарейки осуществляется по трём схемам:

  • В первой схеме на управляющий электрод положительный потенциал не подается, благодаря чему не пропускается ток и лампочка не загорается. В случае если лампочка горит, тиристор работает неправильно.
  • Во второй схеме тиристор приводится в состояние высокой проводимости. Для этого нужно подать плюсовой потенциал на управляющий электрод (УЭ). В этом случае, если лампочка не горит, значит с тиристором что-то не так.
  • На третьей схеме с УЭ питание отключается, ток в этом случае проходит через анод и катод. Ток проходит благодаря удержанию внутреннего перехода. Но в этом случае, лампочка может не загореться не только из-за неисправности тиристора, но и из-за протекания тока меньшей величины через цепь, чем крайнее значение удержания.

Так исправность тиристора легко проверить в домашних условиях, не имея под рукой специального оборудования. Если разорвать цепь через анод или катод, у тиристора активируется состояние низкой проводимости.


При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях

Ссылки

Видеоролик с демонстрацией опыта Эрстеда

Проверка тиристора

Многих интересует, тиристор КУ202Н как проверить и как правильно включить в устройстве для проверки его работоспособности. Дело в том, что довольно часто он оказывается неисправен по различным причинам. Притом дефекты встречаются и у новых изделий.

Проверить тиристор можно несколькими способами:

  • Использовать специальное устройство, которое анализирует параметры всех переходов.
  • Применить мегомметр для проверки состояния основного перехода в обоих направлениях. В обратном направлении должен прозваниваться как обычный диод, в прямом включении он закрыт, в идеальном состоянии его сопротивление должно быть равно бесконечности.

Второй способ применим только к серии устройств с буквенным индексом М и Н. При этом можно устанавливать напряжение прозвонки до 400 В. Устройства с буквами К и Л только до 300 В, Ж и И – до 200 В и так далее. Прежде чем проверять таким способом изделие, необходимо сверить его технические характеристики со справочной таблицей. Иначе можно повредить устройство, даже не использовав его по назначению.

Менее мощные тиристоры могут быть проверены обычным мультиметром в режиме прозвонки (значок диода и звукового сигнала). В обратном направлении он звонится как диод, в прямом – бесконечность.

Важно! При осуществлении проверки тиристора в режиме диода, необходимо УЭ объединить с А

Советы по установлению подсветки в комнате

распределение светильников в кессоновом потолке

  1. Когда происходит монтаж каркаса потолка, на этом этапе необходимо предусмотреть установку подсветки. Это даст возможность скрыть электропроводку, место для осветительных приборов и т.д.
  2. Обычно потолки натяжные, реечные и из гипсокартона делают в несколько ярусов. При этом используют сложные геометрические формы, чтобы потолки выглядели эффектными. В этом случае, вы можете позволить себе поэкспериментировать. Только вы сможете решить, каким из способов воспользоваться, чтобы оформить потолок.
  3. Многоуровневые конструкции из гипсокартона позволяют использовать разные типы подсветки. К примеру, по центру делают звездное небо, а по краям – галогенную подсветку
  4. Если речь идет о натяжных конструкциях, то учитывайте, что они по-своему уникальны. В комнатах обычно более уместен потолок с подсветкой по периметру, для которой используют LED-ленту. Нужно не забывать о том, что разные фактуры могут оказать не тот эффект, на который рассчитывает владелец жилья.
  5. У натяжных потолков есть серьезный «минус». На них разрешается крепить лампочки лишь определенной мощности.
  6. Для того чтобы визуально сделать пространство больше, подсветку прячут в нишах и углублениях на поверхности потолка.
  7. Когда интерьер имеет скромную цветовую гамму, то с помощью вечерней подсветки потолка можно его сделать интереснее.
  8. Если вы стеснены в средствах, а эффектный потолок сделать хочется, целесообразно купить плинтус для потолка и установить в него светодиоды.

Характеристики устройства

Чтобы правильно проверить тиристор мультиметром, необходимо не только понимать принцип его работы, но и знать основные его характеристики. Наиболее значимым параметром элемента является его вольт-амперная характеристика (ВАХ). Она наглядно показывает зависимость протекания тока через прибор от приложенного к его выводам напряжения. ВАХ динистора относится к S-образному виду. Эту характеристику разделяют на шесть зон:

  1. Участок открытого состояния. На этом промежутке элемент практически не оказывает сопротивления проходящему через него току. Его проводимость максимальная. Эта зона заканчивается точкой, в которой ток перестаёт протекать.
  2. Область отрицательного сопротивления. Провоцирует начало лавинного пробоя.
  3. Пробой коллекторного перехода. На этом промежутке элемент работает в режиме лавинного пробоя, из-за чего происходит резкое уменьшение напряжения на его выводах.
  4. Участок прямого включения. В этой области динистор закрыт, так как разность потенциалов, приложенная к его выводам, меньше, чем необходимая для возникновения пробоя.
  5. Пятый и шестой участки описывают работу прибора в нижней половине ВАХ и соответствуют состояниям обратного включения и пробоя элемента.

Анализируя ВАХ, можно сделать вывод о том, что работа динистора похожа на диод, но, в отличие от последнего, для его открытия необходимо подать напряжение, превышающее диодное значение в несколько раз. При этом динистор характеризуется рядом параметров, определяющих его применение в электрических цепях. К основным его характеристикам относят следующие величины:

  1. Разность потенциалов в открытом состоянии. Обычно указывается применительно к значению тока открытия. В качестве её единицы измерения используется вольт.
  2. Наименьшее значение тока в открытом состоянии. Эта величина зависит от температуры прибора и при её увеличении снижается. Измеряется в миллиамперах.
  3. Время переключения. Характеризуется периодом времени, в течение которого происходит переход режима работы прибора с одного устойчивого состояния в другое. Это значение составляет микросекунды.
  4. Ток запертого состояния. Определяется значением обратного напряжения и редко превышает 500 мкА.
  5. Ёмкость. Этот параметр характеризует обобщённую паразитную ёмкость, возникающую в элементе. Из-за неё ограничивается применение устройства в высокочастотных цепях и снижается скорость переключения режимов работы. Измеряется она в пикофарадах.
  6. Ток удержания. Обозначает величину, при которой динистор открыт. Единица измерения — ампер.

Способы проверки

При выходе из строя какого-либо устройства необходимо прозвонить элементы и заменить сгоревшие, причем необязательно выпаивать триак из схемы. Проверка симистора мультиметром аналогична проверке тиристора мультиметром в схеме не выпаивая. Сделать это довольно просто, но этот метод не даст точного результата.

Как проверить тиристор ку202н мультиметром: необходимо освободить УЭ. Как проверить симистор мультиметром не выпаивая: необходимо освободить его УЭ (выпаять или выпаять деталь — одним словом, отделить устройство от всей схемы) и произвести измерения мультиметром на предмет пробитого перехода. Для проверки необходимо использовать стрелочный тестер. Этот метод является более точным, так как ток, генерируемый тестером способен открыть переход. Нужно найти информацию о симисторе и приступить к проверке:

  1. Подключить щупы к выводам T1 и T2.
  2. Установить кратность х1.
  3. Только при показании бесконечного сопротивления деталь исправна, а во всех остальных случаях — пробита.
  4. При положительном результате (бесконечное сопротивление) соединить вывод Т2 и управляющий. В результате R падает до 20..90 Ом.
  5. Сменить полярность прибора и повторить 3 и 4.

Этот метод является более точным, чем предыдущий, но не дает полной гарантии определения исправности полупроводникового прибора. Для этих целей существуют специальные схемы, которые можно собрать самостоятельно.

Профессиональные схемы

Пробник для проверки симистора или тиристора достаточно простого исполнения и с наименьшим количеством деталей представлен на схеме 1.

Схема 1 — Простой пробник для проверки симистора или тиристора

Перечень деталей пробника:

  1. Трансформатор подбирается любого типа, но с напряжением на вторичной обмотке около 6,3 В.
  2. Диод VD1 на напряжение от 10 В и более и с выпрямительным током более 350 мА (можно найти подходящий по справочнику радиолюбителя или в интернет).

При работе нужно подключить симистор и поставить S2 в положение «=», после чего включить SA1 (SB1 пока не нажимать). При этом лампочка не должна светиться. Нажимаем SB1 (лампа загорается) и при отпускании SB1 лампа накаливания должна гореть. Поставить SА1 в положение «0», и лампа гаснет. SА1 в положение поставить «переменного» тока и лампа не должна гореть. При нажатии SB1 лампа загорается, а при отпускании — гаснет.

Универсальная схема устройства для проверки симистора изображена на схеме 2. Она является более сложной, но очень эффективной.

Схема 2 — Универсальная современная схема устройства для проверки симистора или тиристора

Перечень радиоэлементов:

  1. Трансформатор со II обмоткой 2 и 9 вольт (I = 0,2..0,3 А).
  2. Конденсаторы керамические: C3, C4, C9, C10.
  3. Конденсаторы электролитические — остальные.
  4. Диод VD1: U > 50 В и I > 1 А.
  5. Диоды VD2, VD3: U > 25 В и I > 300 мА.
  6. Микросхемы и их аналоги: 7805 (КР142ЕН5(А,В)) и 7905 (КР1162ЕН5(А,Б) или КР1179ЕН05).

При проверке необходимо SA3 задать ток управления (подача на УЭ). Для проверки тиристора нужно поставить SA2 в режим «прямое» и включить питание пробника (лампа гореть не должна).

Нажать кнопку SВ2 — лампа горит даже при ее отпускании (SВ2). Нажать SВ1, и лампа должна погаснуть.

Таким образом, симисторы получили широкое распространение в различных устройствах с электронным регулированием. Они выходят из строя, и проверить их несложно. Для этого необходимо выбрать лишь метод проверки. Проверка мультиметром менее точна, чем стрелочным омметром, ток которого способен открыть переход триака. Для более точного и профессионального определения исправности собирается специальная схема.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

Схема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

Схема для проверки тиристоров и симисторов

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Простые схемы включения

На рисунке приведены примеры основных схем включения КУ208Г. Они различаются по виду нагрузки и коммутируемым напряжениям. Например, рассматриваемый симистор может использоваться как обычный тиристор, для управления работой приборов от постоянных источников питания (изображение слева). Однако наибольшее распространение получило в сетях 220В.

В данных схемах, для замыкания цепи в нагрузке через КУ208Г, необходимо на короткий промежуток времени подать на затвор отпирающее напряжение (UУ). Это значение, для открытия симистра, зависит от управляющего тока (IУ): при 300 мА (UУ =2.5В); при 160 мА (UУ =5.0 В). Его величина достигается подбором ограничивающего резистора R. При этом следует учитывать, что некоторые экземпляры этого устройства открываются даже при IУ < 50 мА.

Схема регулировки мощности

Зная особенности работы симметричного тиристора его используют не только как силовой ключ, но и в качестве регулятора мощности. Такую схему можно спаять всего из нескольких радиодеталей

Вместе с тем, она требует осторожности и внимательности при сборке, так как с её помощью можно управлять изменением переменного напряжение от 90 до 220 В

В представленной схеме симистор VS1 способен выдерживать мощность около 200 Вт. Для получения больших значений рекомендуется поставить его на радиатор. В качестве индикатора работы конструкции используется слаботочный тиратрон МТХ-90. Конденсатор C1 защищает от помех. С помощью потенциометра R1 регулируется выходная мощность. R2 ограничивает силу тока через ку208г, а резистор R3 на управляющем электроде. В нагрузке можно использовать обычную электрическую лампочку на 220 В. Разбор реализации подобной схемы сотрите в видеоролике.

Основные параметры тиристора

Для понимания принципов функционирования данного прибора и последующей работы с ним, необходимо знать его основные параметры, к которым относятся:

  1. Напряжение включения – это минимальный показатель анодного напряжения, при достижении которого тиристорное устройство перейдет в рабочий режим.
  2. Прямое напряжение – это показатель, определяющий падение напряжения при максимальном значении анодного электрического тока.
  3. Обратное напряжение – это показатель максимально допустимого значения напряжения, которое может быть оказано на устройство, когда оно находится в закрытом состоянии.
  4. Максимально допустимый прямой ток, под которым понимается его максимальное возможное значение во время, когда тиристор находится в открытом состоянии.
  5. Обратный ток, который возникает при максимальных показателях обратного напряжения.
  6. Время задержки перед включением или выключением устройства.
  7. Значение, определяющее максимальный показатель электрического тока для управления электродами.
  8. Максимально возможный показатель рассеиваемой мощности.

Описание конструкции и принцип действия

Тиристор состоит из трех частей: «Анод», «Катод» и «Вход», состоящий из трех p-n переходов, которые могут переключаться из положений «ВКЛ» и «ВЫКЛ» на очень высокой скорости. Но при этом, он также может быть переключен с позиции «ВКЛ» с различной продолжительности по времени, т. е. в течение нескольких полупериодов, чтобы доставить определенное количество энергии к нагрузке. Работа тиристора можно лучше объяснить, если предположить, что он будет состоять из двух транзисторов, связанных друг с другом, как пара комплементарных регенеративных переключателей.

Самые простые микросхемы демонстрируют два транзистора, которые совмещены таким образом, что ток коллектора после команды «Пуск» поступает на NPN транзистора TR 2 каналы непосредственно в PNP-транзистора TR 1. В это время ток с TR 1 поступает в каналы в основания TR 2 . Эти два взаимосвязанных транзистора располагаются так, что база-эмиттер получает ток от коллектора-эмиттера другого транзистора. Для этого нужно параллельное размещение.

Фото — Тиристор КУ221ИМ

Несмотря на все меры безопасности, тиристор может непроизвольно переходить из одного положения в другое. Это происходит из-за резкого скачка тока, перепада температур и прочих разных факторов. Поэтому перед тем, как купить тиристор КУ202Н, Т122 25, Т 160, Т 10 10, его нужно не только проверить тестером (прозвонить), но и ознакомиться с параметрами работы.

Типичные тиристорные ВАХ

Для начала обсуждения этой сложной темы, просмотрите схему ВАХ-характеристик тиристора:

Фото — характеристика тиристора ВАХ

  1. Отрезок между 0 и (Vвo,IL) полностью соответствует прямому запиранию устройства;
  2. В участке Vво осуществляется положение «ВКЛ» тиристора;
  3. Отрезок между зонами (Vво, IL) и (Vн,Iн) – это переходное положение во включенном состоянии тиристора. Именно в этом участке происходит так называемый динисторный эффект;
  4. В свою очередь точки (Vн,Iн) показывают на графике прямое открытие прибора;
  5. Точки 0 и Vbr – это участок с запиранием тиристора;
  6. После этого следует отрезок Vbr — он обозначает режим обратного пробоя.

Естественно, современные высокочастотные радиодетали в схеме могут влиять на вольт-амперные характеристики в незначительной форме (охладители, резисторы, реле). Также симметричные фототиристоры, стабилитроны SMD, оптотиристоры, триодные, оптронные, оптоэлектронные и прочие модули могут иметь другие ВАХ.

Фото — ВАХ тиристора

Кроме того, обращаем Ваше внимание, что в таком случае защита устройств осуществляется на входе нагрузки

Тестирование элемента

Существует несколько способов проверки симистора на работоспособность. Для самого простого понадобится только лишь мультиметр, а для более сложных измерений — автономный источник питания или тестовая схема.

С помощью тестера проверка происходит с использованием знаний, основанных на принципе работы симистора. Диагностика мультиметром не сможет определить все характеристики элемента, но вполне достаточной будет для первичного тестирования работоспособности.

Простую проверку можно осуществить, используя лампочку и элемент питания. Для этого одна клемма батарейки подключается на управляющие и рабочие выводы симистора, а вторая — на цоколь лампочки. Вывод элемента соединяется с центральным контактом осветителя. В этом случае переход должен быть открыт, тогда лампочка загорится.

Проверка тестером

Для проведения тестов подойдёт прибор любого типа действия, но при этом необходимо, чтобы значения выдаваемого им тока хватило для переключения элемента. Поэтому более предпочтительным будет использование аналогового прибора. Например, чтобы проверить тестером BTB12-800CW, понадобится обеспечить ток порядка 30 мА, а для BTB16-700BW этот показатель должен быть равен 15 мА.

Также понадобится обратить внимание на состояние батарейки, стоящей в тестере. В цифровом устройстве на экране не должен высвечиваться значок замены батарейки, а в аналоговом при закорачивании щупов друг на друга стрелка должна указывать на ноль

Суть измерения сводится к проверкам переходов прибора. Для этого тестер переключается в режим прозвонки сопротивлений на самый маленький диапазон. Выполнять проверку лучше всего в следующей последовательности:

  1. Измерительные щупы подключаются к силовым выводам симистора T1 и T2. Если радиоэлемент исправен, то мультиметр должен показать бесконечно большое сопротивление.
  2. Меняется полярность приложенного сигнала на рабочих выводах. Для этого измерительные щупы переставляются. Сопротивление также должно быть большим.
  3. Кратковременно соединяется рабочий вывод T1 или T2 и управляющий электрод G.
  4. Снова измеряется сопротивление перехода между T1 и T2. В одну сторону оно должно измениться. Так, для BTB12-800CW оно составит около 50 Ом.
  5. Изменяется полярность. При этом импеданс перехода должен быть большим, что соответствует отсутствию обратного пробоя.

Использование схемы

Существует множество различных схем, использующихся радиолюбителями для тестирования работоспособности триака. Но лучше применять универсальную схему, способную проверить любой элемент тиристорного семейства, например, BTB16-700BW. Она не нуждается в настройке и работает сразу после сборки. Для того чтобы её собрать, понадобятся следующие элементы:

  1. Резисторы R1—R4 470 Ом, R4—R5 1 кОм.
  2. Конденсаторы С1 и С2 — 100 мкФ х 6,5 В.
  3. Диоды VD1, VD2, VD5 и VD6 — 2N4148; VD2 и VD3 — АЛ307.

В качестве источника питания можно использовать батарейку типа КРОНА.

Суть измерений сводится к следующим действиям: переключатель S3 переставляется в верхнее положение, в результате на устройство подаётся питание. После этого кратковременным нажатием на кнопку S2 подаётся ток на управляющий вывод элемента.

Если BTB16-700BW рабочий, то его переход должен открыться, о чём просигнализирует светодиод VD3. Затем переключатель устанавливается в среднее положение, светодиод должен погаснуть. На следующем этапе S3 переключается в нижнее положение, и нажимается кнопка S2. Результатом этих действий будет загорание светодиода VD4. Такое поведение симистора позволит со стопроцентной уверенностью заявить о его работоспособности.

Проверить симистор не так уж и сложно, особенно если использовать тестер, хотя лучше собрать специальную схему. Но при этом стоит отметить, что из-за высокой чувствительности триаков к току переключения в качестве мультиметров лучше применять стрелочные приборы.

—> —>

Все радиокомпоненты устройства отечественные, но возможна их замена на аналогичные зарубежные. Конденсатор С2 — К73-11, емкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП. Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж — KT50IK, а КТ315Л — на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307. Вместо КД105Б подойдут диоды КД105В, КД105Г или Д226 с любым буквенным индексом. Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1. Амперметр РА1 — любой постоянного тока со шкалой на 10 ампер. Его можно сделать самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру. Предохраннтель F1 — плавкий, но удобно применять и сетевой автомат на 10 ампер либо автомобильный биметаллический на такой же ток. Диоды VD1. VP4 могут быть любыми на прямой ток 10 ампер и обратное напряжение не менее 50 вольт (серии Д242, Д243, Д245, КД203, КД210, КД213). Диоды выпрямителя и тиристор ставят на алюминиевые радиаторы, площадью охлаждения от 120 кв.см. Для улучшения теплового контакта устройств с радиаторами обязательно смазать теплопроводные пасты. Тиристор КУ202В заменим на КУ202Г — КУ202Е; проверено на практике, что устройство нормально действует и с более мощными тиристорами Т-160, Т-250.

В устройстве применен готовый сетевой понижающий трансформатор соответствующей мощности с напряжением вторичной обмотки от 18 до 22 вольт. Если у трансформатора напряжение на вторичной обмотке выше чем 18 вольт, резистор R5 желательно сменить другим, наибольшего сопротивления (к примеру, при 24 — 26 вольт сопротивление резистора соответственно увеличить до 200 Ом). В случае, когда вторичная обмотка трансформатора имеет отвод от середины, или есть две однообразные обмотки и напряжение каждой находится в указанных пределах, то выпрямитель лучше исполнить по обычной двуполупериодной схеме на 2-ух диодах. При напряжении вторичной обмотки 28 х 36 вольт можно вообще отказаться от выпрямителя — его роль станет одновременно играть тиристор VS1 (выпрямление — однополупериодное). Для такового варианта блока питания нужно между резистором R5 и плюсовым проводом подключить разделительный диод КД105Б либо Д226 с любым буквенным индексом (катодом к резистору R5). Выбор тиристора в таковой схеме станет ограничен — подходят только те, которые дозволяют работу под обратным напряжением (к примеру, КУ202Е). Для описанного устройства подойдет унифицированный трансформатор ТН-61. 3 его вторичных обмотки необходимо соединить согласно последовательно, при этом они способны отдать ток до 8 ампер.

Предварительная подготовка

Перед тестированием любого радиокомпонента будь то тиристор, транзистор или диод, нам необходимо ознакомиться с его спецификацией. Для этого находим маркировку на корпусе полупроводникового элемента.

Маркировка обозначена красным овалом

Найдя маркировку, начинаем поиск спецификации (достаточно сделать соответствующий запрос в поисковике или в тематических форумах). Даташит на электронный компонент содержит много полезной информации, начиная от технических характеристик и заканчивая расположением выводов и списком аналогов (что особенно полезно при поиске замены).

Даташит на BT151 (аналог КУ202Н)

Определившись с типом и цоколевкой, приступаем к первому этапу проверки, для этого нам понадобится только мультиметр. В большинстве случаев проверить элемент на пробой, можно не выпаивая его из платы, поэтому на данном этапе паяльник не нужен.

Способы проверки

Существует целый ряд различный способов, позволяющих проверять тиристоры, наиболее простым является тестирование с помощью лампы накаливания и источника, дающего постоянное напряжение.

Реализовать данный процесс можно следующим образом:

  1. Провода необходимо припаять к выводам тиристора таким образом, чтобы на анод подавался плюс от питающего элемента, а минус был подключен к лампочке, а уже через нее к катоду.
  2. На управляющий электрод прибора потребуется подать напряжение, которое будет превышать аналогичный показатель для анода на 0,2В, благодаря этому действию тиристор перейдет в открытое состояние.
  3. Если прибор исправен и находится в рабочем состоянии, то лампочка должна зажечься.
  4. Для того, чтобы окончательно убедиться в исправном функционировании, необходимо перекрыть доступ источнику напряжения, открывшему тиристор, к управляющему электроду, после совершения этих действий лампочка не должна погаснуть.
  5. Чтобы вернуть устройство в закрытое состояние, необходимо полностью устранить питание либо осуществить подачу отрицательного напряжения на электрод.

Ниже приводится пример проверки, которую можно осуществить в цепи переменного тока:

  1. Необходимо заменить напряжение, которое подается от блока питания или иного постоянного источника, на переменное напряжение с показателем 12В, использовать для этих целей можно специальный трансформатор.
  2. После осуществления данной процедуры, в исходном положении лампочка будет находиться в выключенном режиме.
  3. Проверка происходит путем нажатия пусковой кнопки, во время чего лампочка должна включаться, а при отжимании снова гаснуть.
  4. Во время тестирования, лампочка должна загораться только вполовину от своих возможностей накала, это обусловлено тем фактом, что тиристора достигает только положительная волна подаваемого от трансформатора переменного напряжения.
  5. Если в схеме присутствует симистор, одна из основных разновидностей тиристора, то лампочка будет загораться в полную силу, поскольку он одинаково восприимчив к обеим полуволнам переменного напряжения.

тестер

Другим способом является осуществление проверки при помощи тестера, реализуется она следующим образом:

  1. Для осуществления предлагаемого тестирования достаточно энергии, которая будет получена от питания мини-тестера на 1,5В, находящегося в рабочем режиме х1 кОм.
  2. Требуется подключить щуп к аноду и затем произвести кратковременное прикосновение к управляющему электроду.
  3. После совершения названных действий проследить за реакцией стрелки, которая должна была отклониться от исходных показателей.
  4. Если после снятия щупа происходит возвращение стрелки на исходную позицию, то это свидетельствует о том, что тестируемый тиристор неспособен самостоятельно удерживаться в открытом состоянии.
  5. Иногда процесс проверки не получается с самого начала, в такой ситуации рекомендуется поменять щупы местами, поскольку у некоторых устройств переход в режим х1 кОм может вызвать изменение полярностей.

проверка мультиметром

Мультиметр представляет собой многофункциональное устройство, в которое входит, в том числе и омметр, с помощью него также можно осуществить соответствующую проверку:

  1. Первоначально, мультиметр должен быть переведен в режим прозвона.
  2. Щупы устанавливаются таким образом, чтобы плюс быть подключен на анод, а минус соответствовал катоду.
  3. Дисплей мультиметра должен показывать высокое напряжение, поскольку тиристор на данный момент находится в закрытом положении.
  4. На щупах имеется напряжение, поэтому можно подать плюс на управляющий электрод, для этого необходимо совершить кратковременное прикосновение соответствующим проводом от электрода к аноду.
  5. После совершенных действий, дисплей мультиметра должен начать показывать низкое напряжение, поскольку тиристор переходит в открытое состояние.
  6. Закрытие прибора произойдет снова, если убрать провод от электрода, этот процесс происходит из-за недостаточного количества электрического тока, который находится в щупах мультиметра. Исключение составляют отдельные разновидности тиристоров, например, которые задействованы в некоторых импульсных источниках питания ряда старых телевизоров, для них содержание тока будет достаточным, чтобы сохранить открытое состояние.

Использование омметра для проверки происходит по схожей схеме, поскольку современные модели обладают не стрелочным механизмом, а дисплеем, как у мультиметров. Подобная методика позволяет проводить тестирование исправного состояния полупроводниковых переходов без осуществления предварительного выпаивания тиристора из платы.

Регулятор мощности

В схеме реализован принцип частотно-импульсного регулирования угла отпирания тиристоров за счет синхронизации с сетью. Такое управление является наиболее эффективным и надежным, так как тиристор работает в нормальных режимах без завышения своих возможностей.

В схеме имеется генератор, который формирует импульсы управления и сдвигает их относительно фронтов импульсов при переходе сетевого напряжения через ноль. Управляющая последовательность импульсов подается на УЭ и К. Напряжение в нагрузке выпрямляется при помощи двухполупериодного выпрямителя. Использование емкостей в схеме в качестве фильтров недопустимо, так как они будут нарушать главный принцип работы устройства. Такой регулятор мощности можно применить для управления температурой жала паяльника путем изменения напряжения его питания. Но если потребуется организоваться управления первичными цепями трансформатора, придется включить нагрузку перед диодным мостом. Ток регулирования должен быть не более 7,5 А.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации