Андрей Смирнов
Время чтения: ~16 мин.
Просмотров: 0

Расчёт резистора для светодиода, формулы и калькулятор

Расчет резистора для светодиода при последовательно-параллельное соединении

Интересное соединение. При таком расположении диодов несколько последовательных цепочек соединяются параллельно. Необходимо знать, что количество светодиодов в цепочках должно быть равным. Драйвер подбирается с учетом падения напряжения на одной цепочке и произведению тока на количество цепочек. Т.е. 3 последовательные цепи с параметрами 12В и 350 мА подключаются параллельно, напряжение остается 12В, а ток 350*3=1,05А. Для долгой работы чипов нам нужен светодиодный драйвер с 12-15В и током 1050мА.

Расчет резистора для светодиода в этом случае будет таким:

Резистор аналогичен при последовательном соединении, однако, стоит учитывать, что потребление от источника питания увеличится в три раза (0,2+0,2+0,2=0,06А).

При подключении светодиодов через резистор нужен стабилизированный источник питания, т.к. при изменении напряжения будет изменяться и ток, идущий через диод.

Существует еще один способ соединения светодиодов — параллельно-последовательное с перекрестным соединением. но это достаточно сложная тема в расчетах, поэтому не буду ее тут раскрывать. Если потребуется, конечно, опишу, но думаю это нужно только узкому кругу специалистов.

В сети можно найти много онлайн-калькуляторов, которые Вам рассчитают сразу резисторы. Но слепо верить им не стоит, а лучше перепроверить, следуя поговорке: «Хочешь сделать это хорошо, сделай это сам».

Общие характеристики и устройство сопротивления для светодиодов

Чтобы ответить на все поставленные вопросы, для начала попробуем разобраться в работе самого светодиода. Это токовый прибор, соответственно, он требует подачи определенного напряжения от источника.

Если источник дает напряжение выше, то светодиод попросту сгорает. Как раз во избежание такого эффекта при подаче тока и существует резистор, сопротивление которого необходимо рассчитать, выступающий для ослабления питания до нужного размера.

Резистор может быть подключен один на всю цепочку. Но подключение, при этом, должно быть последовательным.

В противном же случае, при параллельном подключении, которое, к слову, встречается значительно реже, светодиоды требуют каждый своего резистора.

Важно учитывать то, на какое напряжение рассчитан светодиод. Указывается, как правило, напряжение падения

Учтите, что оно высчитано довольно приблизительно. Это число играет роль при выборе и подборе резистора.

Менее важную роль резистор играет только в случае самых современных моделей светодиодов ярко-белого или разноцветных оттенков. Их, по словам экспертов, можно подключать напрямую без опаски, так как они уже приспособлены к подаче энергии из источника и не выйдут из строя.

Что касается полярности, которую важно учитывать при подключении, резистор ее не имеет. Играет принципиальную роль внутреннее сопротивление

Учесть необходимо и номинальную мощность рассеивания, поскольку в случае превышения допустимого ее предела резистор перегревается и выходит из строя.

Некоторые светодиоды требуют резисторов нестандартных показателей. В продаже такие изделия найти очень сложно.

В этом случае стоит приобрести резистор большего сопротивления, чем тот, который получен в расчетах. Яркость свечения будет несколько снижена, но это не заметно, зато сам светодиод прослужит дольше.

Резистор для светодиодов, например на 12 вольт, может быть смонтирован самостоятельно. Однако в настоящее время имеются модели, где этот важный элемент уже встроен.

Расчет гасящего резистора для светодиода

Первым делом разберемся как выполнить расчет сопротивления гасящего резистора, от чего оно зависит и какой мощности должен быть резистор для питания светодиода от источника питания. Ток (I) через резистор и светодиод протекает один и от же. Напряжение на резисторе равно разнице напряжений питания и напряжения на светодиоде (VS-VL). Здесь нам нужно рассчитать сопротивление резистора (R), при котором через цепь будет протекать напряжение I, а на светодиоде будет напряжение VL.

Допустим что мы будем питать светодиод от батареи напряжением 5В, как правило такое питающее напряжение используется при питании микроконтроллерных схем и другой цифровой техники. Вычислим значение напряжения на гасящем резисторе, для этого нам нужно знать падение напряжения на светодиоде, это можно выяснить по справочнику для конкретного светодиода.

Примерные значения падения напряжения для светодиодов (АЛ307 и другие маломощные в подобном корпусе):

  • красный – 1,8…2В;
  • зеленый и желтый – 2…2,4В;
  • белые и синие – 3…3,5В.

Допустим что мы будем использовать синий светодиод, падение напряжения на нем – 3В. Производим расчет напряжения на гасящем резисторе – Uгрез = Uпит – Uсвет = 5В – 3В = 2В. Для расчета сопротивления гасящего резистора нам нужно знать ток через светодиод. Номинальный ток конкретного типа светодиода можно узнать по справочнику. У большинства маломощных светодиодов (наподобии АЛ307) номинальный ток находится в пределах 10-25мА.

Допустим что для нашего светодиода номинальный ток для его достаточно яркого свечения составляет 20мА (0,02А). Получается что на резисторе будет гаситься напряжение 2В и проходить ток 20мА. Выполним расчет по формуле закона Ома:

R = U / I = 2В / 0,02А = 100 Ом.

В большинстве случаев подойдет маломощный резистор с мощностью 0,125-0,25Вт (МЛТ-0,125 и МЛТ-0,25). Если же ток и напряжение падения на резисторе будет очень отличаться то не помешает произвести расчет мощности резистора:

P = U * I = 2В * 0,02А = 0,04 Вт.

Таким образом, 0,04 Вт явно меньше номинальной мощности даже для самого маломощного резистора МЛТ-0,125 (0,125 Вт). Произведем расчет для красного светодиода (напряжение 2В, ток 15мА).

  • Uгрез = Uпит – Uсвет = 5В – 2В = 3В.
  • R = U / I = 3В / 0,015А = 200 Ом.
  • P = U * I = 3В * 0,015А = 0,045 Вт.

При подключении светодиодов не нужно забывать что они имеют полярность. Для определения полярности светодиода можно использовать мультиметр в режиме прозвонки или же омметр. Использование гасящих резисторов оправдано для питания маломощных светодиодов, при питании мощных светодиодов нужно использовать специальные LED-драйверы и стабилизаторы.

Расчет гасящего резистора для светодиода.

Параллельное и последовательное включение светодиодов

Лед-лампочки подключаются к электросети 220 В или источнику питания с постоянным напряжением (током), значение которого может быть разным (не обязательно на 12 вольт, может быть 3, 4,5 или 5 В).

Последовательное подключение – это цепочка, в которой катоды диодов спаиваются с анодами. Электроток по всем проходит одинаковый, напряжение – сумма падения вольтажа на лампочках. Количество диодов ограничивается падением напряжения. Например, если аккумулятор на 12 В, к нему можно последовательно подключить только 4 диода с падением напряжения 3 В.

При последовательном подключении цепочка перестает функционировать, если вышла из строя одна лед-лампочка. При желании создать цепочку из большого количества сравнительно мощных источников света, требуется мощный блок питания.

При параллельном подключении ситуация меняется – напряжение на лампочках одинаковое, меняется ток. Это значит, что требуется отдельное сопротивление для каждого светодиода. Если резистор один, каждый диод получает различный ток. Если он ниже оптимального, лампочка тусклая, если больше – диод выгорает. Еще хуже, если одна лампа вышла из строя. Остальные получают больше тока и сгорают.

В чистом виде последовательное и параллельное подключение практически не используется, если лампочек больше 2-х или 3-х. Оптимальный вариант – смешанная схема, в которой диоды делятся на группы, соединенные последовательно, группы соединяются параллельно.

Расчет резистора для светодиода

Сопротивление балластного резистора легко рассчитать, используя закон Ома и правила Кирхгофа. Чтобы рассчитать необходимое сопротивление резистора, нам необходимо из напряжения источника питания вычесть номинальное напряжение светодиода, а затем эту разницу разделить на рабочий ток светодиода:

Прежде чем мы начнем, некоторые определения

Ваууу, это был курс интенсивной математики. Мы вернемся к программному обеспечению и этим маленьким мигающим диодам в будущих учебниках. Вывод: никогда не подключайте живое питание к непрерывной батарее или источнику питания!

Конкретный пример: расчет сопротивления

Возьмем в качестве примера красный светодиод, приводимый в действие автомобильной батареей напряжением 12 вольт.

Расчет мощности резистора

Сопротивление колеблется от нескольких десятков Ватт до нескольких сотен. Что касается постоянного тока, диод добавляется параллельно и шпиндель относительно светодиода. В переменном токе напряжение является как положительным, так и отрицательным. Когда ток положительный, светодиод загорается, а когда он отрицательный, он отключается. Здесь диод может поджариваться, потому что он не поддерживает высокое обратное напряжение. Диод будет добавлен так, что ток пройдет через него

Обратите внимание: ток, протекающий через резистор, сильнее, чем при работе светодиода

  • V — напряжение источника питания
  • V LED — напряжение падения на светодиоде
  • I – рабочий ток светодиода

Ниже представлена таблица зависимости рабочего напряжения светодиода от его цвета:

Компоненты и цветовые коды

Существует риск сцинтилляции. Сопротивление — это самый простой электронный компонент для измерения, понимания и интерпретации. Для некоторых это будет полный курс, чтобы открыть этот компонент, для других простых напоминаний. Из-за небольшого размера компонентов четкая маркировка на компоненте невозможна, цветовой код настроен, этот код связывает соответствующее цветное кольцо с каждой цифрой. кольцо может иметь различный смысл: число, множитель или допуски компонента.

Вот сводная таблица цветового кода. Вот пример сопротивления в наиболее распространенной форме. Чтение с использованием приведенной выше таблицы дает нам. Мы только что декодировали 4-кольцевой резистор, однако есть также резисторы с 5 или 6 кольцами, в этом случае кодирование выглядит следующим образом:. 5 колец: 3 значащие цифры, множитель, толерантность. 6 колец: 3 значащие цифры, множитель, допуски, температурный коэффициент.

Хотя эта простая схема широко используется в бытовой электронике, но все же она не очень эффективна, так как избыток энергии источника питания рассеивается на балластном резисторе в виде тепла. Поэтому, зачастую используются более сложные схемы () которые обладают большей эффективностью.

Давайте, на примере выполним расчет сопротивления резистора для светодиода.

Сочетание нескольких резисторов последовательно, параллельно

Цветовой код и фотографии резисторов, которые мы видели до сих пор радиальных компонентов, требующих восприятия. Эта технология все меньше и меньше используется для использования на поверхностных компонентах. Наверху сопротивление 10 000 Ом и сопротивление 10 Ом. Эта маркировка несколько неоднозначна, но она была определена таким образом. Они используются, потому что их легче настроить роботами, чем ремешок. Чтобы выбрать сопротивление, необходимо рассчитать его значение, но также мощность, которую он должен рассеять, тогда необходимо будет выбрать допуск в соответствии с приложением.

Мы имеем:

  • источник питания: 12 вольт
  • напряжение светодиода: 2 вольта
  • рабочий ток светодиода: 30 мА

Рассчитаем токоограничивающий резистор, используя формулу:

Мне остается выбирать толерантность к этому сопротивлению. Наиболее распространенные резисторы имеют допуск 5%, какой диапазон допуска для сопротивления 180 Ом? В зависимости от приложения может потребоваться более высокий уровень допуска, чтобы ограничить отклонение. Тогда есть 2 решения: — выберите сопротивление с более низким допуском. — измерение и сортировка сопротивлений более высокого допуска.

Электролюминесцентный диод представляет собой электронный компонент, способный излучать свет, когда он проходит электрический ток.

  • Они ничего не потребляют.
  • У них отличная жизнь.
  • Они очень нагреваются.
  • Они ничего не стоят.

Существуют разные формы и цвета. Физический принцип относительно сложный.

Получается, что наш резистор должен иметь сопротивление 333 Ом. Если точное значение из подобрать не получается, то необходимо взять ближайшее большее сопротивление. В нашем случае это будет 360 Ом (ряд E24).

Расчёт сопротивления для светодиода

Замена ламп на светодиоды в автомобильных электрических схемах приобретает уже не статус тюнинговых работ, а превращается в необходимость. Причин этому множество, но сегодня мы поговорим не об этом, хотя некоторые вопросы светодиодного освещения, самые принципиальные, затронуть придется.

Зачем ставить светодиоды

Если смотреть на вопрос с практической стороны, то установка светодиодов принесет много хороших и приятных моментов:

  1. Светодиод имеет очень низкий ток потребления.
  2. У светодиодов мизерная теплоотдача.
  3. Количество света, отдаваемого светодиодом, намного больше, чем у ламп накаливания.
  4. Светодиод имеет длительный срок эксплуатации.

Отходя от теории и применив это к реальным условиям, мы получаем массу преимуществ — можно забыть о том, что лампочка посадит аккумулятор, даже если ее оставить включенной на сутки, да и оформление светодиодами подсветки приборов и освещения салона намного эффективнее и гибче.

Параметры светодиодов

Самое главное, что нужно усвоить — светодиод невозможно включить в электросхему без предварительной подготовки. Он попросту сгорит. Напряжение в электросети автомобиля 12-14 вольт, а стандартный светодиод работает от 3,5 В. Рабочее напряжение диода зависит от его цвета:

  • красные и желтые светодиоды — 2,4 В;
  • синие и зеленые — 2,8 вольта;
  • белые светодиоды — 3-3,6 В.

Отличаются светодиоды и по мощности. Маломощные светодиоды потребляют ток около 20 мА, а светодиоды повышенной мощности — 300 мА. Они могут отличаться и по характеру излучаемого света. Одни из них узконаправленные, другие заливные. Направленные светодиоды имеют встроенную линзу и используются для локальной подсветки. Каждый светодиод имеет плюс и минус, которые называют анодом и катодом соответственно.

Установка светодиодов

Если появилось желание установить светодиоды на автомобиль, можно пойти по простому пути. В продаже есть небольшие блоки из светодиодов, которые называют кластерами. Они собраны с таким расчетом, чтобы обеспечить из работу в сети 12 В. Но у них есть один существенный недостаток — при изменении количества оборотов двигателя, они меняют яркость. Не критично, но изменение яркости очень отчетливо видно на глаз, и это не самый приятный эффект. Каждый кластер состоит из трех светодиодов, соединенных последовательно, и спаянных с резистором, который должен убирать лишнее напряжение.

Можно пойти по другому пути — собрать кластеры самостоятельно. Мы выбираем нужные нам диоды, последовательно их соединяем, а затем подключаем к бортовой сети через резистор. В большинстве случаев для сети 12 вольт используют резисторы 100-150 Ом на 0,5 Вт. Но не всегда все так гладко, и именно на этом этапе нам пригодится расчет сопротивления для светодиода.

Как правильно рассчитать сопротивление для светодиода

Поскольку светодиоды разные и напряжение в каждом автомобиле может отличаться, то идеальным вариантом подбора резистора будет вычисление его номинала по закону Ома. Если с математикой у вас не все гладко, можно пойти по простому пути. Есть простое правило, которое позволит избежать ошибок — на один светодиод нужен резистор номиналом 500 Ом, на два — около 300 Ом, на три — 150 Ом. Но если подобрать сопротивление правильно, то освещение будет стабильным и долговечным.

Рассмотрим ситуацию, когда мы озадачились действительно точным подбором резистора. Берем светодиод, к примеру, белый. Его данные нам известны — напряжение питания 3,5 вольта, ток примерно 20 мА. Далее действуем по алгоритму, как калькулятор Электроника.

Снимаем показания по напряжению именно в том месте, где мы хотим установить диод. Делаем это при помощи обычного тестера

Причем важно снять не общее напряжение сети, а именно локальное. Получаем некую величину, к примеру, 13 В.
Из общего напряжения отнимаем напряжения питания светодиода

Получилось 9,5 В. Вспоминаем закон Ома — R=U/I, где R — искомое сопротивление, а U и I, соответственно, напряжение и ток. Подставляем наши данные в формулу и получаем значение сопротивления 475 Ом.
Теперь нужно сделать так, чтобы резистор не грелся. Для этого вычисляем его мощность. Рабочее напряжение резистора — 9,5 В, ток — 20 А. Умножив эти показатели, получим номинальную мощность резистора — 0,19 Вт. Всегда нужно подбирать резистор с запасом, чтобы избежать перегрева, поэтому идем в магазин за резистором мощностью не менее 0,5 Вт.

Таким образом удастся подобрать идеальный резистор для светодиода, который будет иметь оптимальную яркость, и не перегорит в самый неожиданный момент.

Зачем нужен резистор?

Токоограничительный светодиодный резистор нужен в тех случаях, когда на первом месте стоит именно стабильность и продолжительность работы источников света, а не мощность их излучения. Такие цели преследуются в различных бытовых приборах с мигающими индикаторами, указателями и кнопками включения, а также в автомобилях, где стабильность тока в системе оставляет желать лучшего. Также он незаменим во время тестирования новых моделей светодиодов в производственных лабораториях.

В случаях, когда важна яркость света, которую выдает кристалл, нужно использовать именно стабилизатор тока – драйвер. Чаще всего драйвер имеет точные параметры и продается в комплекте с конкретным LED-изделием – светильником, лентой, или же сразу встраивается в лампочку. Также драйвер используется, если мы выбираем очень мощные источники света с огромной яркостью.

Как подключить сопротивление к светодиоду

Расчет резистора для светодиода

Чтобы компенсировать сопротивление светодиода, нужно прежде всего подобрать резистор с более высоким сопротивлением. Такой расчет не составит труда для тех, кто знает, что такое закон Ома.

Математический расчет

Исходя из закона Ома, рассчитываем по такой формуле:

где Un – напряжение сети; Uvd – напряжение, на которое рассчитана работа светодиода; Ivd – ток.

Допустим, у нас светодиод с характеристиками:

2,1 -3, 4 вольт – рабочее напряжение (Uvd). Возьмем среднее значение 2, 8 вольт.

20 ампер – рабочий ток (Ivd)

220 вольт – напряжение сети (Un)

В таком случае мы получаем величину сопротивления R = 10, 86. Однако этих расчетов недостаточно. Резистор может перегреваться. Для предотвращения перегрева нужно учитывать при выборе его мощность, которая рассчитывается по следующей формуле:

Обратите внимание, что резистор подведен на плюсовой контакт диода. Определить полярность диода достаточно просто: плюсовой контакт в колбе по размеру больше минусового.. Для наглядности рекомендуем посмотреть видео:

Для наглядности рекомендуем посмотреть видео:

Графический расчет

Графический способ – менее популярный для расчета резистора на светодиод, но может быть даже более удобный. Зная напряжение и ток диода (их называют еще вольтамперными характеристиками – ВАХ), вы можете узнать сопротивление нужного резистора по графику, представленному ниже:

Тут изображен расчет для диода с номинальным током 20мА и напряжением источника питания 5 вольт. Проводя пунктирную линию от 20 мА до пересечения с «кривой led» (синий цвет), чертим пересекающую линию от прямой Uled до прямой и получаем максимальное значение тока около 50 мА. Далее рассчитываем сопротивление по формуле:

Получаем значение 100 Ом для резистора. Находим для него мощность рассеивания (Силу тока берем из Imax):

Принцип работы и устройство световых диодов

Диод, излучающий свет, состоит из подложки и кристалла. Подложка может быть любой формы, самая распространенная квадратная. На корпус накладывается рефлектор и линза. Кристалл укладывается на рефлектор. Свет излучается во время прохождения электротока через p-n-переход кристалла.

Для присоединения к сети имеются два (или больше) выводов (анодов и катодов), некоторые из них соединены с кристаллом. Линза чаще всего изготовлена из прозрачного полимера, основное предназначение – определить направленность луча и угол рассеивания.

Причина свечения кристалла –
рекомбинация электронов и дырок на p-n-переходе, образованном двумя
полупроводниками с различной проводимостью. Перемещение частиц обеспечивают
примеси (доноры и акцепторы)

Важно, чтобы у кристалла не было дефектов,
препятствующих излучению видимого светового луча. Для обеспечения таких
характеристик на практике кристалл производится многослойным

Чтобы получить свечение белого цвета,
необходимо:

  • смешать
    цвета по технологии RGB;
  • нанести
    на кристалл, излучающий ультрафиолет, люминофор, создающий красный, зеленый и
    голубой цвет;
  • нанести
    на голубой диод зеленый и красный люминофор.

Каждый из этих методов обладает плюсами
и минусами. RGB позволяет получать различные температуры цвета и менять ток,
проходящий по диодам, для изменения оттенка. Наличие в корпусе нескольких
кристаллов дает возможность увеличить силу и поток света. Недостаток — не
одинаковый оттенок цвета по краям и в середине, что приводит к перегреву и
неравномерности старения.

Использование люминофора позволяет
снизить стоимость светодиодов, не теряя качества белого цвета. Но светоотдача
ниже, сложно люминофор нанести равномерно, поэтому температура света
определяется не точно. Основной недостаток заключается в том, что люминофор
стареет быстрее, чем кристалл.

По конструкции светодиоды делятся на:

  • DIP;
  • SMD;
  • мощные;
  • филаментные;
  • COB;
  • OLED;
  • волоконные.

DIP-светодиоды нужны для изготовления световых индикаторов. Диаметр корпуса 3 или 5 мм, в корпус установлен кристалл и провод, соединяющий его с анодом, и рассеиватель. Для присоединения к сети на корпусе 2 вывода – катод и анод.

Мощные диоды создают интенсивный световой
поток при токе до 1,4 А. Кристалл выделяет много тепла, поэтому устанавливается
на радиатор из алюминия, одновременно выполняющий функции отражателя. Для
обеспечения требуемого уровня электротока в схему включается специальный ограничивающий
драйвер, одновременно стабилизирующий напряжение.

Светодиодные лампы filament пользуются популярностью у дизайнеров благодаря внешнему сходству с лампами накаливания. Корпус из обычного или сапфирового стекла толщиной до 1,5 мм, покрытого люминофором, 28 полупроводников соединены последовательно и установлены на подложку. Основное преимущество – угол рассеивания света до 360 градусов.

COB-светодиод
(или Chip-On-Board) относится к группе самых современных. На подложку
из алюминия (или стекла) размещается большое количество кристаллов и
покрывается люминофором. COB светит равномерно по всей площади линзы. Эти
светящиеся диоды используются при производстве планшетов, ноутбуков и
телевизоров. Работают они так же, как DIP.

Светодиоды OLED, применяемые при производстве миниатюрных смартфонов, планшетов, телевизоров, состоят из:

  • подложки
    (пластик, стекло, фольга);
  • прослойки
    из полимера;
  • органического
    вещества, проводящего ток;
  • анода
    из олова и оксида индия;
  • катода
    из алюминия.

Принцип действия аналогичен SMD, но
поток света и угол свечения больше, органика служит дольше, чем обычный
полупроводник. К достоинствам можно отнести так же низкую себестоимость, угол
свечения до 270 градусов, минимальные размеры.

Волоконные диоды производятся из нитей терефталата
полиэтилена, обработанных специальным раствором и полимером, покрытых тонким
слоем суспензии литий-алюминиевого фторида. Для бытового применения
производятся кабели в трубках ПВД как для подсветки, так для освещения.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации