Андрей Смирнов
Время чтения: ~24 мин.
Просмотров: 64

Проверка диодов различных видов мультиметром

Диоды туннельного и обращенного типа

Учитывая, что ток, протекающий через диод, зависит от напряжения, приложенного к нему, тестирование заключается в анализе этой зависимости. Для этого потребуется собрать схему, например, такую, как показана на рисунке.

Тестирование диодов туннельного типа

Перечень элементов:

  • VD – тестируемый диод туннельного типа;
  • Uп – любой гальванический источник питания, у которого ток разряда около 50 мА;
  • Сопротивления: R1 – 12Ω, R2 – 22Ω, R3 – 600Ω.

Диапазон измерений, выставленный на мультиметре ,не должен быть меньше тока максимума диода, этот параметр указан в даташит (datasheet) радиоэлемента.

Видео: Пример проверки диода мультиметром

Алгоритм тестирования:

  • устанавливается максимальное значение на переменном резисторе R3;
  • подключается тестируемый элемент, с соблюдением указанной на схеме полярности;
  • уменьшая величину R3, наблюдаем за показаниями измерительного прибора.

Если элемент исправен, в процессе измерения прибор покажет увеличение тока до Imax диода, после чего последует резкое уменьшение этой величины. При дальнейшем повышении напряжения ток уменьшится до Imin, после чего снова начнет расти.

Конструкция

Отличается диод Шоттки от обыкновенных диодов своей конструкцией, в которой используется металл-полупроводник, а не p-n переход. Понятно, что свойства здесь разные, а значит, и характеристики тоже должны отличаться.

Действительно, металл-полупроводник обладает такими параметрами:

  • Имеет большое значение тока утечки;
  • Невысокое падение напряжения на переходе при прямом включении;
  • Восстанавливает заряд очень быстро, так как имеет низкое его значение.

Диод Шоттки изготавливается из таких материалов, как арсенид галлия, кремний; намного реже, но также может использоваться – германий. Выбор материала зависит от свойств, которые нужно получить, однако в любом случае максимальное обратное напряжение, на которое могут изготавливаться данные полупроводники, не выше 1200 вольт – это самые высоковольтные выпрямители. На практике же намного чаще их используют при более низком напряжении – 3, 5, 10 вольт.

На принципиальной схеме диод Шоттки обозначается таким образом:

Но иногда можно увидеть и такое обозначение:

Это означает сдвоенный элемент: два диода в одном корпусе с общим анодом или катодом, поэтому элемент имеет три вывода. В блоках питания используют такие конструкции с общим катодом, их удобно использовать в схемах выпрямителей. Часто на схемах рисуется маркировка обычного диода, но в описании указывается, что это Шоттки, поэтому нужно быть внимательными.

Диодные сборки с барьером Шоттки выпускаются трех типов:

1 тип – с общим катодом;

2 тип – с общим анодом;

3 тип – по схеме удвоения.

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Такое соединение помогает увеличить надежность элемента: ведь находясь в одном корпусе, они имеют одинаковый температурный режим, что важно, если нужны мощные выпрямители, например, на 10 ампер. Но есть и минусы. Все дело в том, что малое падение напряжения (0,2–0,4 в) у таких диодов проявляется на небольших напряжениях, как правило – 50–60 вольт

При более высоком значении они ведут себя как обычные диоды. Зато по току эта схема показывает очень хорошие результаты, ведь часто бывает необходимо – особенно в силовых цепях, модулях питания – чтобы рабочий ток полупроводников был не ниже 10а

Все дело в том, что малое падение напряжения (0,2–0,4 в) у таких диодов проявляется на небольших напряжениях, как правило – 50–60 вольт. При более высоком значении они ведут себя как обычные диоды. Зато по току эта схема показывает очень хорошие результаты, ведь часто бывает необходимо – особенно в силовых цепях, модулях питания – чтобы рабочий ток полупроводников был не ниже 10а

Но есть и минусы. Все дело в том, что малое падение напряжения (0,2–0,4 в) у таких диодов проявляется на небольших напряжениях, как правило – 50–60 вольт. При более высоком значении они ведут себя как обычные диоды. Зато по току эта схема показывает очень хорошие результаты, ведь часто бывает необходимо – особенно в силовых цепях, модулях питания – чтобы рабочий ток полупроводников был не ниже 10а.

Еще один главный недостаток: для этих приборов нельзя превышать обратный ток даже на мгновение. Они тут же выходят из строя, в то время как кремниевые диоды, если не была превышена их температура, восстанавливают свои свойства.

Но положительного все-таки больше. Кроме низкого падения напряжения, диод Шоттки имеет низкое значение емкости перехода. Как известно: ниже емкость – выше частота. Такой диод нашел применение в импульсных блоках питания, выпрямителях и других схемах, с частотами в несколько сотен килогерц.

ВАХ такого диода имеет несимметричный вид. Когда приложено прямое напряжение, видно, что ток растет по экспоненте, а при обратном – ток от напряжения не зависит.

Все это объясняется, если знать, что принцип работы этого полупроводника основан на движении основных носителей – электронов. По этой же самой причине эти приборы и являются такими быстродействующими: у них отсутствуют рекомбинационные процессы, свойственные приборам с p-n переходами. Для всех приборов, имеющих барьерную структуру, свойственна несимметричность ВАХ, ведь именно количеством носителей электрического заряда обусловлена зависимость тока от напряжения.

Схема испытателя КРЕН

Составленная схема явно уступает верхней картинке, ну тут уж ничего не поделаешь, что можем. Конденсатор С1 устраняет генерацию при скачкообразном включении входного напряжения, С2 служит для защиты от переходных помеховых импульсов. Их ёмкость решил взять 100 мкФ. Вольтаж в соответствии с напряжением проверяемого стабилизатора. Ставить конденсаторы как можно ближе к корпусу интегрального стабилизатора. Диод VD1 1N4148 не позволит конденсатору на выходе стабилизатора разрядится  через него после выключения (это чревато выходом стабилизатора из строя).  U Вх. интегрального стабилизатора должно быть выше U Вых. минимум на 2,5 вольта. Нагрузку подбирать так же в соответствии с возможностями тестируемого стабилизатора.

На роль корпуса был выбран самодельный вариант оборудованный контактными штырями для соединения с мультиметром (минус в гнездо «сom», плюс в «V»). В качестве соединительного элемента выводов проверяемого компонента со схемой можно приспособить вот такой тройной штыревой контакт. В мою задачу входит проверка трёхвыводных интегральных стабилизаторов рассчитанных на напряжение не более 12 вольт поэтому в схему поставлю два конденсатора 100 мкф х 16 В. Диод согласно схемы.

В просверленные точно в соответствии с диаметром штыревых контактов отверстия их и вставляем, с внутренней стороны надеваем на каждый штырь по соответствующей (махонькой) металлической шайбочке, смочив активным флюсом и плотно прижав припаиваем каждую шайбу к соответствующему штырю не допуская соединения пар штырь – шайба между собой. Для этого шайбы нужно подточить, центральную с обеих сторон, крайние с одной. Отверстия по месту установки нужно 
именно просверлить, если проколоть шилом образуется внутренняя неровность краёв отверстия и ровно + плотно установить шайбу не выйдет. Штыри, для прочности, также обязательно должны находится на общем твёрдом основании из диэлектрика.

Контактные площадки образованные местом пайки штырей и шайб становятся местом установки компонентов схемы. Получается компактно, также выполняется рекомендация минимального расстояния конденсаторов от выводов проверяемого интегрального стабилизатора. С соединительными проводами всё просто, главное взять их соответствующего цвета (для «+» красный, для «-» чёрный) и никакой путаницы не будет.

Подумав, установил кнопку включения нажимного действия, поставлена в разрыв плюсового (красного) провода на входе питания. Всё таки это удобство из разряда необходимых. Тройной штыревой контакт понадобилось «доработать» — немного согнуть, тут так, либо один раз подогнать контакты под выводы компонентов, либо перед каждым соединением ножки стабилизаторов гнуть под контакты. 

Пробник – приставка к мультиметру готов. Вставляю в соответствующие гнёзда мультиметра штыри пробника, предел измерения выставляю 20 вольт постоянного напряжения, провода подвода электрического тока подсоединяю к лабораторному блоку питания в соответствии с их расплюсовкой, устанавливаю для проверки стабилизатор (попался на 10 вольт), выставляю соответственно на БП напряжение 15 вольт и нажимаю кнопку включения на пробнике. Устройство сработало, на дисплее 9,91 В. Далее в течении   минуты разобрался со всеми трёхвыводными стабилизаторами на напряжение до 12 вольт включительно. Несколько, из числа бережно хранимых, оказались негодными.

ПРОВЕРКА СТАБИЛИТРОНОВ НА БОЛЬШОЕ НАПРЯЖЕНИЕ

В радиолюбительской практике бывает накапливается много мелких стеклянных диодов, у которых не всегда понятные обозначения, среди них могут попадаться и стабилитроны. Для отыскания таковых и предназначен подобный тестер, а так же для выявления более точных стабилизирующих данных проверяемого стабилитрона. Смысл этого прибора — в проверке неизвестных стабилитронов, которые могут быть на напряжение выше 30 вольт, а значит обычным блоком питания или вот таким тестером их испытать не получится.

Схема стабилитрономера

Схема была срисована с другой, взятой из интернета, упрощена и дорисована под цифровой индикатор 0-100 В из Китая, с обозначением выводов так как не многие понимают как его тут подключать. Конечно, если они есть в продаже и недорого стоят, то почему бы и не использовать, получается компактное и функциональное полезное для радиолюбителя устройство которое порой очень необходимо.

За основу тестера был взят корпус от БП сигнализации МИП-Р, можно взять любой другой — подходящий по размерам. На передней панели планируется закрепить платку с панелькой для микросхем, и ещё одну платку для проверки cmd стабилитронов. Поскольку само устройство получилось очень компактным, встроить его можно куда удобно, размеры будут зависеть только от применяемого аккумулятора.

Для прибора разработана маленькая платка, на которой установлены все детали. Трансформатор взят готовый от ЗУ сотового телефона, вторичная повышающая обмотка на нём отмечена с самым большим сопротивлением.

Выше смотрите на результат проверки работы устройства, тест стабилитрона на 5,1 В.

Корпус снаружи пока ещё не закончен, продумываю что и как на нём удобно установить для проверки различных стабилитронов. Внутри осталось место, так что думаю что бы ещё полезное туда установить с питанием от 4 В… Сборка и испытание схемы — Igoran.

   Форум по прибору

   Обсудить статью ПРОВЕРКА СТАБИЛИТРОНОВ НА БОЛЬШОЕ НАПРЯЖЕНИЕ

Падение напряжения на диоде Шоттки

Если же подать прямой ток на диод, то на диоде будет “оседать” напряжение. Это падение напряжения называется прямым падением напряжения на диоде. В даташитах обозначается как Vf , то есть Voltage drop.

прямое падение напряжения на диоде

Если пропустить через такой диод прямой ток, то мощность, которая будет на нем рассеиваться, будет определяться формулой:

где

P – мощность, Вт

Vf – прямое падение напряжение на диоде, В

I – сила тока через диод, А

Поэтому, одним из главных преимуществ диода Шоттки является то, что его прямое падение напряжения намного меньше, чем у простого диода. Следовательно, он будет меньше рассеивать тепло, или простым языком, меньше нагреваться.

Давайте рассмотрим один из примеров. Возьмем диод 1N4007. Его прямое падение напряжения составляет 0,83 Вольт, что типично для простого полупроводникового диода.

падение напряжение на диоде в прямом включении

В настоящий момент через него проходит сила тока, равная 0,5 А. Давайте рассчитаем его рассеиваемую мощность в данный момент. P=0,83 x 0,5 = 0,415 Вт.

Если рассмотреть этот случай через тепловизор, то можно увидеть, что его температура корпуса составила 54,4 градуса по Цельсию.

Теперь давайте проведем тот же самый эксперимент с диодом Шоттки 1N5817. Как вы видите, его прямое падение напряжения составило примерно 0,35 В.

падение напряжения на диоде Шоттки при прямом включении

При прохождении силы тока через диод Шоттки в 0,5 А, мы получим рассеиваемую мощность P=0,5 x 0,35 = 0,175 Вт. При этом тепловизор нам покажет, что температура корпуса уже будет 38,2 градуса.

Следовательно, Шоттки намного эффективнее, чем простой полупроводниковый диод в плане пропускания через себя прямого тока, так как он обладает меньшим падением напряжения, а следовательно, меньше рассеивает тепло в окружающее пространство и меньше нагревается.

Прямое падение напряжения можно также посмотреть и в даташитах. Например, прямое падение напряжения на диоде Шоттки 1N5817 можно найти из графика зависимости прямого тока от падения напряжения на диоде Шоттки

график зависимости прямого тока от напряжения

В нашем случае если следовать графо-аналитическому способу, то мы как раз получаем значение 0,35 В

Диод диоду рознь

Стандартный диод представляет собой компонент электросети и выступает в роли полупроводника с p-n переходом. Его строение позволяет пропускать ток по цепи только в одном направлении — от анода к катоду (разные концы детали). Для этого нужно подать на анод «+», а на катод – «-».

Из-за такой особенности изделия, при подозрении на предмет поломки, его можно проверить тестером или мультметром. На сегодняшний день в радиоэлектронике существует несколько видов диодов:

Виды диодов

  • светодиод. При прохождении электрического тока через такой элемент он начинает светиться в результате трансформации энергии в видимое свечение;
  • защитный или обычный диод. Такие элементы в электросети выполняют роль супрессора или ограничителя напряжения. Одной из разновидностей данного элемента является диод Шоттки. Его еще называют как диод с барьером Шоттки. Такой элемент при прямом включении дает малое падение напряжения. В Шоттки вместо p-n перехода применяется переход металл-полупроводник.

Если обычные детали и светодиоды используются в превалирующем большинстве электроприборов, то Шоттки – преимущественно в качественных блоках питания (например, для таких приборов, как компьютеры). Стоит отметить, что проверка обычного диода и Шоттки практически ни чем особым не отличается, так как проводится по одному и тому же принципу. Поэтому не стоит беспокоиться по данному вопросу, ведь принцип работы и Шоттки, и обычных диодов идентичен

Обратите внимание! Здесь только стоит отметить, что Шоттки в большинстве случаев встречаются сдвоенными, размещаясь в общем корпусе. При этом они имеют общий катод

В такой ситуации можно эти детали не выпаивать, а проверить «на месте».

Диод Шоттки

Являясь компонентом электронной схемы, такие полупроводниковые элементы довольно часто выходят из строя. Самыми распространенными причинами выхода их из строя бывают:

  • превышение максимально допустимого уровня прямого тока;
  • превышение обратного напряжения;
  • некачественная деталь;
  • нарушение правил эксплуатации прибора, установленных производителем.

При этом вне зависимости от причины потери работоспособности выход из строя может быть непосредственно обусловлен либо «пробоем», либо коротким замыканием. В любом случае, если имеется предположение о выходе электросети из строя в зоне полупроводника, необходимо провести его диагностику с помощью специального прибора – мультиметра. Только для проведения таких манипуляций необходимо знать, как проверить диод с его помощью правильно.

Как проверить стабилитрон мультиметром на работоспособность

Стабилитрон относится к электронным приборам с нелинейной вольт-амперной характеристикой. Его свойства характерны обычному диоду. Но есть и существенное различие между ним и диодом. Для проверки исправности стабилитрона можно использовать много различных лабораторных приборов и стендов. На практике, для ремонта электронной начинки, радиолюбители используют мультиметры или тестеры со стрелочной шкалой индикации. Чтобы выявить неисправность стабилитрона своими руками нужно хорошо знать его характеристики и уметь пользоваться мультиметром. Как проверить стабилитрон этим прибором, не прибегая к сложным и длительным лабораторным экспериментам, можно рассмотреть на примере.

Что такое стабилитрон

Его работа основана на нелинейной вольт-амперной характеристике p-n перехода. Отличие от диодов и светодиодов заключается в наличии на вольт-амперной характеристике зоны пробоя. Она показывает, что при возрастании тока в нагрузке напряжение остается практически неизменным. Это свойство называют стабилизационным, а электронный элемент получил название стабилитрон. Устройства, где они применяются, называются стабилизаторы. Стабилитроны изготавливаются, в основном, в стеклянном или металлическом корпусе. Они бывают низковольтными и высоковольтными. Чтобы убедиться в исправности элемента его проверяют мультиметром.

Порядок проверки

Чтобы проверить деталь на исправность, мультиметр используют в режиме измерения сопротивления или в режиме проверки диодов. Тестером или мультиметром стабилитроны прозваниваются точно также как и диоды. К выводам стабилитрона прикладывают щупы и считывают показания со шкалы индикации. Измерения должны проводиться в прямом и обратном направлении, то есть сначала прикладываем плюс мультиметра к катоду, а затем к аноду стабилитрона. Прибор должен показать в первом случае бесконечное сопротивление, а во втором случае покажет единицы или десятки Ом.

Такие показатели говорят об исправности стабилитрона. Если измерение сопротивления показывают в обоих направлениях бесконечность, то это говорит об обрыве p-n перехода и неисправности.

Бывает так, что при прозвонке стабилитрона мультиметр показывает в обоих направлениях десятки или сотни Ом. В этом случае создается впечатление, что стабилитрон пробит. Именно такой вывод можно было бы сделать, если бы это был обычный диод. Но в случае стабилитрона такой вывод неверен, он, скорее всего, исправен. Объясняется это наличием напряжения пробоя.

При прикладывании щупов мультиметра к выводам стабилитрона прикладывается напряжение внутреннего источника питания мультиметра. Если напряжение источника питания выше значения напряжения пробоя, то шкала индикации покажет сопротивление десятков или сотен Ом.

Если мультиметр имеет источник питания напряжением, например, 9 Вольт, то все проверяемые стабилитроны с напряжением стабилизации меньше 9 Вольт при измерении будут показывать пробой.

Как проверить стабилитрон мультиметром на плате

При ремонте платы, где расположен стабилитрон необходимо предусмотреть меры защиты от поражения электрическим током. Порядок действий при проверке электронного устройства такой же, как и при проверке выпаянного стабилитрона. Но нужно учесть, что остальные радиоэлементы, расположенные в схеме на плате, могут сильно изменить показания. Если остаются сомнения в правильности интерпретации результатов проверки, то стабилитрон демонтируют из платы и проверяют его без влияния остальных компонентов схемы.Нужно отметить, что исправность элемента нельзя гарантировать со стопроцентной уверенностью при проверке его мультиметром. Ее можно гарантировать в том случае, если поместить его в схему и включить электронное устройство с этой схемой. Если устройство будет работать, то это означает, что элемент исправен.

vseotoke.ru

Каждый радиолюбитель знает, как бывает иногда важно знать, исправна ли та или иная радиодеталь или нет. Не в последнюю очередь это касается стабилитронов

В качестве тестера для проверки электрокомпонентов на предмет наличия напряжения стабилизации служит мультиметр.

Определение характеристик

Для проверки исправности стабилитрона и соответствия паспортным данным необходимо проверить его работу на разных напряжениях. Сначала надо прозвонить в режиме измерения сопротивления.

Убедившись в отсутствии пробоя, на первом и третьем контакте колодки выставляется разность потенциалов 0,1 вольта. Это достигается регулировкой резистора.

Проверка происходит в режиме измерения постоянного напряжения. Анод проверяемого стабилитрона подсоединяется к третьему контакту колодки, а катод подключается к первому. Щупы тестера подсоединяются к ним же.

Регулировкой переменного резистора увеличиваем обратное напряжение на полупроводнике до тех пор, пока оно не перестанет изменяться. Если это произошло, значит, стабилитрон достиг напряжения стабилизации и работает нормально.

Иногда требуется определить его вольтамперную характеристику. Тогда к предыдущей схеме добавляется тестер, работающий в режиме амперметра, соединенный последовательно со стабилитроном.

При изменении вольтажа с определенным шагом, снимаются значения напряжения и тока, строится график, получается вольтамперная характеристика.

В процессе ремонта бытовой техники или других электронных устройств: монитора, принтера, микроволновки, блока питания компьютера или автомобильного генератора (например, Valeo, БОШ или БПВ) и т.д. возникает необходимость проверить целостность элементов. Расскажем подробно про тестирование диодов.

Учитывая разнообразие этих радиоэлементов, единой методики проверки их работоспособности не существует. Соответственно, для каждого класса есть свой способ тестирования. Рассмотрим, как проверить диод шоттки, фотодиод, высокочастотный, двунаправленный и т.д.

Что касается приборов для тестирования, мы не станем рассматривать экзотические способы проверки (например, батарейку и лампочку), а будем пользоваться мультиметром (подойдет даже такая простая модель, как DT-830b) или тестером. Эти приборы практически всегда есть дома у радиолюбителя. В некоторых случаях потребуется собрать несложную схему для тестирования. Начнем с классификации.

Инструкция по проверке

В ответ на вопрос, как проверить диод мультиметром, не выпаивая, необходимо уточнить, чтобы успешно его проверить, как и стабилитрон, необходимо взять его и мультиметр, сделать прозвонок. Как правило, многие из устройств оснащены функцией диодной проверки. По инструкции она выглядит таким образом:

Анод и катод

  1. Все, что нужно, это перевести регулятор на функцию проверки, взять концы мультиметра и присоединить их к диодной сборке. К знаку минус нужно поднести анод, а к знаку плюс – катод. Нередко это просто белые и красные полосы соответственно.
  2. Затем появятся значения порогового напряжения и значение с показаний проверки.

Подключение анода и катода

Обратите внимание! В ходе проверки выпрямительного светодиода шотка или schottky прикасаться руками к одному из зарядов нельзя, поскольку корректными показания в таком случае не будут. В ходе первого определения нужно повторить процедуру в противоположном порядке

Так, анод нужно поместить к знаку плюс, а катод – минус. При таком подключении на мультиметр поступит цифра 1. Это значит, что ток не течет. Все под защитой.

Стоит отметить, что более подробная инструкция со схемами, ответами на популярные вопросы о светодиодных узких супрессорах и предупреждениях дана в инструкции к каждому мультиметру.

Мультиметр для проверки диодной сборки

Проверка на исправность полупроводниковых элементов

Чтобы проверить полупроводниковые элементы на исправность, необходимо воспользоваться цифровым измерительным мультиметром с крышкой и большим функционалом. Большинство из них оснащены подобной функцией прозвона моста и генератора, поэтому сделать процедуру проверки может каждый желающий. Все что нужно, это прозвонить с помощью многофункционального мультиметра свободный диод, установить регуляторную ручку на измерительном приборе и нажать кнопку с данным обозначением на управленческой приборной панели. Далее необходимо подключить соответствующий красный щуп к аноду, а черный к катоду. Только так прибор измерит все правильно.

Обратите внимание! Понять, где анод, а где катод, несложно, прочитав описание к модели мультиметра, или воспользоваться помощью электронщика. Как правило, на каждом проводке имеется своя маркировка, благодаря которой понять, где что находится, очень просто в конкретной ситуации

В результате должно получиться пороговое прямое напряжение. Если есть повреждение какого-то элемента, то на панели появится ноль напротив того электрода, который будет подключен, или цифра выше или ниже допустимой.

В ответ на то, как проверить диодную сборку мультиметром, если специального режима в мультиметре нет, можно указать, что необходимо собрать схему: соединить источник питания с резистором и проверяемым полупроводником. Затем подключить элемент анода к резистору, а катод к источнику питания. Далее следует нажать пуск и посмотреть, в каком состоянии находится полупроводниковый элемент. Как и в прошлом случае, исправный элемент измерителем будет выдавать прямое напряжение.

Проверка мультиметром без выпаивания

Без выпаивания мультиметром можно проверить электроды. Все что нужно, это выбрать на устройстве сопротивляющий измерительный режим с диапазоном в 2 кОм. Затем стандартно нужно присоединить красный проводок к части анода, а черный к части катода. Так будет показана цифра напряжения в омах. Как правило, при разрыве цепи измерение получается с цифрой выше допустимого или со значением 0.

Обратите внимание! Важно понимать, что для проверки оборудования и полупроводниковых элементов необходимо полностью действовать в соответствии с представленной к мультиметру инструкцией. Также необходимо понимать важные физические моменты и немного понимать в электронике для составления правильной электрической схемы. В противном случае отсутствие знаний может затруднить работу с мультиметром

В противном случае отсутствие знаний может затруднить работу с мультиметром.

Правильность подключения электродов залог успешной проверки

Как определить номинал стабилитрона

Всех приветствую на станицах сайта посвящённых электроники, сегодня изучим способ, как определить номинал стабилитрона. Это статья немного дополняет предыдущую, не менее важную страницу. Для определения рабочего напряжения стабилитрона, маркировка которого не вида, затёрта или просто очень мелко написана, задача выполнимая любому начинающему ремонтнику электроники.

Как узнать напряжение стабилизации неизвестного стабилитрона

Перебирая скопившиеся радиоэлементы, я набрал внушительное количество стабилитронов, некоторые были без опознавательных знаков. Подобная незадача и подтолкнула, написаю данной инструкции. Для внесения порядка на рабочем столе. Сегодня рассмотрим пару способом определения номинала стабилитрона.

Устройство для определения напряжения стабилизации неизвестного стабилитрона

Схема данного устройства, очень проста в использовании и изготовлении, сейчас поясню принцип её работы.Для этого нам необходимо, блок питания с регулировкой напряжения и его индикации, если такого нет в наличии, ниже рассмотрим способ проверки без него. Плюс ко всему необходим ограничительный резистор номиналом от 1 до 2 кОм и соединительные провода.

На фото все видно наглядно, к блоку питания с регулировкой последовательно подключается ограничительный резистор соответствующего номинала, далее подключаем сам испытуемый стабилитрон, катодом к плюсу. После, замыкаем цепь на отрицательный вывод блока питания. Параллельно неизвестному стабилитрону, подключаем мультиметр в режиме измерения напряжения.

Будет очень хорошо, если ваш лабораторный блок питания имеет встроенную защиту от короткого замыкания, в некоторых случаях это, спасёт вас от лишнего ремонта. Начинаем потихоньку, добавлять выходное напряжение, и смотрим за изменением на дисплее мультиметра.

Для определения напряжения стабилитрона, мы возьмём 1N4742A очень распространённая модель. Для любопытных, его аналогом является С12 5Т, они стабилизируют 12 вольт. Подключаем всё согласно схеме и регулируем источник питания, мой имеет придел 14 вольт. Всё работает отлично и небольшими погрешностями приборов, но в целом всё нормально.

Подобным способом можно проверить любой стабилитрон, насколько вам позволит выбранный источник питания. Способ действительно хороший и простой.

Как узнать, насколько стабилитрон без регулируемого блока питания

Это действительно сложнее, но в некоторых случаях под силу. Можно использовать зарядное устройство для сотового телефона, или зарядку от видео регистратора, зарядное устройство для автомобильного аккумулятора. Но лучше всего, иметь в наличии несколько батареек, из них постепенно собираем батарею и меряем напряжение на них и сравниваем с напряжением на стабилитроне, бюджетный вариант, но рабочий. Главное условие, без мультиметра, не обойтись. Интересуйтесь подобными вопросами, и сложности станут под силу.

Сегодня мы научились способам, как определить номинал стабилитрона, у кого есть соображения поэтому и другим вопросам, пишите, все почитаем и обсудим.

energytik.net

Как проверить диод мультиметром

На сегодняшний день мы не можем себя представить без электроники, она нас окружает почти все время. Но, к сожалению, электроника не работает вечно и довольно распространенной причиной поломки является выход из строя диода. В этой статье я расскажу, что такое диод в принципе и как его можно проверить с помощью электронного мультиметра.

Что такое диод и как он работает

Диод – это элемент платы, представляющий из себя полупроводник с P-N переходом и вследствие этого обладающий однонаправленной проводимостью.

Конструктивно простой диод имеет два выхода: катод (отрицательный) и анод (положительный).

Примечание. В данной статье рассматривается самый простой вариант диода, имеющего только один P-N переход. В принципе их может быть больше, например, у динистора их три.

Диод работает следующим образом: когда он включен в цепь «прямо», то есть к «+» подходит положительный заряд, а к «-» отрицательный. В этом случае P-N переход раскрывается и по проводнику протекает ток, если же на «+» подать отрицательное значение, а на минус – положительное, то в данном случае переход закрывается и через проводник ток не проходит.

На этом простом принципе и построен алгоритм проверки работоспособности диода. Зная это, можно приступать к непосредственной проверке.

Проверяем исправность диода

Для успешной проверки целостности диодов нам понадобится сами диоды и мультиметр.

В подавляющем большинстве мультиметров есть функция проверки диодов и визуально она выглядит так:

Для этого просто переводим положение регулятора в данную область, берем концы и красный прислоняем к аноду (обычно производители маркируют его белой полосой или же просто пишут «-»), а черный к катоду. При этом вы увидите определенное значение:

Причем это значение является не сопротивлением, а пороговым напряжением.

Важно. При выполнении проверки не прикасайтесь пальцами к катоду и аноду, так как в таком случае вы получите не совсем корректные показания

Теперь меняем концы мультиметра местами и проверяем диод в обратном направлении.

При таком подключении на циферблате мультиметра вы увидите «1» в старшем разряде. Это говорит о том факте, что в этом направлении P-N переход закрыт, ток не протекает.

Из этих измерений можно сделать вывод – диод полностью исправен.

Виды неисправности диодов

Есть лишь два вида неисправности диодов, это:

1. Пробой. В этом случае диод становится самым обычным проводником, по которому ток может беспрепятственно перемещаться в любом направлении. При такой неисправности мультиметр издает тонкий писк, а на дисплее вы увидите значение близкое или равное нулю.

2. Обрыв . А в данном случае диод в принципе не пропускает ток ни в одно направление и по факту становится изолятором. При этом дисплей прибора в обоих случаях показывает «1». Эту поломку можно диагностировать и ошибочно, чтобы этого избежать при каждой проверке замыкайте их на себя, чтобы проверить целостность концов.

Как вы видите, диагностировать данные неисправности довольно легко.

Можно ли проверить диод, не выпаивая его из схемы

Этот вопрос вполне логичен и понятен и ответ не него таков: Полностью выпаивать диод из схемы для его проверки не обязательно, достаточно выпаять лишь одну из «ножек», этого будет вполне достаточно для его полноценной проверки.

Если не производить выпаивание одной «ноги», то при проверке вы получите неверные данные, так как в этом случае ток будет еще растекаться по схеме.

Как по показаниям мультиметра понять, по какой технологии и из какого материала выполнен диод

Проверяя различные диоды, вы можете заметить, что показания мультиметра различаются и порой довольно существенно. Это связано с тем, что диоды выполняются из различных материалов и по разным технологиям. И по этим показаниям можно определить из чего они выполнены:

Вот таким нехитрым образом происходит проверка диодов на работоспособность и исправность

Спасибо за внимание

Особенности и принцип работы диода Шоттки

Как работает диод Шоттки? В чем принципиальные отличия его работы от аналогов с другим барьерным переходом?

Устройство диода Шоттки имеет отличие от других элементов того же назначения использованием барьером в виде перехода между металлом и полупроводником. У аналогов обычно работает с этой же целью p-n переход. Так в первом случае имеется односторонняя электропроводность. В зависимости от того, какой конкретно металл выбран для перехода в элементе, различаются и характеристики элемента. Чаще всего выбирается кремний, возможно применение арсенида галлия. Реже могут применяться сплавы вольфрама, платины и других материалов.

Кремний — самый распространенный и надежный элемент в диодах Шоттки, с ним конструкция надежно работает в условиях высокой мощности. Изделие стабильнее в работе, чем другие полупроводниковые аналоги, а простота изготовления и устройства диода Шоттки делают его очень доступным вариантом.

Мощность рассеивания стабилитрона

Мощность рассеивания стабилитрона Pст характеризует его способность не перегреваться выше определенной температуры на протяжении длительного времени. Чем выше значение Pст, тем больше тепла способен рассеять полупроводниковый прибор. Мощность рассеивания рассчитывается для самых неблагоприятных условий работы прибора, поэтому в ниже приведенную формулу подставляют максимально возможное в работе Uвх и наименьшие значения Rб и Iн:

Существует ряд стандартных номиналом по данному параметру: 0,3 Вт, 0,5 Вт, 1,3 Вт, 5 Вт и т.п. Чем больше Pст, тем больше габариты полупроводникового прибора.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации