Андрей Смирнов
Время чтения: ~16 мин.
Просмотров: 0

Последовательный колебательный контур

Как работает контур колебаний

Работа контура колебаний основана на циклическом преобразовании энергии индуктивности в качественный показатель эффективности конденсатора и наоборот. Допустим, что конденсатор полностью заряжен и энергия, запасенная в нем, максимальна. При подключении его к катушке индуктивности, он начинает разряжаться. При этом, через индуктивность начинает протекать ток, вызывающий появление ЭДС самоиндукции, направленную на уменьшение протекающего тока. Это означает, что начинается процесс перезарядки конденсатора. В тот момент, когда энергия прибора становится равной нулю, та же величина для катушки максимальна.

Далее, энергия индуктивности снижается, расходуясь на заряд емкости с противоположной полярностью. После уменьшения показателя коэффициента самоиндукции до нуля, на конденсаторе она опять имеет максимальное значение.

Вам это будет интересно Средства защиты от статического электричества


Процессы в системе

Важно! В идеальном случае, данный процесс способен протекать бесконечно. В реальных устройствах колебание затухает со скоростью, пропорциональной потерям в цепи проводников

Вне зависимости от величины энергии, наличия потерь, частота колебаний постоянна и зависит только от значений параметров коэффициента самоиндукции и емкости. Данная величина называется резонансной. Формула резонанса учитывает значение величины емкости и индуктивности контура колебаний.


Осциллограмма

При воздействии на электрическую цепь с катушкой внешним сигналом с частотой, равной резонансной, амплитуда изменения положения частиц резко возрастает. Резонанс отсутствует при несовпадении частот. Из-за предельных значений электрическую цепь с катушкой индуктивности часто называют резонансной.

Потери в цепи с катушкой индуктивности (потери в диэлектрике конденсатора, сопротивление самого устройства, соединительных проводов) ограничивают величину предельных изменений направления частиц. В следствие этого, введена характеристика электроцепи, именуемая добротностью. Добротность обратно пропорциональна предельной величине потерь.


Зависимость предельной частоты от добротности

Важно! Снижение добротности приводит к тому, что предел изменения направлений наступает не только на основной частоте, но и на некотором приближении к ней, то есть, в некоторой полосе частот, где резонансное значение находится посередине. Чем выше добротность, тем более узкой становится полоса частот

Принцип работы резонанса

Если сопротивление емкости и индуктивности подключить последовательно, то они вызовут в переменной цепи гораздо меньший сдвиг фаз, чем при отдельном включении. Говоря иначе, одновременное воздействие индуктивности и емкости создает компенсационные силы сдвига фаз. Полностью сдвиг компенсируется лишь в том случае уравнивания индуктивного и емкостного сопротивления, когда ωL = 1 / ωС.

Обратите внимание! Такая схема будет полностью характеризоваться активным R, то есть вести себя так, как будто в нее не подключены дроссель и конденсатор. Эта сопротивляемость будет равна сумме всех активных характеристик катушки и проводов соединения

Вместе с этим рабочие напряжения дросселя и конденсатора будут равными и максимальными для данных условий. Если при маленьком активном сопротивлении данные характеристики значительно превысят общую напряженность цепи, то напряжения начнут резонировать.

Амплитуда резонанса

В КК при подаче переменного напряжения от внешнего источника наблюдаются два вида резонанса и резкое увеличение двух видов амплитуды: амплитуды тока и амплитуды напряжения.

Амплитуда тока

Амплитуда тока резко возрастает при резонансе напряжений в последовательном контуре (последовательный резонанс). Источник переменной ЭДС включён в цепь, где нагрузкой служат последовательно включённые элементы L и С.

В этом случае в цепь входят сопротивления: активное r и реактивное x, равное:

x = xL – xC.

Так как для внутренних колебаний xL и xC равны, то для тока, поступающего от генератора, при резонансе (когда частоты совпадают) эти значения тоже одинаковы. Поэтому x = 0. В итоге полное сопротивление цепи будет состоять только из небольшого активного сопротивления. Ток при этом получается максимальным.

Схема (а) и резонансные кривые (б) для резонанса напряжений

Амплитуда напряжения

Резонанс токов (параллельный резонанс) является условием резкого возрастания амплитуды напряжения. Источник ЭДС подключается вне контура и нагружен параллельно соединёнными элементами L и С. В этом случае на эффект резонанса влияет внутреннее сопротивление генератора. Амплитуда напряжения на контуре максимальна при малом отличии напряжения контура от напряжения генератора. Это возможно при малом Ri.

Внимание! Изменение частоты генератора меняет ток, а амплитуда напряжения на контуре не отстаёт по величине от напряжения на генераторе. Если, U = Е – I*Ri, где Е – ЭДС, I – ток, то при малом Ri U = Е

Схема (а) и резонансные кривые (б) для резонанса токов

Формула для определения расчётной резонансной частоты для разных колебательных систем различается по входящим в неё параметрам. Несмотря на все различия, суть остаётся неизменной: эффект резонанса наступает тогда, когда частота внутренних колебаний системы и внешних воздействий становятся равны друг другу.

IV. Определение точек сопряжения контуров

 

Коэффициент диапазона контура есть величина, показывающая степень покрытия частот при изменении ёмкости конденсатора настройки от Снmin до Снmax :

Считается , что добиваться сопряжения контуров по трёхточечной схеме необходимо, когда K > 1.7 ; если эта величина лежит в диапазоне от 1.1 до 1.7, то достаточно 2-х точек сопряжения, а если она меньше 1.1, то достаточно одной точки. Для трёхточечной схемы частоты сопряжения задаются соотношениями:

 
 (6)
 
 
Следующей целью является нахождение ёмкости конденсатора настройки на
данных частотах входного контура. Сначала по индуктивности Lв и частотам сопряжения вычисляются значения полной ёмкости входного контура в трёх точках:
 
 (7) 
 
а затем по формуле (5) – три значения ёмкости конденсатора настройки. Перенос частот (6) на контур гетеродина осуществляется путём добавления или вычитания промежуточной частоты. В итоге имеем следующий набор данных для вычисления 3-х параметров гетеродинного контура: три значения частоты, три значения ёмкости конденсатора настройки. Дальнейшие действия сводятся к отысканию параметров L, C1 и C2 уравнения, 
 

 
где
 

 
 
Поскольку искомые величины должны удовлетворять данным соотношениям с максимальной точностью, то для решения задачи годится МНК в отношении минимизации отклонений функции (8) от нулевых значений. В нашем случае используется нелинейный МНК в варианте Гаусса-Зайделя (т.н. метод линеаризации модели) с введением гасящих множителей. Описывать его здесь не имеется возможности, поэтому сразу перейдём к описанию пользовательского интерфейса готовой программы решения обоих этапов рассматриваемой задачи.
 

Типы резонанса

В физике существует большое количество видов резонанса. Все они чем-то схожи и чем-то различны, а именно – своими признаками и природой появления. Среди них можно выделить:

  • механический и акустический резонансы;
  • электрический;
  • оптический;
  • орбитальные колебания;
  • атомный, частичный и молекулярный.

График процесса в колебательном контуре

В следующих подразделах будет более подробно описан каждый из этих видов.

Механический и акустический

Наиболее популярным и очевидным механическим видом будут резонирующие качели, которые были упомянуты раньше. Если толкать их в определенные моменты с учетом их частоты, то размах их движения увеличится или затухнет, если силу не прикладывать.

Основаны механические резонаторы на преобразовании потенциальной энергии в кинетическую и обратно. Если рассматривать маятник, то вся его энергия – потенциальная в состоянии покоя. Она преобразуется в кинетическую, когда он проходит нижнюю точку на своей максимальной скорости.

Приборы для организации резонанса

Важно! Некоторые механические системы способны запасать потенциальную энергию и использовать ее в различных формах. В пример можно привести пружину, которая запасет сжатие, являющееся энергией связи атомов

Акустический тип резонирования можно встретить в некоторых музыкальных инструментах по типу гитары, скрипки, пианино. Они имеют основную резонансную частоту, которая зависит от длины, массы и силы натяжения струн.

Акустическое резонирование помогает людям найти дефекты в трубопроводе

Кроме основной частоты, струны этих музыкальных инструментов обладают резонансом на высших гармонических колебаниях основной частоты. Если струну дернуть, то она начнет колебаться на всех частотах, которые присущи данному импульсу, но частоты, несовпадающие с резонансом, очень быстро затухнут, и человеческое ухо услышит только гармонические колебания, являющиеся нотами.

Акустические системы, микрофоны и громкоговорители не терпят резонанса отдельных частей своего корпуса, так как это снижает равномерность их амплитудно-частотной характеристики и ухудшает качество воспроизведения звуков.

Струны создают акустический резонанс

Резонанс электрический

В электронике резонанс также имеется. Им называется состояние или режим пассивной электроцепи, содержащей катушки и конденсаторы, при котором ее входное реактивное электросопротивление и проводимость будут нулевыми. Это означает, что при резонансе ток на входе в цепь, если он есть, будет совпадать по фазе с напряжением.

Колебательный контур

В электричестве резонирование достигается тогда, когда индукция и емкость реакции уравновешиваются. Это равенство и позволяет энергии производить циркуляцию между индуктивными элементами и их магнитным полем, и полем электрического типа в конденсаторе.

Сам механизм резонанса основан на том, что МП индуктивности создает электроток, который заряжает конденсатор, разрядка его и создает это магнитное поле. Простейшее устройство, основанное на этом взаимодействии, – колебательный контур, способный производить резонанс напряжений и токов.

Модель светового оптического резонирования

Оптический резонанс

И в оптическом диапазоне есть резонанс. Один из самых популярных его примеров – резонатор Фабри-Перо. Он образован несколькими зеркалами, между которыми устанавливается так называемая резонирующая стоячая волна. Кроме этого используются кольцевые системы резонирования с бегущей волной и микроскопические резонаторы со стоячими волнами.

Схема колебательного контура

Орбитальные колебания

Колебания в астрофизике представляют собой ситуации, когда есть два или более небесных объекта, которые имеют некоторые периоды обращения, соотносящиеся, как небольшие натуральные числа. В результате этого воздействия небесные объекты оказывают друг на друга постоянное гравитационное притяжение. Оно и производит стабилизацию их орбит.

Колебания есть и на орбитах небесных тел

Акустика

Резонанс — один из важнейших физических процессов, используемых при проектировании звуковых устройств, большинство из которых содержат резонаторы, например, струны и корпус скрипки, трубка у флейты, корпус у барабанов.

Для акустических систем и громкоговорителей резонанс отдельных элементов (корпуса, диффузора) является нежелательным явлением, так как ухудшает равномерность амплитудно-частотной характеристики устройства и верность звуковоспроизведения. Исключением являются акустические системы с фазоинвертором, в которых намеренно создаётся резонанс для улучшения воспроизведения низких частот.

Свободные электрические колебания в параллельном контуре.

Основные свойства индуктивности:

— Ток, протекающий в катушке индуктивности, создаёт магнитное поле с энергией . — Изменение тока в катушке вызывает изменение магнитного потока в её витках, создавая в них ЭДС, препятствующую изменению тока и магнитного потока.

Период свободных колебаний контура LC можно описать следующим образом:

Если конденсатор ёмкостью C заряжен до напряжения U, потенциальная энергия его заряда составит. Если параллельно заряженному конденсатору подключить катушку индуктивности L, в цепи пойдёт ток его разряда, создавая магнитное поле в катушке.

Магнитный поток, увеличиваясь от нуля, создаст ЭДС в направлении противоположном току в катушке, что будет препятствовать нарастанию тока в цепи, поэтому конденсатор разрядится не мгновенно, а через время t1, которое определяется индуктивностью катушки и ёмкостью конденсатора из расчёта t1 = . По истечении времени t1, когда конденсатор разрядится до нуля, ток в катушке и магнитная энергия будут максимальны. Накопленная катушкой магнитная энергия в этот момент составит. В идеальном рассмотрении, при полном отсутствии потерь в контуре, EC будет равна EL. Таким образом, электрическая энергия конденсатора перейдёт в магнитную энергию катушки.

Изменение (уменьшение) магнитного потока накопленной энергии катушки создаст в ней ЭДС, которая продолжит ток в том же направлении и начнётся процесс заряда конденсатора индукционным током. Уменьшаясь от максимума до нуля в течении времени t2 = t1, он перезарядит конденсатор от нуля до максимального отрицательного значения (-U). Так магнитная энергия катушки перейдёт в электрическую энергию конденсатора.

Описанные интервалы t1 и t2 составят половину периода полного колебания в контуре. Во второй половине процессы аналогичны, только конденсатор будет разряжаться от отрицательного значения, а ток и магнитный поток сменят направление. Магнитная энергия вновь будет накапливаться в катушке в течении времени t3, сменив полярность полюсов.

В течении заключительного этапа колебания (t4), накопленная магнитная энергия катушки зарядит конденсатор до первоначального значения U (в случае отсутствия потерь) и процесс колебания повторится.

В реальности, при наличии потерь энергии на активном сопротивлении проводников, фазовых и магнитных потерь, колебания будут затухающими по амплитуде. Время t1 + t2 + t3 + t4 составит период колебаний . Частота свободных колебаний контура ƒ = 1 / T

Частота свободных колебаний является частотой резонанса контура, на которой реактивное сопротивление индуктивности XL=2πfL равно реактивному сопротивлению ёмкости XC=1/(2πfC).

Расчёт частоты резонанса LC-контура:

Предлагается простой онлайн-калькулятор для расчёта резонансной частоты колебательного контура.

Необходимо вписать значения и кликнуть мышкой в таблице. При переключении множителей автоматически происходит пересчёт результата.

Расчёт индуктивности:

Похожие страницы с расчётами:

Замечания и предложения принимаются и приветствуются!

Колебательный контур — электрическая цепь, в которой могут возникать колебания с частотой, определяемой параметрами цепи. Простейший колебательный контур состоит из конденсатора и катушки индуктивности, соединенных параллельно или последовательно. — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при совпадении частоты внешнего воздействия с некоторыми значениями (резонансными частотами), определяемыми свойствами системы.

F=1/(2π×√L×C), где F — Резонансная частота, Гц) L — Индуктивность, (Гн) C — Ёмкость, (Ф)

Сайт для радиолюбителей

Колебательный контур — электрическая цепь, содержащая катушку индуктивности, конденсатор и источник электрической энергии. При последовательном соединении элементов цепи колебательный контур называется последовательным, при параллельном − параллельным.

Колебательный контур — простейшая система, в которой могут происходить свободные электромагнитные колебания.

Резонансная частота контура определяется так называемой формулой Томсона:

Например, для частоты 10,7 МГц оптимальным будет С=47 пФ и L= 4,7 мкГн, а для частоты 465 кГц оптимальные С=1000пФ и L=117мкГн.

Исходя из всего выше сказанного, онлайн калькулятор позволяет подобрать значения емкости и индуктивности в пределах ±20% от оптимального значения.

Для расчета частоты резонанса колебательного контура LC заполните предложенную форму:

Расчёт ёмкости для колебательного контура LC

Расчёт индуктивности для колебательного контура LC

Электроника

В электрических цепях резонансом называется такой режим пассивной цепи, содержащий катушки индуктивности и конденсаторы, при котором ее входное реактивное сопротивление или ее входнвя реактивная проводимость равны нулю. При резонансе ток на входе цепи, если он отличен от нуля, совпадает по фазе с напряжением.

В электрических цепях резонанс возникает на определённой частоте, когда индуктивная и ёмкостная составляющие реакции системы уравновешены, что позволяет энергии циркулировать между магнитным полем индуктивного элемента и электрическим полем конденсатора.

Механизм резонанса заключается в том, что магнитное поле индуктивности генерирует электрический ток, заряжающий конденсатор, а разрядка конденсатора создаёт магнитное поле в индуктивности — процесс, который повторяется многократно, по аналогии с механическим маятником.

Электрическое устройство, состоящее из ёмкости и индуктивности, называется колебательным контуром. Элементы колебательного контура могут быть включены как последовательно (тогда возникает резонанс напряжений), так и параллельно (резонанс токов). При достижении резонанса, импеданс последовательно соединённых индуктивности и ёмкости минимален, а при параллельном включении — максимален. Резонансные процессы в колебательных контурах используются в элементах настройки, электрических фильтрах. Частота, на которой происходит резонанс, определяется величинами (номиналами) используемых элементов. В то же время, резонанс может быть и вреден, если он возникает в неожиданном месте по причине повреждения, недостаточно качественного проектирования или производства электронного устройства. Такой резонанс может вызывать паразитный шум, искажения сигнала, и даже повреждение компонентов.

Приняв, что в момент резонанса индуктивная и ёмкостная составляющие импеданса равны, резонансную частоту можно найти из выражения

ωL=1ωC⇒ω=1LC{\displaystyle \omega L={\frac {1}{\omega C}}\Rightarrow \omega ={\frac {1}{\sqrt {LC}}}},

где ω=2πf{\displaystyle \omega =2\pi f} ; f — резонансная частота в герцах; L — индуктивность в генри; C — ёмкость в фарадах

Важно, что в реальных системах понятие резонансной частоты неразрывно связано с полосой пропускания, то есть диапазоном частот, в котором реакция системы мало отличается от реакции на резонансной частоте. Ширина полосы пропускания определяется добротностью системы.

В электронных устройствах также применяются различные электромеханические резонансные системы.

Резонанс напряжений

Давайте возьмем другие параметры катушки и конденсатора и посмотрим, что у нас происходит на самих радиоэлементах. Нам ведь надо досконально все выяснить ;-). Беру катушку индуктивности с индуктивностью в 22 микрогенри:

и конденсатор в 1000 пФ

Из них собираю последовательный колебательный контур. Итак, чтобы поймать резонанс, я не буду в схему добавлять резистор. Поступлю более хитрее.

Так как мой генератор частоты китайский и маломощный, то при резонансе у нас в цепи остается только активное сопротивление потерь R. В сумме получается все равно маленькое значение сопротивления, поэтому ток при резонансе достигает максимальных значений. В результате этого, на внутреннем сопротивлении генератора частоты падает приличное напряжение и выдаваемая амплитуда частоты генератора  падает. Я буду ловить минимальное значение этой амплитуды. Следовательно это и будет резонанс колебательного контура. Перегружать генератор – это не есть хорошо, но что не сделаешь ради науки!

Ну что же, приступим ;-). Давайте сначала посчитаем  резонансную частоту по формуле Томсона. Для этого я открываю онлайн калькулятор на просторах интернета и быстренько высчитываю эту частоту. У меня получилось 1,073 Мегагерц.

Ловлю резонанс на генераторе частоты по его минимальным значениям амплитуды. Получилось как-то вот так:

Размах амплитуды 4 Вольта

Хотя на генераторе частоты  размах  более 17 Вольт! Вот так вот сильно просело напряжение. И как видите, резонансная частота получилась чуток другая, чем расчетная: 1,109 Мегагерц.

Теперь небольшой прикол 😉

Вот этот сигнал мы подаем на наш последовательный колебательный контур:

Как видите, мой генератор не в силах выдать большую силу тока в колебательный контур на резонансной частоте, поэтому сигнал получился даже чуть искаженным на пиках.

Ну а теперь самое интересное. Давайте замеряем падение напряжения на конденсаторе и катушке на резонансной частоте. То есть это будет выглядеть вот так:

Смотрим напряжение на конденсаторе:

Размах амплитуды 20 Вольт (5х4)! Откуда? Ведь подавали мы на колебательный контур синус с частотой в 2 Вольта!

Ладно, может с осциллографом что-то произошло?. Давайте замеряем напряжение на катушке:

Народ! Халява!!! Подали 2 Вольта с генератора, а получили 20 Вольт и на катушке и на конденсаторе! Выигрыш энергии в 10 раз! Успевай только снимать энергию с конденсатора или с катушки!

Ну ладно раз такое дело… беру лампочку от мопеда на 12 Вольт и цепляю ее к конденсатору или катушке. Лампочке ведь вроде как по-барабану на какой частоте работать и какой ток кушать. Выставляю амплитуду, чтобы на катушке или конденсаторе было где то Вольт 20 так как среднеквадратичное напряжение будет где-то Вольт 14,  и цепляю поочередно к ним лампочку:

Как видите – полный ноль. Лампочка гореть не собирается, так что побрейтесь фанаты халявной энергии). Вы ведь не забыли, что мощность определяется произведением силы тока на напряжение? Напряжения вроде как-бы хватает, а вот силы тока – увы! Поэтому, последовательный колебательный контур носит также название узкополосного (резонансного) усилителя напряжения, а не мощности!

Объяснение резонанса напряжения

При резонансе напряжение на катушке и на конденсаторе оказались намного больше, чем то, которое мы подавали на колебательный контур. В данном случае у нас получилось в 10 раз больше. Почему же напряжение на катушке при резонансе равняется напряжению на конденсаторе. Это легко объясняется. Так как в последовательном колебательном контуре катушка и кондер идут друг за другом, следовательно, в цепи протекает одна и та же сила тока.

При резонансе реактивное сопротивление катушки равняется реактивному сопротивлению конденсатора. Получаем по правилу шунта, что на катушке у нас падает напряжение UL = IXL , а на конденсаторе UC = IXC . А так как при резонансе у нас XL = XC , то получаем что UL = UC , ток ведь в цепи один и тот же ;-). Поэтому резонанс в последовательном колебательном контуре называют также резонансом напряжений, так как напряжение на катушке на резонансной частоте равняется напряжению на конденсаторе.

Применение токового резонанса

Основная область активного применения широко востребованных резонансных токов сегодня представлена:

  • некоторыми видами фильтрующих систем, в которых току с определенными частотными параметрами оказываются значительные показатели сопротивления;
  • радиотехникой в виде приемников, выделяющих сигналы, предназначенные для конкретных точек радиостанций. Оказание значительного сопротивления току сопровождается снижением показателей контурного напряжения при максимальной частоте;
  • асинхронного типа двигателями, в особенности функционирующими в условиях неполной нагрузки;
  • установками высокоточной электрической сварки;
  • колебательными контурами внутри узлов генераторов электронного типа;
  • приборами, отличающимися высокочастотной закалкой;
  • снижением показателей генераторной нагрузки. При таких условиях в приемном трансформаторе с первичной обмоткой делается колебательный контур.

Схема цепи

Особенно часто колебательные контуры или токовые резонансы применяются в производстве современного промышленного индукционного котлового оборудования, что позволяет в значительной степени улучшить стартовые показатели коэффициента полезного действия.

Стандартные колебательные контуры, функционирующие в условиях режима токового резонанса, массово применяются в качестве одного из наиболее важных узлов в современных электронных генераторах.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации