Андрей Смирнов
Время чтения: ~17 мин.
Просмотров: 0

Корпуса и маркировка smd диодов и стабилитронов

Защитный диод (супрессор): принцип работы, как проверить TVS-диод.

Защитный диод — гость нашего обзора полупроводников. Мощность помех, влияющих на уровень напряжения в приборе, может быть различна. Для противостояния высокоэнергетическим импульсам возможно применение газовых разрядников и защитных тиристоров. Чтобы обезопаситься от средне- и маломощных воздействий больше подойдут защитные диоды и варисторы. Защитный диод , наиболее часто выполняемый из кремния, может носить название:. Зачастую супрессор становится одной из составных частей импульсного питающего блока, поскольку в случае неисправности блока супрессор может защитить его от перенапряжения.

Полупроводниковая защита: обзор основных серий TVS-диодов от Littelfuse

Если говорить про SECU-3i, то транзистор флайбека там неудобно прикручивать на корпус. Можно только к плате прикрутить и тепло будет передаваться на корпус через фольгу и плату. Транзистор расположить вплотную к стенке корпуса, чтобы уменьшить длину пути для тепла. Должно прокатить, но больше места на плате займет и усложнит разводку платы. Срисуйте, кто-нибудь с реального газового мозга готовые номиналы резисторов и TVS.

Если первый знак в маркировке чип (SMD) компонента = M, то см. таблицу ниже. Чертеж распиновки и фото корпуса откроются ПРЯМО В ТАБЛИЦЕ при нажатии на знак ! .. двунаправленный TVS (супрессор) 18V W.

Защитный диод (супрессор): принцип работы, как проверить TVS-диод.

Статическое электричество — явление, при котором на поверхности и в объеме диэлектриков, проводников и полупроводников возникает и накапливается свободный электрический заряд. Как правило, незаряженные атомы обладают одинаковым количеством положительных и отрицательных электронов, электрически заряженными объектами считаются, обладающие малым либо избыточным числом электронов. Взаимодействие точечных электрических зарядов описывается законом Кулона. Статическое электричество — совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхность или в объеме диэлектриков или на изолированных проводниках.

Окружающая среда, в которой мы живем, загрязнена огромным количеством помех, значительную часть которых создают так называемые переходные процессы. Данные процессы возникают при отключении емкостной или индуктивной нагрузки.

Назначение TVS диодов

Маркировка TVS диодаПрименение TVS диодов
P4SMAJ5.0Aуниполярные, для защиты 5В цепей питания постоянного тока
P4SMAJ5.0CAбиполярный, для цепей переменного тока или сигналов
P4SMAJ14A 1.5SMC16Aуниполярные, для 12В цепей стабилизированого питания постоянного тока
1.5SMC18Aуниполярные, для защиты 12В цепей питания при использование бортовой сети автомобиля
1.5SMCJ28Aуниполярные, для защиты 24В цепей питания при использование бортовой сети автомобиля

Защитные диоды работают на обратимом лавинном пробое полупроводникового перехода, поэтому их справедливо называть лавинными диодами. Лавинно пролетные диоды для защиты от перенапряжений применяются в цепях питания радиоэлектронной аппаратуры. Совместно с газовыми разрядниками и варисторами обеспечивают молниезащиту электрооборудования. Для защиты от импульсного перенапряжения и статическогго электричества в интерфейсах передачи данных применяется одиночный ESD супрессор или многоканальная защитная диодная сборка. Защита цепей питания от превышения тока потребления осуществляется предохранителями. Различают одноразовые плавкие предохранители и многоразовые самовосстанавливающиеся предохранители.

Технические характеристики защитных диодов в SMA

Технические характеристики защитных диодов в SMC

Производитель TVS диодов супрессоров — PANJIT .

Супрессор, он же ПОН (полупроводниковый ограничитель напряжения), он же TVS-диод (Transient Voltage Suppressor), он же защитный диод, он же диодный предохранитель позволяет защитить аппаратуру от превышения напряжения.

У каждого супрессора есть номинальное напряжение (обычно от 6.8 до 440 вольт). Пока напряжение на его выводах не превышает номинальное, он не оказывает никакого влияния на работу схемы. Как только амплитуда электрического импульса превысит номинальное напряжение, супрессор перейдёт в режим лавинного пробоя и ограничит импульс напряжения до номинальной величины.

Супрессоры выпускаются как несимметричные (однонаправленные), так и симметричные (двунаправленные). Однонаправленные супрессоры предназначены для работы в схемах с постоянным напряжением одной полярности. Двунаправленные могут работать в цепях с двуполярным или переменным напряжением.

На схемах супрессор обозначается так (слева двунаправленный, справа однонаправленный):

Маркируются супрессоры следующим образом:

Так, например, супрессор с маркировкой P6KE6.8A однонаправленный с номинальным напряжением 6.8 вольт и пиковой мощностью 600 ватт (такие супрессоры применяются в хороших 5-вольтовых зарядных устройствах), а супрессор с маркировкой 1.5KE440CA двунаправленный с номинальным напряжением 440 вольт и пиковой мощностью 1500 ватт (такие супрессоры применяются для защиты устройств, питающихся от сетевого напряжения 230 вольт).

Главные преимущества супрессора — очень короткое время реакции на превышение напряжения и возможность рассеять очень большую мощность без разрушения. Супрессор способен «принимать удар на себя» на короткое время. Для подавления высоковольтных импульсных помех в сети или для срабатывания защиты в блоке питания этого достаточно, если же есть вероятность, что перенапряжение может сохранятся продолжительное время, супрессор применяется вместе с предохранителем, который просто перегорит при продолжительном перенапряжении и защитит схему от выхода из строя.

Принципы действия

Защитный диод обладает специфической ВА характеристикой, отличающейся нелинейностью. При условии, что размер амплитуды импульса окажется больше допустимого, то это повлечёт за собой так называемый «лавинный пробой». Иными словами, размер амплитуды будет нормирован, а все излишки будут выведены из сети через защитный диод.

Рис 1 Защитный диод- принцип работы полупроводника

Принцип работы TVS-диода предполагает, что до момента возникновения опасности диодный предохранитель никоим образом не оказывает влияние на сам прибор и его функциональные свойства. Таким образом, необходимо отметить, что выявляется ещё одно название для защитного диода — лавинный диод.

Существует два типа ограничительных стабилитронов:

Симметричные.

Защитный диод, двунаправленный приспособленный для работы в сетях с переменным током.

Несимметричные.

Применимы только для сетей с постоянным током, поскольку имеют однонаправленный рабочий режим. Способ подключения несимметричного защитного диода не соответствует стандартному. Его анод соединяется с минусовой шиной, а катод — с плюсовой. Положение получается условно перевёрнутым.

Кодировка защитных диодов, относящихся к симметричным, включает в себя литеры «С» или «СА«. У несимметричных диодных предохранителей имеется цветная маркировка в виде полосы на стороне катодного вывода.

Корпус каждого защитного диода также снабжён маркировочным кодом, в сжатом виде отображающим все значимые параметры.

Если входной уровень напряжения у диода увеличится, то стабилитрон в течение очень краткого временного отрезка уменьшит показатель внутреннего сопротивления. Сила тока в этот момент, напротив, возрастёт, а предохранитель перегорит. Поскольку действует защитный диод практически моментально, целостность основной схемы не нарушается. На деле, быстрая реакция на переизбыток напряжения является самым главным достоинством TVS-диода.

Основные электрические параметры супрессоров

  • U проб. (В) – значение напряжения пробоя. В зарубежной технической документации этот параметр обозначается как VBR (Breakdown Voltage). Это значение напряжения, при котором диод резко открывается и отводит опасный импульс тока на общий провод («на землю»).

  • I обр. (мкА) – значение постоянного обратного тока. Это значение максимального обратного тока утечки, который есть у всех диодов. Он очень мал и практически не оказывает никого влияния на работу схемы. Иное обозначение – IR (Max. Reverse Leakage Current). Так же может обозначаться как IRM.

  • U обр. (В) – постоянное обратное напряжение. Соответствует англоязычной аббревиатуре VRWM(Working Peak Reverse Voltage). Может обозначаться как VRM.

  • U огр. имп. (В) – максимальное импульсное напряжение ограничения. В даташитах обозначается как VCL или VC – Max. Clamping Voltage или просто Clamping Voltage.

  • I огр. мах. (А) – максимальный пиковый импульсный ток. На английский манер обозначается какIPP (Max. Peak Pulse Current). Данное значение показывает, какое максимальное значение импульса тока способен выдержать супрессор без разрушения. Для мощных супрессоров это значение может достигать нескольких сотен ампер!

  • P имп. (Ватт) – максимальная допустимая импульсная мощность. Этот параметр показывает, какую мощность может подавить супрессор. Напомним, что слово супрессор произошло от английского слова Suppressor, что в переводе означает «подавитель». Зарубежное название параметра Peak Pulse Power (PPP).

    Значение максимальной импульсной мощности можно найти перемножением значений U огр. имп. (VCL) и I огр. мах. (IPP).

Схема подключения

Рассмотрим работу стабилитрона на примере схемы параметрического стабилизатора. Это типовая схема. Приведем формулы для расчета стабилизатора.

Допустим, что имеется 15 Вольт, а на выходе необходимо получить 9 В. По таблице напряжений в справочнике подбираем стабилитрон Д810. Произведем расчет токоограничивающего резистора R1, согласно рисунку ниже. На нем показан токоограничивающий резистор и схема включения. Режим регулирования напряжения отмечен на вольт-амперной характеристике 1,2.

Для того чтобы полупроводник не вышел из строя, необходимо учитывать ток стабилизации и ток нагрузки. Из справочника определяем ток стабилизации.

Он равен 5 мА. На рисунке снизу представлена часть справочника.

Предполагаем, что ток нагрузки равен 100 мА:

R1= (Uвх-Uст)/(Iн+Icт)= (15-9)/(0.1+0.005)=57.14 Ом.

Если нужен мощный стабилизатор, то стоит собирать схему из стабилитрона и транзистора.

Если необходимо изготовить стабилизатор на небольшое напряжение 0,2-1 В, для этого применяется стабистор. Он является разновидностью стабилитрона, но работает в прямой ветви ВАХ и включается в прямом направлении, в чем его уникальная особенность и заключается.

Аналогичным образом можно изготовить блок питания, где стабилизатор изготовлен из диодов. Как и стабистор их включают в прямом направлении. Нужное напряжение набирают прямыми падениями напряжений на диоде, для кремниевых диодов оно находится в пределах 0.5-0.7В. При отсутствии диодов, можно собрать стабилитрон из транзистора.

На нижеприведенном рисунке представлена схема на транзисторе.

Промышленность выпускает и управляемые стабилитроны. Или, точнее сказать, это микросхема — TL431. Это универсальная микросхема, позволяет регулировать напряжение в пределах от 2,5 до 36 вольт.

Регулировка осуществляется путем подбора делителя сопротивлений. На нижеприведенной схеме представлен стабилизатор на 5 вольт. Делитель собран на резисторах номиналом 2,2 К.

Специалист должен знать, как проверить мультиметром работоспособность стабилитрона. Сразу отметим, что проверить можно только однонаправленный элемент, сдвоенные (двунаправленные) такой проверке не подлежат. Если диод Зенера исправен, то при «прозвонке» тестером в одну сторону он будет показывать обрыв, а во вторую минимальное сопротивление. Неисправный звонится в обе стороны.

Что это такое

В литературе дается следующее определение:

Стабилитрон или диод Зенера это прибор, предназначенный для стабилизации напряжения в электрических цепях. Работает при обратном смещении в режиме пробоя. До наступления пробоя имеет высокое сопротивление перехода. Протекающие при этом токи незначительны. Широко используются в электронике и в электротехнике.

Если говорить простыми словами, то стабилитрон предназначен для стабилизации напряжения в электронных схемах. В цепь он включается в обратном направлении. При достижении напряжения, превышающего напряжение стабилизации, происходит обратимый электрический пробой pn-перехода. Как только оно понизится до номинала, пробой прекращается, и стабилитрон закрывается.

На нижеприведенном рисунке представлена графическая схема для чайников, позволяющая понять принцип действия диода Зенера.

Основными преимуществами является невысокая стоимость и небольшие габариты. Промышленность выпускает устройства с напряжением стабилизации о 1,8 — 400 В в металлических, керамических или корпусах из стекла. Это зависит от мощности, на которую рассчитан стабилитрон и других характеристик.

Для стабилизации высоковольтного напряжения от 0,4 до нескольких десятков кВ, применяются стабилитроны тлеющего разряда. Они имеют стеклянный корпус и до появления полупроводниковых приборов применялись в параметрических стабилизаторах.

Аналогичными свойствами обладают приборы, меняющие свое сопротивление в зависимости от приложенного напряжения – это варисторы. Между стабилитроном и варистором разница заключается в том, что последний обладает двунаправленными симметричными характеристиками. А это значит, что в отличие от диодов, он не имеет полярности. Кратко варистор предназначен для обеспечения защиты от перенапряжения электронных схем.

Для предохранения аппаратуры от скачков напряжения применяют супрессоры. Между стабилитроном и супрессором отличия заключаются в том, что первый постепенно изменяет свое внутреннее сопротивление в зависимости от приложенного напряжения. Второй при достижении определенного порога напряжения открывается сразу. Т.е. его внутреннее сопротивление стремится к нулю. Основное назначение супрессоров — защита аппаратуры от скачков питания.

На рисунке ниже представлено условно графическое обозначение (УГО по ГОСТ) полупроводника и его вольт-амперная характеристика.

На рисунке цифрами указан участок 1-2. Он является рабочим и предназначен для стабилизации напряжения в цепях. Если прибор включить в прямом направлении, то он будет работать как обычный диод.

Рекомендуем посмотреть следующий видеоролик, чтобы подробнее изучить принцип действия стабилитрона, обозначение элементов и область их применения.

Способы проверки

Любой ремонт электроники и электрооборудования начинается с внешнего осмотра, а потом переходят к измерениям. Такой подход позволяет локализовать большую часть неисправностей. Чтобы найти варистор на плате посмотрите на рисунок ниже — так выглядят варисторы. Иногда их можно перепутать с конденсаторами, но можно отличить по маркировке.

Если элемент сгорел и маркировку прочесть невозможно — посмотрите эту информацию на схеме устройства. На плате и в схеме он может обозначаться буквами RU. Условное графическое обозначение выглядит так.

Есть три способа проверить варистор быстро и просто:

  1. Визуальный осмотр.
  2. Прозвонить. Это можно сделать муьтиметром или любым другим прибором, где есть функция прозвонки цепи.
  3. Измерением сопротивления. Это можно сделать омметром с большим пределом измерений, мультиметром или мегомметром.

Варистор выходит из строя, когда через него проходит большой или длительный ток. Тогда энергия рассеивается в виде тепла, и если её количество больше определённого конструкцией — элемент сгорает. Корпус этих компонентов выполняется из твердого диэлектрического материала, типа керамики или эпоксидного покрытия. Поэтому при выходе из строя чаще всего повреждается целостность наружного покрытия.

Можно визуально проверить варистор на работоспособность — на нем не должно быть трещин, как на фото:

Следующий способ — проверка варистора тестером в режиме прозвонки. Сделать это в схеме нельзя, потому что прозвонка может сработать через параллельно подключенные элементы. Поэтому нужно выпаять хотя бы одну его ножку из платы.

Важно: не стоит проверять элементы на исправность не выпаивая из платы – это может дать ложные показания измерительных приборов. Так как в нормальном состоянии (без приложенного к выводам напряжения) сопротивление варистора большое — он не должен прозваниваться

Прозвонку выполняют в обоих направлениях, то есть два раза меняя местами щупы мультиметра

Так как в нормальном состоянии (без приложенного к выводам напряжения) сопротивление варистора большое — он не должен прозваниваться. Прозвонку выполняют в обоих направлениях, то есть два раза меняя местами щупы мультиметра.

На большинстве мультиметров режим прозвонки совмещен с режимом проверки диодов. Его можно найти по значку диода на шкале селектора режимов. Если рядом с ним есть знак звуковой индикации — в нем наверняка есть и прозвонка.

Другой способ проверки варистора на пробой мультиметром является измерение сопротивления. Нужно установить прибор на максимальный предел измерения, в большинстве приборов это 2 МОма (мегаомы, обозначается как 2М или 2000К). Сопротивление должно быть равным бесконечности. На практике оно может быть ниже, в пределах 1-2 МОм.

Интересно! То же самое можно сделать мегаомметром, но он есть далеко не у каждого. Стоит отметить, что напряжение на выводах мегаомметра не должно превышать классификационное напряжение проверяемого компонента.

На этом заканчиваются доступные способы проверки варистора. В этот раз мультиметр поможет радиолюбителю найти неисправный элемент, как и в большом количестве других случаев. Хотя на практике мультиметр в этом деле не всегда нужен, потому что дело редко заходит дальше визуального осмотра. Заменяйте сгоревший элемент новым, рассчитанным на напряжение и диаметром не меньше чем был сгоревший, иначе он сгорит еще быстрее предыдущего.

Материалы по теме:

  • Как проверить резистор в домашних условиях
  • Прозвонка проводов и кабелей
  • Как пользоваться мультиметром

Основные качества TVS-диодов

  • Способность стабильно функционировать в условиях обратного напряжения;
  • Обратные токи должны быть на самом деле минимальны, чтобы никак не влиять на функциональность прибора в целом.
  • Скорость реакции на быстрое критическое воздействие должна находиться на минимально возможном уровне.
  • Максимально возможный показатель по уровню рассеиваемой мощности.

Но, в качестве итога, необходимо признать, что выполнение одного условия зачастую влечёт за собой нарушение другого.

Помимо этого, TVS-диод в принципе нельзя отнести к числу идеальных защитных ограничителей. Так, например, защитные диоды супрессоры в положении «выключено» можно характеризовать достаточно большими обратными токами. Далее, вызывает неодобрение резкость при смене режимов. Наибольшей же проблемой считается то, что в ограничивающем режиме уровень напряжения находится в прямой зависимости от силы тока.

Необходимо помнить, что все даваемые производителем характеристики диода являются таковыми только в конкретных температурных условиях. При более высоких температурах допустимая пиковая мощность и токи уменьшатся.

Впрочем, несмотря даже на такие недостатки, диодные предохранители всё-таки оказываются лучше приборов, устройств и элементов с аналогичным назначением.

Основные неисправности диодов

Иногда приборы подобного типа выходят из строя, это может происходить из-за естественной амортизации и старения данных элементов или по иным причинам.

Всего выделяют 3 основных типа распространенных неисправностей:

  1. Пробой перехода приводит к тому, что диод вместо полупроводникового прибора становится по своей сути самым обычным проводником. В таком состоянии он лишается своих основных свойств и начинает пропускать электрический ток в абсолютно любом направлении. Подобная поломка легко выявляется при помощи стандартного мультиметра, который начинает подавать звуковой сигнал и показывать низкий уровень сопротивления в диоде.
  2. При обрыве происходит обратный процесс – прибор вообще перестает пропускать электрический ток в каком-либо направлении, то есть он становится по своей сути изолятором. Для точности определения обрыва, необходимо использовать тестеры с качественными и исправными щупами, в противном случае, они могут иногда ложно диагностировать данную неисправность. У сплавных полупроводниковых разновидностей такая поломка встречается крайне редко.
  3. Утечка, во время которой нарушается герметичность корпуса прибора, вследствие чего он не может исправно функционировать.

Пробой p-n-перехода

Подобные пробои происходят в ситуациях, когда показатели обратного электрического тока начинают внезапно и резко расти, происходит это из-за того, что напряжение соответствующего типа достигает недопустимых высоких значений.

Обычно различается несколько видов:

  1. Тепловые пробои, которые вызваны резким повышением температуры и последующим перегревом.
  2. Электрические пробои, возникающие под воздействием тока на переход.

График вольт-амперной характеристики позволяет наглядно изучать эти процессы и разницу между ними.

Электрический пробой

Последствия, вызываемые электрическими пробоями, не носят необратимого характера, поскольку при них не происходит разрушение самого кристалла. Поэтому при постепенном понижении напряжения можно восстановить всей свойства и рабочие параметры диода.

При этом, пробои такого типа делятся на две разновидности:

  1. Туннельные пробои происходят при прохождении высокого напряжения через узкие переходы, что дает возможность отдельно взятым электронам проскочить через него. Обычно они возникают, если в полупроводниковых молекулах имеется большое количество разных примесей. Во время такого пробоя, обратный ток начинает резко и стремительно расти, а соответствующее напряжение находится на низком уровне.
  2. Лавинные разновидности пробоев возможны благодаря воздействию сильных полей, способных разогнать носителей заряда до предельного уровня из-за чего они вышибают из атомов ряд валентных электронов, которые после этого вылетают в проводимую область. Это явление носит лавинообразный характер, благодаря чему данный вид пробоев и получил такое название.

Тепловой пробой

Возникновение такого пробоя может произойти по двум основным причинам: недостаточный теплоотвод и перегрев p-n-перехода, который происходит из-за протекания через него электрического тока со слишком высокими показателями.

Повышение температурного режима в переходе и соседних областях вызывает следующие последствия:

  1. Рост колебания атомов, входящих в состав кристалла.
  2. Попадание электронов в проводимую зону.
  3. Резкое повышение температуры.
  4. Разрушение и деформация структуры кристалла.
  5. Полный выход из строя и поломка всего радиокомпонента.

Типоразмеры SMD-компонентов

Чип-компоненты одного номинала могут иметь разные габариты. Габариты SMD-компонента определяются по его «типоразмеру». Например, чип-резисторы имеют типоразмеры от «0201» до «2512». Этими четырьмя цифрами закодированы ширина и длина чип-резистора в дюймах. Ниже в таблицах можно посмотреть типоразмеры в миллиметрах. 

smd резисторы

Прямоугольные чип-резисторы и керамические конденсаторы
ТипоразмерL, мм (дюйм)W, мм (дюйм)H, мм (дюйм)A, ммВт
02010.6 (0.02)0.3 (0.01)0.23 (0.01)0.131/20
04021.0 (0.04)0.5 (0.01)0.35 (0.014)0.251/16
06031.6 (0.06)0.8 (0.03)0.45 (0.018)0.31/10
08052.0 (0.08)1.2 (0.05)0.4 (0.018)0.41/8
12063.2 (0.12)1.6 (0.06)0.5 (0.022)0.51/4
12105.0 (0.12)2.5 (0.10)0.55 (0.022)0.51/2
12185.0 (0.12)2.5 (0.18)0.55 (0.022)0.51
20105.0 (0.20)2.5 (0.10)0.55 (0.024)0.53/4
25126.35 (0.25)3.2 (0.12)0.55 (0.024)0.5
Цилиндрические чип-резисторы и диоды
ТипоразмерØ, мм (дюйм)L, мм (дюйм)Вт
01021.1 (0.01)2.2 (0.02)1/4
02041.4 (0.02)3.6 (0.04)1/2
02072.2 (0.02)5.8 (0.07)1

smd конденсаторы

Керамические чип-конденсаторы совпадают по типоразмеру с чип-резисторами, а вот танталовые чип-конденсаторы имеют своют систему типоразмеров:

Танталовые конденсаторы
ТипоразмерL, мм (дюйм)W, мм (дюйм)T, мм (дюйм)B, ммA, мм
A3.2 (0.126)1.6 (0.063)1.6 (0.063)1.20.8
B3.5 (0.138)2.8 (0.110)1.9 (0.075)2.20.8
C6.0 (0.236)3.2 (0.126)2.5 (0.098)2.21.3
D7.3 (0.287)4.3 (0.170)2.8 (0.110)2.41.3
E7.3 (0.287)4.3 (0.170)4.0 (0.158)2.41.2

smd катушки индуктивности и дроссели

Индуктивности встречаются во множестве видов корпусов, но корпуса подчиняются все тому же закону типоразмеров. Это облегачает автоматический монтаж. Да и нам, радиолюбителям, позволяет легче ориентироваться.

Всякие катушки, дроссели и трансформаторы называются «моточные изделия». Обычно мы их мотаем сами, но иногда можно и прикупить готовые изделия. Тем более, если требуются SMD варианты, которые выпускаются со множестом бонусов: магнитное экранирование корпуса, компактность, закрытый или открытый корпус, высокая добротность, электромагнитное экранирование, широкий диапазон рабочих температур. 

Подбирать требующуюся катушку лучше по каталогам и требуемому типоразмеру. Типоразмеры, как и для чип-резисторов задаются спомощью кода из четырех чисел (0805). При этом «08» обозначает длину, а «05» ширину в дюймах. Реальный размер такого SMD-компонента будет 0.08х0.05 дюйма. 

smd диоды и стабилитроны

Диоды могут быть как в цилиндрических корпусах, так и в корпусах в виде небольших параллелипипедов. Цилиндрические корпуса диодов чаще всего предсавтлены корпусами MiniMELF (SOD80 / DO213AA / LL34) или MELF (DO213AB / LL41). Типоразмеры у них задаются также как у катушек, резисторов, конденсаторов.

Диоды, стабилитроны, конденсаторы, резисторы
Тип корпусаL* (мм)D* (мм)F* (мм)S* (мм)Примечание
DO-213AA (SOD80)3.51.650480.03JEDEC
DO-213AB (MELF)5.02.520.480.03JEDEC
DO-213AC3.451.40.42JEDEC
ERD03LL1.61.00.20.05PANASONIC
ER021L2.01.250.30.07PANASONIC
ERSM5.92.20.60.15PANASONIC, ГОСТ Р1-11
MELF5.02.50.50.1CENTS
SOD80 (miniMELF)3.51.60.30.075PHILIPS
SOD80C3.61.520.30.075PHILIPS
SOD873.52.050.30.075PHILIPS

smd транзисторы

Транзисторы для поверхностного монтажа могут быть также малой, средней и большой мощности. Они также имеют соответствующие корпуса. Корпуса транзисторов можно условно разбить на две группы: SOT, DPAK.

Хочу обратить внимание, что в таких корпусах могут быть также сборки из нескольких компонентов, а не только транзисторы. Например, диодные сборки

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации