Андрей Смирнов
Время чтения: ~19 мин.
Просмотров: 0

Трансформатор тдтн, тдтнж, тдцтн

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сферев инвестиционной

Применение

В зависимости от нагрузки электрической сети меняется её напряжение.
Для нормальной работы электроприёмников потребителей необходимо, чтобы напряжение не отклонялось от заданного уровня больше допустимых пределов, в связи с чем применяются различные способы регулирования напряжения в сети. Одним из способов является изменение соотношения числа витков обмоток первичной и вторичной цепи трансформатора (коэффициента трансформации), так какU2=U1w2w1{\displaystyle U_{2}=U_{1}{w_{2} \over w_{1}}}

В зависимости от того, происходит это во время работы трансформатора или после его отключения от сети, различают «переключение без возбуждения» (ПБВ) и «регулирование под нагрузкой» (РПН). И в том и в другом случае обмотки трансформатора выполняются с ответвлениями, переключаясь между которыми, можно изменить коэффициент трансформации трансформатора.

Принцип работы пленочной защиты трансформатора

Принцип действия пленочной защиты трансформатора заключается в следующем: из масла и твердой изоляции удаляется газ. Герметизация трансформатора осуществляется с помощью эластичной емкости, установленной в расширителе трансформатора. Таким образом, обеспечивается более надежная защита изоляции трансформатора, так как исключается не только возможность окисления и увлажнения масла, но в значительной мере уменьшается вероятность возникновения электрических разрядов, центрами развития которых, как правило, являются газовые включения.

На трансформаторах с пленочной защитой, так же, как и на трансформаторах без нее устанавливаются фильтры непрерывной регенерации.

Наружная поверхность эластичной емкости имеет те же размеры и форму, что и внутренняя поверхность расширителя. Воздух или азот поступает внутрь эластичной емкости через осушитель. Внутри расширителя эластичная емкость подвешивается на петлях.

Расширитель трансформатора с пленочной защитой имеет патрубки для соединения с трансформатором и для доливки масла, петли для крепления эластичной емкости, газосборочный коллектор и монтажные люки. Внутри эластичной емкости установлен рычаг стрелочного маслоуказателя для контроля за уровнем масла в расширителе.

Газосборочный коллектор служит для выпуска воздуха из пространства между эластичной емкостью и расширителем во время монтажа. Во время эксплуатации коллектор с помощью реле, реагирующего на появление газа в нем, служит для контроля герметичности расширителя и эластичной емкости. В верхней части расширителя установлено реле поплавкового типа, которое должно подавать сигнал в случае повреждения эластичной емкости. Для более надежной герметизации трансформатора с пленочной защитой вместо предохранительной трубы устанавливается предохранительный клапан.

Устройство РПН: принцип работы

Как отмечалось выше, регулировка анцапфы трансформатора может выполнять через РПН. Особый тип переключений предполагает постоянную корректировку напряжения в зависимости от времени суток и нагрузки. Регулирование осуществляется в пределах от +/- 10 до 16%. В некоторых случаях устанавливается полностью автоматических механизм, который поддерживает нужный режим работ самостоятельно. Прочие варианты зависят от оперативного управления из диспетчерского пункта или ОПУ.

Что касается принципа работы, то он выполнен следующим образом:

  1. Имеется анцапфа, которая путем выкручивания пружины меняет число обмоток. При обычных условиях 33 оборота предполагает изменение количества витков на 1 единицу. Мера регулирования во многом определяется отстройкой шага.
  2. Для автоматизации процесса подключается механический мотор, который отстроен для выполнения ровно одной операции. Из ОПУ подается сигнал на электродвигатель, после чего происходит регулирование.
  3. Для более быстрого реагирования необходимо задействовать телемеханику, которая обеспечивает процесс из диспетчерского пункта.

Пбв трансформатора принцип действия – все об электричестве

  • 1 Пбв трансформатора: устройство анцапфы, принцип работы, эксплуатация и ремонт
  • 2 Ответы на вопросы о трансформаторах
  • 3 Анцапфа трансформатора — это.. Определение, схема и устройство, принцип работы, регулировка
  • 4 Силовые трансформаторы
  • 5 Анцапфа на трансформатор ТМ 25,40,63,100,160,250,400 кВа цена 3380 грн

Потребители электрической энергии более эффективно работают при номинальном напряжении. Однако это условие для всех довольно сложно.

Допустимым у потребителей является его отклонение до +5%. Чтобы достигнуть значения напряжения, близкого по значению к номинальныму, численность витков обмоток трансформатора изменяют. Осуществить это можно двумя способами:

  • используя устройство ПБВ трансформатора;
  • регулируя напряжение под нагрузкой.

Имеется несколько методов поддержки значения напряжения у потребителей в надобных пределах. Среди них особое место занимает способ его регулирования. Достоинства этого способа являют собой:

  • улучшение режима напряжения у потребителей;
  • увеличение допустимой потери напряжения;
  • повышение качества электроэнергии, которая доставляется потребителям.

При проектировании электрических сетей выбирают средства, границы и степени регулировки, место установки регуляторов, а также систему их автоматизации.

Значение первичного и вторичного напряжения прямо пропорционально зависит от числа витков обмоток, в которых оно протекает:

U 1 / U 2 ≈W 1 / W 2,

где U 1, U 2 — соответственно первичное и вторичное напряжение;

W 1 / W 2 — соответственно количество витков первичной и вторичной обмотки

Из этого вытекает, что для изменения напряжения на выходе трансформатора необходимо менять количество витков одной из обмоток. Благодаря этому обмотка, которая будет задействована в переключении, производится с ответвлениями.

Несмотря на простоту процесса, существуют и некоторые трудности. При переключении с одного ответвления на другое ни в коем случае нельзя разрывать цепь тока.

Одновременно с этим требованием запрещается, чтобы контакты переключателя замкнули два соседних ответвления, иначе короткого замыкания этой части обмотки не избежать.

Существует два способа для удовлетворения этих условий: переключение ответвлений обмоток после отключения от сети всех его обмоток и во время работы, при нагрузке.

Основные понятия о пбв трансформатора

ПБВ трансформатора имеет очень простую расшифровку, которая заключается в первых буквах слов — «переключение без возбуждения». Это означает, что все переключения необходимо проводить у трансформатора, который отсоединён от источника питания.

Но также широко известно другое название устройства пбв трансформатора — анцапфа. Анцапфа (переключатель) — это устройство, с помощью которого число витков обмотки допустимо изменить для регулирования выходного напряжения.

Переключатель предназначен для того, чтобы изменить коэффициент трансформации в пределах 5%, меняя задействованную в работе численность витков обмотки высокого напряжения.

Условное обозначение трансформаторов

Структурная схема условного обозначения трансформатора

Буквенная часть условного обозначения должна содержать обозначения в следующем порядке:

  1. Назначению трансформатора (может отсутствовать)
    А — автотрансформатор
    Э — электропечной
  2. Количество фаз
    О — однофазный трансформатор
    Т — трехфазный трансформатор
  3. Расщепление обмоток (может отсутствовать)
    Р — расщепленная обмотка НН;
  4. Система охлаждения
    1. Сухие трансформаторы
      С — естественное воздушное при открытом исполнении
      СЗ — естественное воздушное при защищенном исполнении
      СГ — естественное воздушное при герметичном исполнении
      СД — воздушное с дутьем
    2. Масляные трансформаторы
      М — естественное масляное
      МЗ — с естественным масляным охлаждением с защитой при помощи азотной подушки без расширителя
      Д — масляное с дутьем и естественной циркуляцией масла
      ДЦ — масляное с дутьем и принудительной циркуляцией масла
      Ц — масляно-водяное с принудительной циркуляцией масла
    3. С негорючим жидким диэлектриком (совтолом)
      Н — естественное охлаждение негорючим жидким диэлектриком
      НД — охлаждение негорючим жидким диэлектриком с дутьем
  5. Конструктивная особенность трансформатора (в обозначении может отсутствовать)
    Л — исполнение трансформатора с литой изоляцией;
    Т — трехобмоточный трансформатор (Для двухобмоточных трансформаторов не указывают);
    Н — трансформатор с ;
    З — трансформатор без расширителя и выводами, смонтированными во фланцах на стенках бака, и с азотной подушкой;
    Ф — трансформатор с расширителем и выводами, смонтированными во фланцах на стенках бака ;
    Г — трансформатор в гофробаке без расширителя — «герметичное исполнение»;
    У — трансформатор с симметрирующим устройством
    П — подвесного исполнения на опоре ВЛ
    э — трансформатор с пониженными потерями холостого хода (энергосберегающий)
  6. Назначение (в обозначении может отсутствовать)
    С — исполнение трансформатора для собственных нужд электростанций
    П — для линий передачи постоянного тока
    М — исполнение трансформатора для металлургического производства
    ПН — исполнение для питания погружных электронасосов
    Б — для прогрева бетона или грунта в холодное время года (бетоногрейный), такой же литерой может обозначаться трансформатор для буровых станков
    Э — для питания электрооборудования экскаваторов (экскаваторный)
    ТО — для термической обработки бетона и грунта, питания ручного инструмента, временного освещения

Для автотрансформаторов при классах напряжения стороны С.Н или НН 110 кВ и выше после класса напряжения стороны ВН через черту дроби указывают класс напряжения стороны СН или НН.

Примечание. Для трансформаторов, разработанных до 01.07.87, допускается указывать последние две цифры года выпуска рабочих чертежей.

Соответствие условных обозначений видов систем охлаждения, принятых по ГОСТ, СЭВ и МЭК.
Условное обозначение вида охлажденияВид системы охлаждения трансформатора
ГОСТСЭВ и МЭК
Сухие трансформаторы
СANЕстественное воздушное при открытом исполнении
СЗANANЕстественное воздушное при защищенном исполнении
СГЕстественное воздушное при герметичном исполнении
СДANAFВоздушное с принудительной циркуляцией воздуха
Масляные трансформаторы
МONANЕстественная циркуляция воздуха и масла
ДONAFПринудительная циркуляция воздуха и естественная циркуляция масла
МЦOFANЕстественная циркуляция воздуха и принудительная циркуляция масла с ненаправленным потоком масла
НМЦODANЕстественная циркуляция воздуха и принудительная циркуляция масла с направленным потоком масла
ДЦOFAFПринудительная циркуляция воздуха и масла с ненаправленным потоком масла
НДЦODAFПринудительная циркуляция воздуха и масла с направленным потоком масла
ЦOFWFПринудительная циркуляция воды и масла с ненаправленным потоком масла
НЦODWFПринудительная циркуляция воды и масла с направленным потоком масла
Трансформаторы с негорючим жидким диэлектриком
НLNAFЕстественное охлаждение негорючим жидким диэлектриком
НДLNAFОхлаждение негорючим жидким диэлектриком с принудительной циркуляцией воздуха
ННДLDAFОхлаждение негорючим жидким диэлектриком с принудительной циркуляцией воздуха и с направленным потоком жидкого диэлектрика

Устройство РПН: принцип работы

Как отмечалось выше, регулировка анцапфы трансформатора может выполнять через РПН. Особый тип переключений предполагает постоянную корректировку напряжения в зависимости от времени суток и нагрузки. Регулирование осуществляется в пределах от +/- 10 до 16%. В некоторых случаях устанавливается полностью автоматических механизм, который поддерживает нужный режим работ самостоятельно. Прочие варианты зависят от оперативного управления из диспетчерского пункта или ОПУ.

Что касается принципа работы, то он выполнен следующим образом:

  1. Имеется анцапфа, которая путем выкручивания пружины меняет число обмоток. При обычных условиях 33 оборота предполагает изменение количества витков на 1 единицу. Мера регулирования во многом определяется отстройкой шага.
  2. Для автоматизации процесса подключается механический мотор, который отстроен для выполнения ровно одной операции. Из ОПУ подается сигнал на электродвигатель, после чего происходит регулирование.
  3. Для более быстрого реагирования необходимо задействовать телемеханику, которая обеспечивает процесс из диспетчерского пункта.

Неисправности переключателей анцапф

В обыкновенных силовых трансформаторах переключатель можно ставить в новое положение только после отключения трансформатора от питающей сети. Несоблюдение этого условия приводит к выходу анцапфного переключателя из строя. В некоторых случаях вместе с переключателем повреждается часть обмотки трансформатора.
При нормальном пользовании анцапфным переключателем основная его неисправность — ослабление его контактной системы, что может повлечь обрыв в цепи обмотки в месте слабого контакта переключателя. Во время ремонта трансформатора без вскрытия его активной части (магнитопровода с обмотками) качество контактной системы переключателя должно быть проверено соответствующими измерениями, а при вскрытии активной части необходимо тщательно осмотреть переключатель. Ремонт переключателя сводится к чистке или замене контактов и замене пружин.

Общие конструктивные сведения

Трансформатор включает следующие основные элементы:

  1. Трансформаторный бак – выполняет функцию корпуса прямоугольной формы, в него помещена активная часть. На верхней крышке и на стенках бака расположены другие элементы конструкции.

  2. Выводы обмоток с изоляторами выполняют функцию высоковольтного и низковольтного вводов.

  3. Активная часть, состоящая из остова, обмоток ВН и НН с ответвлениями, изолированных вводов, выводов и регулятора ПБВ.

  4. Контрольно-измерительные устройства и приборы: термометр, маслоуказатель, иногда мановакууметр и газовое реле, по отдельному требованию заказчика – контроль рабочего состояния трансформатора.

  5. 5. Дополнительная аппаратура: рукоять переключателя обмоток (ПБВ), клапан сброса давления – защита и регулировка.

Конструктивные особенности трансформатора ТМГ

Рисунок 2 — Конструктивная схема и общий вид трансформатора ТМГ 63 – 630 кВА

Бак ТМГ — герметичный, без расширителя. Маслоуказатель находится сбоку в верхней части, ближе к стороне 0,4 кВ.

На баке ТМГ установлен предохранительный клапан, который срабатывает при газовом давлении более 30 кПа. В аварийном режиме клапан обеспечивает выхлоп газов.

Трансформатор ТМГ еще на заводе изначально изготавливается с защитой от перегрева. Термостойкие свойства закладываются в конструкцию еще при производстве, когда трансформатор под вакуумом наполняют дегазированным трансформаторным маслом. Данная операция предотвращает появление воздушных подушек, возникающих при выделении из масла воздуха, который в нем растворен.

Конструктивные особенности трансформатора ТМ

Рисунок 3 — Конструктивная схема, чертеж внешнего вида трансформатора ТМ 1000 – 4000 кВА

На верху бака расположен расширитель с размещенными:

  • маслоуказателем;
  • осушителем воздуха;
  • заливным отверстием для масла.

Расширительный бак с клапаном сброса давления. При повышении давления, в режиме аварии газы разрывают защитную мембрану и выходят наружу. Для чего предназначен расширитель?

Несмотря на то, что расширитель допускает взаимодействие масла с воздухом, решается проблема изменяющегося под воздействием температуры объёма трансформаторного масла. Расширитель служит для изменения давления внутри бака в результате процесса компенсации.

Необходимый и обязательный элемент трансформатора ТМ – осушитель воздуха. Представляет собой прозрачный бак с сорбентом, поглощающим влагу. Нормальное состояние силикагеля, которым обычно заполняется осушитель – белый цвет с оранжевым оттенком.

Система охлаждения – важный элемент конструкции трансформатора, включает:

  1. Бак трансформатора с маслом-диэлектриком.
  2. Расширительный бачок.
  3. Радиаторы на баке трансформатора.

Ключевые характеристики, влияющие на качество работы трансформатора

Помимо внешней характеристики, где напряжение с низкой стороны трансформатора зависит от нагрузки потребителей, существует ряд других факторов, влияющих на качество работы.

Для распределительных силовых трансформаторов по ГОСТ 4.316-85 определены следующие показатели качества:

  1. Удельная масса по отношению к номинальной мощности кг/кВ*А (показатель считается основным для выбора конструкции тр-ра)
  2. Установленный эксплуатационный период (показатель определяет надежность и долговечность)
  3. Потери холостого хода (ХХ) ΔPк, кВт.
  4. Потери короткого замыкания (КЗ)ΔPк, кВт
  5. Ток холостого хода Iхх

Качественная зависимость эффективности трансформатора от удельной массы

По приведенным в Таблице 2 значениям видно, лучшие показатели по массе у трансформаторов ТМГ21, где вторичная обмотка исполнена из алюминиевой фольги. Кроме трансформатора ТМ удельный вес остальных моделей уменьшается при увеличении номинальной мощности.

Таблица 2 — Показатели массы силовых трансформаторов ТМ и ТМГ напряжением 10/0,4кВ

Тип трансформатора

Масса, кг, при Sном, кВА

Удельная масса, кг/кВА при Sном. кВА

630кВА

1000кВА

1600кВА

630кВА

1000кВА

1600кВА

ТМГ

1950

2890

2,9

2,9

ТМГ11

1860

2890

4250

2,8

2,7

2,8

ТМГ12

1870

2820

2,8

2,8

ТМГ15

1870

2820

2,8

2,8

ТМГ21

1700

2550

3860

2,6

2,4

2,6

ТМЗ

2650

3600

4930

3,6

3,1

3,6

ТМ

2030

2609

4520

2,6

2,8

2,6

Потери холостого хода

В режиме холостого хода магнитные потери стали и обмотки высокого напряжения из-за тока ХХ составляют около 1% от ΔPхх

Основные причины больших потерь ХХ:

  1. Коррозия металла, при нарушении лаковой изоляции.
  2. Износ изоляции шпилек для стяжки, вызывающих замкнутый накоротко контур.
  3. Плохая шихтовка.
  4. Перегрев стальных элементов, болтовых соединений трансформатора.
  5. Нестабильные характеристики стали.
  6. Брак при сборке трансформатора.
  7. Недогрузка трансформатора.

Магнитные потери появляются из-за гистерезиса вихревых токов. Гистерезис вызывает 25% всех магнитных потерь. Вихревые токи – 75% потерь ХХ

Детальное рассмотрение потерь ХХ в Таблице 3.

Таблица 3 — Потери ХХ и КЗ силовых трансформаторов ТМ и ТМГ напряжением 10/0,4 кВ

Тип трансформатора

Значение ΔPхх, кВт при Sном. кВ*А

Значение ΔPкз,при Sном. кВА

630

1000

1600

630

1000

1600

ТМГ

1,05

1,55

7,6

10,2

ТМГ11

1,1

1,4

2,15

8,7

10,2

ТМГ12

0,8

1,1

6,75

10,5

ТМГ15

0,73

0,94

6,75

10,5

ТМГ21

1,03

1,3

2,05

7,45

11,6

16,75

ТМЗ

1,25

1,9

2,65

7,9

12,2

16,5

ТМ

1,25

1,9

2,35

7,6

11,6

16,5

Потери токов КЗ

Потери КЗ зависят от следующих факторов:

  1. Ток нагрузки в обеих обмотках трансформатора.
  2. Материал обмоток.
  3. Сечения проводников.

Для комплектных подстанций, где по большей части устанавливают трансформаторы ТМГ, важен показатель суммарных потерь трансформатора, который складывается из потерь на ХХ и КЗ.

Энергоэффективность трансформаторов оценивается по европейскому стандарту HD428. По нему степень потерь мощности КЗ и ХХ не должна превышать стандартные значения.

Таблица 4 — Допустимый уровень потерь в трансформаторах.

Sном, кВА

Допустимые уровни потерь холостого хода, кВт

Допустимые уровни потерь короткого замыкания, кВт

ΔPxa

ΔPxb

ΔPxc

ΔPka

ΔPkb

ΔPkc

630

1,3

1,03

0,86

6,5

8,4

5,4

1000

1,7

1,4

1,1

10,5

13,0

9,5

1600

2,6

2,2

1,7

17,0

20,0

14,0

Вывод.

При выборе руководствуются стандартными качественными показателями, регламентированными ГОСТ 4 316-85

Энергоэффективность оценивается в зависимости от минимального количества потерь и наибольшего КПД. Наиболее лучшими и отвечающими качественным показателям являются трансформаторы: энергосберегающий ТМГ12; ТМГ15 и ТМГ21, трансформаторы мощностью 1600кВА типа ТМ и ТМГ11.

Особенности конструкции

Для изготовления сухих трансформаторов задействованы передовые технологии проектирования и производства. Каждый трансформатор проходит обязательную сертификацию качества на соответствие ISO9001:2000. 

Надежность и безопасная эксплуатация сухих трансформаторов достигается за счет качества изоляции обмоток и конструктива. На эффективность характеристик влияет технология производства. Самая распространенная – заливка обмоток изоляционным компаудом с вакуумировкой. 

Рис. №2. Конструкция сухого трансформатора с литой изоляцией

Магнитный сердечник (2) в виде колонок набранных из специальной зернистой электротехнической стали, нормализующий и уменьшающий потери.


Рис. №3. Внешний вид магнитного сердечника

Обмотки ВН (1) изолированы компаудом, залитым при вакуумировании.

Обмотка НН (3) выполнена из алюминиевых полос фольги, изолирована специальной пропиткой в вакууме. 

Сердечник отделен от обмоток резиной (6), которая поглощает расширение компонентов под воздействием тепла и вибрацию, что понижает рабочий шум.

Колонны обмоток изолированы (10) эпоксидной смолой, которая минимизирует обслуживание, в отличие от маслонаполненных трансформаторов. 

Изоляция (14) с классом по нагревостойкости F- 155ОС допускает превышение температуры обмоток на 100 градусов Цельсия. Повышение температуры допускается в соответствии со стандартом МЭК 60076 и ГОСТ Р 52719.

Со стороны ВН установлены выводы для размещения регулировочных перемычек (7), которыми выставляют требуемое напряжение первичной обмотки. Регулировка производится при отключении оборудования от питающей сети.

Шинопроводы (13) можно присоединять прямо к контактам трансформатора.

Контакты низкого напряжения (4) размещаются стандартно сверху, или снизу в зависимости от запроса.

Контакты высокого напряжения (5) расположены внизу или наверху, по стандартным правилам или в зависимости от желаний заказчика. Контакты соединены перемычками, соединяющими обмотки в схему «треугольник».

Для наблюдения за температурой предусмотрены термодатчики РТ и РТС (11), которые внедрены в обмотку НН.

Корпус размещается на стальной раме (8), оборудованной металлическими роликами (9) для безопасного перемещения трансформатора к месту монтажа в кожухи с определенным уровнем защиты. С их помощью оборудование транспортируется к мету хранения. Подъем осуществляется с помощью четырех рым-болтов (12). 

Расшифровка трансформаторов, примеры

Трансформаторы тока обозначаются следующим образом:
• Т — Буква указывает, что это именно трансформатор тока
• Вторая буква означает конструктивное исполнение: «П» — проходной, «О» – опорный трансформатор, «Ш» -шинный, «Ф» — с фарфоровой покрышкой
• Третье обозначение указывает на изоляцию и систему охлаждения обмоток трансформатора «Л» — литая изоляция, «М» — масляная,
Потом идет через “-“ класс изоляции, климатическое исполнение трансформаторов, и, категория установок.

Пример расшифровки трансформатора тока ТПЛ — 10УХЛ4 100/5А.

  •  Т – тока
  •  П – проходной
  •  Л – литая изоляция
  •  Класс 10 кВ
  •  УХ – умеренного и холодного климата
  •  4 – четвертая категория
  •  100/5А – коэффициент трансформации как сто к пяти.

Примеры расшифровка трансформаторов напряжения:
ТМ — 100/35 — трансформатор трёхфазный масляный с естественной циркуляцией воздуха и масла, номинальной мощностью 0,1 МВА, классом напряжения 35 кВ;
ТДНС — 10000/35 — трансформатор трёхфазный с дутьем масла, регулируемый под нагрузкой для собственных нужд электростанции, номинальной мощностью 10 МВА, классом напряжения 35 кВ;
ВРТДНУ — 180000/35/35 — трансформатор вольтодобавочный, регулировочный, трёхфазный, с масляным охлаждением типа Д, регулируемый под нагрузкой, с усиленным вводом, проходной мощностью 180 МВА, номинальное напряжение обмотки возбуждения 35 кВ, номинальное напряжения регулировочной обмотки 35 кВ;
ЛТМН — 160000/10 — трансформатор линейный, трёхфазный, с естественной циркуляцией масла и воздуха, регулируемый под нагрузкой, проходной мощностью 160 МВА, номинальным линейным напряжением 10 кВ.
НКФ-110-58У1 — трансформатор напряжения каскадный в фарфоровой покрышке, номинальное напряжение обмотки ВН 110 кВ, 1958 года разработки, климатическое исполнение — У1;
НДЕ-500-72У1 — трансформатор напряжения с ёмкостным делителем, номинальное напряжение обмотки ВН 500 кВ, 1972 года разработки, климатическое исполнение — У1;
ТНП — 12 — трансформатор тока нулевой последовательности, с подмагничиванием переменным током, охватывающий 12 жил кабеля;
ТНПШ — 2 — 15 — трансформатор тока нулевой последовательности, с подмагничиванием переменным током, шинный, охватывающий 2 жилы кабеля, номинальным напряжением обмотки ВН 15 кВ.

Обмотки трансформаторов ТДТН, ТДТНЖ, ТДЦТН

Обмотка имеет регулировочную зону в виде отдельно вынесенного концентра (обмотки РО). Регулирование напряжения под нагрузкой осуществляется в нейтрали ВН трансформатора в диапазоне + 12×1% от номинального.

Обмотка СН — непрерывная, выполненная из прямоугольного медного провода. Обмотка СН (38,5 кВ) выполнена из двух параллельных ветвей с вводом нейтрали в середину обмотки. Регулировочные отводы выведены в нижнюю часть к переключателю ПБВ. Регулирование напряжения без возбуждения осуществляется в диапазоне + 2×2,5% от номинального.

Обмотка НН (11 кВ) винтовая одноходовая, выполнена из прямоугольного медного провода. Обмотка НН (6,6 кВ) винтовая двухходовая, выполнена из прямоугольного медного провода. Обмотка РО винтовая шестиходовая, выполнена из прямоугольного медного провода. Обмотка НН (27,5 кВ) непрерывная, выполнена из прямоугольного медного провода. Главная изоляция обмоток маслобарьерного типа выполняется из электротехнического картона и включает верхнюю и нижнюю изоляции и межфазные перегородки. Отводы ВН выполнены из провода МГ.

Отводы СН, НН, регулировочные отводы РО и регулировочные отводы СН выполнены проводом марки ПБОТ. Все отводы, исключая гибкие связи, изолированы. Линейные вводы ВН маслонаполненные, герметичные, протяжного типа, класса напряжения 220 кВ усиленного исполнения. Соединение концов нейтрали и отводов НН в треугольник приведено внутри трансформатора. Для обмоток 27,5 и 38,5 кВ вывод отводов наружу производится с помощью маслоподпорных вводов класса напряжения 35 кВ, для обмоток НН (6,6 и 11 кВ) — с помощью маслоподпорных вводов класса напряжения 20 кВ. Бак выполнен с нижним разъемом.

Для автоматического управления и контроля работы системы охлаждения предусмотрен шкаф автоматического управления, навешенный на баке. Регулятор напряжения РПН снабжен датчиком блокировки работы регулятора при температуре масла ниже минус 25°С, а также блоком автоматического переключения. Трансформаторы тока устанавливают на линейных вводах ВН, СН, НН (27,5 кВ), на нейтрали ВН. Для компенсации температурных изменений объема масла в баке трансформатора служит расширитель со стрелочным маслоуказателем.

Трансформатор снабжен лестницами для подъема на трансформатор и для обслуживания газового реле. Защита бака от внутреннего повышения давления осуществляется при помощи предохранительных клапанов. Трансформатор снабжен поворотными каретками на катках с ребордами, с колеей передвижения 1524×3000 мм.

Витковое замыкание в обмотках

Витковое замыкание может возникнуть от естественного старения изоляции при длительной эксплуатации трансформатора, перегрузок, но чаще всего витковое замыкание — следствие динамических нагрузок, воспринимаемых обмоткой при коротких замыканиях со вторичной стороны трансформатора. При витковом замыкании замкнутые накоротко витки чрезмерно перегреваются, из трансформатора выделяется горючий газ сероватого цвета, слышится бульканье масла. Токи в фазах трансформатора отличаются один от другого при симметричной нагрузке. Если трансформатор не будет отключен действием газовой или другой защиты, то он может полностью выйти из строя. Если витковое замыкание произошло в доступном месте — близко к выводным концам, то иногда можно смотать часть обмотки, имеющей витковые замыкания. Обязательно удаляют такое же количество витков и из двух других фаз. Вместо удаленной части обмотки ставится соответствующая изоляция. Исключенные витки иногда целесообразно пополнить путем перестановки анцапфного переключателя на плюсовое положение.

Задачи и необходимость регулирования

Любой современный потребитель электрической энергии (промышленное предприятие, жилой дом) требует получения электроэнергии в достаточном количестве и хорошего качества. Под качеством электрической энергии понимается ее частота, симметрия и величина подводимого к потребителю трехфазного напряжения.

Для экономичной и безаварийной работы любого потребителя необходимо, чтобы отклонения фактической величины подводимого к нему напряжения были минимальными. Во всяком случае, эти отклонения не должны превышать установленной для данного приемника нормы. Такие нормы определяются, например, ГОСТ 13109—67 и «Правилами устройства электроустановок» (ПУЭ) и не должны нарушаться. Так, для электродвигателей напряжение на зажимах не должно отличаться от номинального более чем в пределах от —5 до +10%. При снижении напряжения, например, на 10% уменьшится скорость вращения двигателя и возрастут токи ротора и статора, что приведет к перегреву обмоток двигателя и сокращению срока службы его изоляции.

Весьма чувствительны к отклонениям напряжения осветительные установки, для которых допустимое отклонение напряжения составляет ±5% для жилых помещений и от —2,5 до + 5% для общественных зданий и производственных помещений. При понижении напряжения резко ухудшается освещаемость, а при повышении, например, на 10% срок службы ламп сокращается примерно втрое.

Для некоторых дуговых электропечей снижение напряжения на 8% заставляет прекращать плавку стали, т. е. является аварийным.

Таким образом, колебания напряжения приводят к значительному ущербу и нужно стремиться сделать их минимальными. Однако выполнить это очень непросто, так как причинами колебаний напряжения являются неизбежные изменения (включения и отклонения) нагрузки и переменные режимы работы потребителей электроэнергии. Колебания напряжения являются в принципе неизбежными, поэтому для поддержания уровня напряжения постоянным требуется постоянное его регулирование.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации