Андрей Смирнов
Время чтения: ~19 мин.
Просмотров: 0

Маркировка и обозначение диодов

Виды и характеристики светодиодов.

Светоизлучающие диоды различают по конструкции корпуса:

  1. DIP – маломощные индикаторные цилиндрические элементы. Востребованы для подсветок экранов, индикации, световых гирлянд.
  2. «Пиранья» — четырехконтактный DIP. Они крепче держатся на своем месте и меньше греются. Востребованы в автомобильной промышленности для подсветок.
  3. SMD – внешне выглядит, как параллелепипед. За счет своей надежности и универсальности востребованы во многих отраслях светотехнической промышленности.
  4. PCB Star светодиоды. Разновидность SMD.
  5. СОВ – плоский SMD. Новейший тип.

Независимо от исполнения корпуса выделяют светодиоды:

  1. Двухцветные. Они излучают одновременно два цвета. Обладают тремя контактами, один из которых общий.
  2. Полноцветные RGB (красный-зеленый-синий). Изготавливаются из трех полупроводниковых кристаллов под общей линзой, обладают четырьмя электродами. По одному выводу для каждого полупроводникового элемента и один общий вывод. В SMD у прибора будет шесть выводов.

Пропорциональное смешение цветов дает всевозможные оттенки света. Например, при включении на 100% красного и зеленого получится желтый.

  1. Адресные светодиоды − разновидность полноцветных. Отличаются от обычных RGB тем, что включаются по собственному индивидуальному коду. Востребован в лентах, где на адресном светодиоде можно задать неповторяющийся цветовой оттенок. При этом led-диод обладает собственным адресом, на который поступают команды от специального управляющего драйвера. Управление цветами происходит через микрочипы, которые встраиваются рядом с адресными светодиодами.
  2. Сверхмощные (сверхяркие) светодиоды – элементы мощностью выше 1 Вт с силой тока от 300 мА. (Мощность обычных светодиодов измеряется чаще всего в милливаттах). Такие устройства светят очень ярким светом. Используются в фонариках, фарах, прожекторах и т.п.

Также led-элементы подразделяются на:

  1. Индикаторные — маломощные.
  2. Осветительные — приборы большой мощности.
  3. Инфракрасные – излучают невидимый человеческому глазу инфракрасный спектр.

Инфракрасные диоды. Благодаря специально подобранным материалам проводников они испускают невидимые глазу инфракрасные лучи. Они безвредны для живых существ, но заметны для электронных систем регистрации. Востребованы во многих технических устройствах  и станках во всевозможных отраслях промышленности.

Индикаторные led-диоды. Выступают в роли индикаторов для техники,  подсветок дисплеев и т.п. Их делят по типу используемых полупроводников на:

  • двойные – светят зеленым и оранжевым;
  • тройные – светят желтым и оранжевым;
  • тройные – светят красным и желто-зеленым.

Независимо от вида светодиоды характеризуются некоторыми параметрами.

Цвет излучения. Обусловлен химическим составом полупроводников. Некоторые вещества и соответствующие им цвета обозначены в таблице.

Яркость. Она пропорциональна силе тока, текущей сквозь элемент. Среди led-диоды, которые светят белым светом, выделяют яркие (20-25 милликандел) и сверхяркие (свыше 20 тысяч милликандел).

Сила тока. Светодиоды весьма чувствительны к силе тока. При превышении ее значения выше номинального led может перегореть. Поэтому не рекомендуется превышать максимальный прямой ток элемента. Точные значения для конкретного светодиода приводятся в техническом описании.

Падение напряжения. Характеризует допустимую разницу между величинами входного и выходящего напряжения. У значения напряжения для светодиодов есть максимальное значение, превышение которого приведет к поломке led. Значения указываются в техническом описании.

Полярность. Поскольку ток в светодиоде течет только от p -слоя к n -слою, для предотвращения поломок стоит полярность. Обычно ее определяют по внешнему виду, маркировке или особым пометкам на корпусе. (Подробнее смотрите в статье «определение полярности»). Также узнать полярность можно из технической документации.

Угол рассеивания света. Определяется формой линзы, конструкцией кристалла и от используемых для изготовления кристалла веществ. Может меняться от 15 до 180 градусов.

Транзисторы

У большинства радиоэлектронных компонентов имеется лишь два вывода. Однако такие элементы как транзисторы оборудованы тремя выводами. Их конструкции отличаются разнообразными типами, формами и размерами. Общие принципы работы у них одинаковые, а небольшие отличия связаны с техническими характеристиками конкретного элемента.

Транзисторы используются преимущественно в качестве электронных коммутаторов для включения и выключения различных устройств. Основное удобство таких приборов заключается в возможности коммутировать большое напряжение с помощью источника малого напряжения.

По своей сути каждый транзистор является полупроводниковым прибором, с помощью которого генерируются, усиливаются и преобразуются электрические колебания. Наибольшее распространение получили биполярные транзисторы с одинаковой электропроводностью эмиттера и коллектора.

На схемах они обозначаются буквенным кодом VT. Графическое изображение представляет собой короткую черточку, от середины которой отходит линия. Данный символ обозначает базу. К ее краям проводятся две наклонные линии под углом 60, отображающие эмиттер и коллектор.

Электропроводность базы зависит от направления стрелки эмиттера. Если она направлена в сторону базы, то электропроводность эмиттера – р, а у базы – n. При направлении стрелки в противоположную сторону, эмиттер и база меняют электропроводность на противоположное значение. Знание электропроводности необходимо для правильного подключения транзистора к источнику питания.

Для того чтобы обозначение на схемах радиодеталей транзистора было более наглядным, оно помещается в кружок, означающий корпус. В некоторых случаях выполняется соединение металлического корпуса с одним из выводов элемента. Такое место на схеме отображается в виде точки, проставляемой там, где вывод пересекается с символом корпуса. Если же на корпусе имеется отдельный вывод, то линия, обозначающая вывод, может подсоединяться к кружку без точки. Возле позиционного обозначения транзистора указывается его тип, что позволяет существенно повысить информативность схемы.

класс диодов по напряжению

Условные обозначения классов силовых приборов по напряжению

В зависимости от максимально допустимого значения повторяющегося импульсного напряжения в закрытом состоянии (для тиристоров) и повторяющегося импульсного обратного напряжения (для тиристоров и диодов) силовым приборам присваивается класс по напряжению. Класс обозначается числом от 1 до 60. Классу 1 соответствует максимально допустимое напряжение 100 В, классу 2 – 200 В, классу 3 – 300 В, и так далее до 60 класса, которому соответствует максимально допустимое напряжение 6000 В.

Условные обозначения групп диодов по времени обратного восстановления (trr).

Быстровосстанавливающиеся диоды, как правило, нормируются по времени обратного восстановления. В соответствии с этим на диод наносится цифровая или буквенно-цифровая маркировка. Зависимость условных обозначений, нанесенных на диоды, от времени обратного восстановления приведена в таблице. Время обратного восстановления имеет размерность мкс.

№ п/пБуквенно-цифровая маркировкаЦифровая маркировкаtrr, мкс№ п/п
1Не нормируется1
2A410*2
3B48*3
4C46,34
5E4155
6H4246
7K433,27
8M442,58
9P4529
10T461,610
11X41,2511
12A57112
13B50,813
14C580,6314
15E50,515
16H590,416
17K50,3217
18M50,2518
19P50,219
20T50,1620
21X50,12521
22A60,122
23B60,0823
24C60,06324
25E60,0525
№ п/пБуквенно-цифровая маркировкаЦифровая маркировкаtrr, мкс№ п/п
26H60,0426
27K60,03227
28M60,02528
29P60,0229
30T60,01630
31X60,012531
32A70,0132

Расшифровка климатических исполнений

Стандарт по макроклиматическому районированию, условиям эксплуатации, хранения и транспортирования изделий в части воздействия климатических факторов внешней среды, принятый на территории РФ, и определённый в ГОСТ 15150-69.

Изделия маркируются цифрами и буквами, например:д161-160-12 УХЛ4

где УХЛ.4- предназначено для эксплуатации в районах с умеренным и холодным климатом, в закрытых, отапливаемых или охлаждаемых и вентилируемых производственных и других помещениях.

Буквенные обозначения (обозначает климатическую зону).

— эксплуатация в районах с умеренным климатом.- эксплуатация в районах с умеренным и холодным климатом.- эксплуатация в районах с влажным тропическим климатом.- эксплуатация в районах с сухим тропическим климатом.- эксплуатация в районах как с сухим, так и с влажным тропическим климатом.- эксплуатация во всех макроклиматических районах, кроме района с очень холодным климатом (общеклиматическое исполнение).- эксплуатация в районах с умеренно-холодным морским климатом.- эксплуатация в районах с тропическим морским климатом.- эксплуатация в районах как с умеренно-холодным, так и тропическим морским климатом.- эксплуатация во всех макроклиматических районах, кроме макроклиматического района с очень холодным климатом (всеклиматическое исполнение).- эксплуатация в макроклиматических районах с холодным климатом.

Цифровые обозначения (означает категорию размещения).

— на открытом воздухе (воздействие совокупности климатических факторов, характерных для данного макроклиматического района).- под навесом или в помещениях, где колебания температуры и влажности воздуха несущественно отличаются от колебаний на открытом воздухе и имеется сравнительно свободный доступ наружного воздуха. Например, в палатках, кузовах, прицепах, металлических помещениях без теплоизоляции, а также в оболочке изделия категории 1.- в закрытых помещениях с естественной вентиляцией без искусственно регулируемых климатических условий, где колебания температуры и влажности воздуха и воздействие песка и пыли существенно меньше, чем на открытом воздухе, например,  в металлических с теплоизоляцией, каменных, бетонных, деревянных помещениях (отсутствие воздействия атмосферных осадков и влаги, прямого солнечного света).- в помещениях с искусственно регулируемыми климатическими условиями, например, в закрытых отапливаемых или охлаждаемых и вентилируемых производственных и других, в т. ч. хорошо вентилируемых подземных помещениях (отсутствие воздействия прямого или рассеянного солнечного излучения, атмосферных осадков, ветра, песка, пыли наружного воздуха и конденсации влаги).- в помещениях с повышенной влажностью (например, в не отапливаемых и невентилируемых подземных помещениях, в т. ч. шахтах, подвалах в почве, в корабельных и других помещениях, где возможно длительное наличие воды или присутствует частая  конденсация влаги на стенах и потолке).

Производители светодиодов

Монтаж светодиодов.

В рейтинге производителей лидируют несколько фирм с мировым именем. Именно они выпускают самые качественные изделия на рынке.

  1. Philips. Пожалуй, производитель, с самым известным именем. Под этой маркой выпускается множество изделий от лампочек, до телефонов. Фирма имеет заводы более чем в шестидесяти странах. Активно вкладывается в новейшие разработки. Покупает другие, более мелкие заводы и производства, которые изготавливают светодиоды.
  2. Cree. Американская фирма, которая начинала свой путь с производства чипов для телефонов. Специализируется на производстве led-изделий разного назначения. РРаРазработали и выпускают светодиоды из карбида кремния, которые ярко светят.
  3. Nichia. Японская компания. Одна из старейших в области изготовления светодиодной техники. Именно она разработала и внедрила выпуск синих и белых цветов led. Специализируется на производстве кристаллов. Лидер на рынке по доходам от продаж.
  4. Osram. Немецкий изготовитель. Работает более ста лет в паре с Siemens. Выпускает светоизлучающие диоды, которые соответствуют мировым стандартам качества.

Из российских производителей можно отметить «Оптоган» и «Светлана-Оптоэлектроника». Обе фирмы располагаются в Санкт-Петербурге и производят светотехнические изделия. Впрочем, кристаллы для выпуска продукции закупаются за рубежом.

Немного подробнее о модуле и принципе его работы

Это полупроводниковый диод, который имеет свойство выдавать определенное значение напряжения вне зависимости от подаваемого на него тока. Это утверждение не является до конца верным абсолютно для всех вариантов, потому что разные модели имеют разные характеристики. Если подать очень сильный ток на не рассчитанный для этого модуль SMD (или любой другой тип), он попросту сгорит. Поэтому подключение выполняется после установки токоограничивающего резистора в качестве предохранителя, значение выходного тока которого равняется максимально возможному значению входного тока на стабилизатор.

Он очень похож на обыкновенный полупроводниковый диод, но имеет отличительную черту – его подключение выполняется наоборот. То есть минус от источника питания подается на анод стабилитрона, а плюс – на катод. Таким образом, создается эффект обратной ветви, который и обеспечивает его свойства.

Похожим модулем является стабистор – он подключается напрямую, без предохранителя. Используется в тех случаях, когда параметры входного электричества точно известны и не колеблются, а на выходе получается тоже точное значение.

Встречное, параллельное, последовательное соединение стабилитронов

Для повышения напряжения стабилизации можно последовательно соединять два и более стабилитрона. Например на нагрузке нужно получить 17 В, тогда, в случае отсутствия нужного номинала, применяют опорные диоды на 5,1 В и на 12 В.

Параллельное соединение применяется с целью повышения тока и мощности.

Также стабилитроны находят применение для стабилизации переменного напряжения. В этом случае они соединяются последовательно и встречно.

В один полупериод переменного напряжения работает один стабилитрон, а второй работает как обычный диод. Во второй полупериод полупроводниковые элементы выполняют противоположные функции. Однако в таком случае форма выходного напряжения будет отличается от входного и выглядит как трапеция. За счет того, что опорный диод будет отсекать напряжение, превышающее уровень стабилизации, верхушки синусоиды будут срезаться.

Типоразмеры SMD-компонентов

Чип-компоненты одного номинала могут иметь разные габариты. Габариты SMD-компонента определяются по его «типоразмеру». Например, чип-резисторы имеют типоразмеры от «0201» до «2512». Этими четырьмя цифрами закодированы ширина и длина чип-резистора в дюймах. Ниже в таблицах можно посмотреть типоразмеры в миллиметрах. 

smd резисторы

Прямоугольные чип-резисторы и керамические конденсаторы
ТипоразмерL, мм (дюйм)W, мм (дюйм)H, мм (дюйм)A, ммВт
02010.6 (0.02)0.3 (0.01)0.23 (0.01)0.131/20
04021.0 (0.04)0.5 (0.01)0.35 (0.014)0.251/16
06031.6 (0.06)0.8 (0.03)0.45 (0.018)0.31/10
08052.0 (0.08)1.2 (0.05)0.4 (0.018)0.41/8
12063.2 (0.12)1.6 (0.06)0.5 (0.022)0.51/4
12105.0 (0.12)2.5 (0.10)0.55 (0.022)0.51/2
12185.0 (0.12)2.5 (0.18)0.55 (0.022)0.51
20105.0 (0.20)2.5 (0.10)0.55 (0.024)0.53/4
25126.35 (0.25)3.2 (0.12)0.55 (0.024)0.5
Цилиндрические чип-резисторы и диоды
ТипоразмерØ, мм (дюйм)L, мм (дюйм)Вт
01021.1 (0.01)2.2 (0.02)1/4
02041.4 (0.02)3.6 (0.04)1/2
02072.2 (0.02)5.8 (0.07)1

smd конденсаторы

Керамические чип-конденсаторы совпадают по типоразмеру с чип-резисторами, а вот танталовые чип-конденсаторы имеют своют систему типоразмеров:

Танталовые конденсаторы
ТипоразмерL, мм (дюйм)W, мм (дюйм)T, мм (дюйм)B, ммA, мм
A3.2 (0.126)1.6 (0.063)1.6 (0.063)1.20.8
B3.5 (0.138)2.8 (0.110)1.9 (0.075)2.20.8
C6.0 (0.236)3.2 (0.126)2.5 (0.098)2.21.3
D7.3 (0.287)4.3 (0.170)2.8 (0.110)2.41.3
E7.3 (0.287)4.3 (0.170)4.0 (0.158)2.41.2

smd катушки индуктивности и дроссели

Индуктивности встречаются во множестве видов корпусов, но корпуса подчиняются все тому же закону типоразмеров. Это облегачает автоматический монтаж. Да и нам, радиолюбителям, позволяет легче ориентироваться.

Всякие катушки, дроссели и трансформаторы называются «моточные изделия». Обычно мы их мотаем сами, но иногда можно и прикупить готовые изделия. Тем более, если требуются SMD варианты, которые выпускаются со множестом бонусов: магнитное экранирование корпуса, компактность, закрытый или открытый корпус, высокая добротность, электромагнитное экранирование, широкий диапазон рабочих температур. 

Подбирать требующуюся катушку лучше по каталогам и требуемому типоразмеру. Типоразмеры, как и для чип-резисторов задаются спомощью кода из четырех чисел (0805). При этом «08» обозначает длину, а «05» ширину в дюймах. Реальный размер такого SMD-компонента будет 0.08х0.05 дюйма. 

smd диоды и стабилитроны

Диоды могут быть как в цилиндрических корпусах, так и в корпусах в виде небольших параллелипипедов. Цилиндрические корпуса диодов чаще всего предсавтлены корпусами MiniMELF (SOD80 / DO213AA / LL34) или MELF (DO213AB / LL41). Типоразмеры у них задаются также как у катушек, резисторов, конденсаторов.

Диоды, стабилитроны, конденсаторы, резисторы
Тип корпусаL* (мм)D* (мм)F* (мм)S* (мм)Примечание
DO-213AA (SOD80)3.51.650480.03JEDEC
DO-213AB (MELF)5.02.520.480.03JEDEC
DO-213AC3.451.40.42JEDEC
ERD03LL1.61.00.20.05PANASONIC
ER021L2.01.250.30.07PANASONIC
ERSM5.92.20.60.15PANASONIC, ГОСТ Р1-11
MELF5.02.50.50.1CENTS
SOD80 (miniMELF)3.51.60.30.075PHILIPS
SOD80C3.61.520.30.075PHILIPS
SOD873.52.050.30.075PHILIPS

smd транзисторы

Транзисторы для поверхностного монтажа могут быть также малой, средней и большой мощности. Они также имеют соответствующие корпуса. Корпуса транзисторов можно условно разбить на две группы: SOT, DPAK.

Хочу обратить внимание, что в таких корпусах могут быть также сборки из нескольких компонентов, а не только транзисторы. Например, диодные сборки

Цветовая маркировка.

Маркировка led в мире не стандартизирована. Изготовитель сам решает, что он будет обозначать на корпусе.

Светодиоды российского производства маркируются цветовым кодом. Он состоит из цветных кружочков или черточек. Примеры маркировки приведены ниже на рисунке.

Цветовая маркировка российских индикаторных светодиодов.

Рассмотрим маркировку известных мировых производителей.

Philips.

В качестве примера возьмем модель Luxeon Rebel. Она маркируется LXML-ABCD-EFGH. В этой аббревиатуре зашифровано следущее:

  • LXML – серия;
  • ABC – информация о свете:  как распределяется, цветовая температура;
  • D – величина тока;
  • E – запасная буква на будущие модели;
  • FGH – яркость (в люменах).

Cree.

Фирма предлагает обозначение SSSCCC-BD-0000-NNNNN, где:

  • SSS – серия;
  • CCC – описание цвета:
  • BD – индекс цветопередачи:
  • 0000 – код производителя;
  • NNNNN – индивидуальный номер по цветовой температуре и яркости. Стоит уточнить в техническом описании.

Старая система обозначений

В соответствии с системой обозначений, разработанной до 1964 г., сокращенное обозначение диодов состояло из двух или трех элементов.

Первый элемент буквенный, Д — диод.

Второй элемент — номер, соответствующий типу диода: 1…100 — точечные германиевые, 101…200— точечные кремниевые, 201…300 — плоскостные кремниевые, 801…900 — стабилитроны, 901…950 — варикапы, 1001…1100 — выпрямительные столбы. Третий элемент — буква, указывающая разновидность прибора. Этот элемент может отсутствовать, если разновидностей диода нет.

В настоящее время существует система обозначений, соответствующая ГОСТ 10862-72. В новой, как и в старой системе, принято следующее разделение на группы по предельной (граничной) частоте усиления (передачи тока ) на:

  • низкочастотные НЧ (до 3 МГц),
  • средней частоты СЧ (от 3 до 30 МГц),
  • высокочастотные ВЧ (свыше 30 МГц),
  • сверхвысокочастотные СВЧ;

По рассеиваемой мощности:

  • маломощные (до 0,3 Вт),
  • средней мощности (от 0,3 до 1,5 Вт),
  • большой (свыше 1,5 Вт) мощности.

Краткие технические характеристики

Хотя никакой информации о характеристиках smd светодиодов их цифровая маркировка не несет, все же некоторая связь между типоразмерами и параметрами приборов есть. Рассмотрим параметры самых распространенных видов светоизлучающих smd полупроводников:

Основные технические характеристики светодиодов smd    

Тип прибора Размеры корпуса, мм Количество кристаллов Мощность, Вт Световой* поток, лм Рабочий ток, мА Температура эксплуатации, °С Телесный угол, °Цвет свечения
35283.5х2.81 или 30.06 или 0.20.6 – 5.0*20-40 … +85120 – 140белый, нейтральный, теплый, синий, желтый, зеленый, красный, RGB
50505.5х1.63 или 40.2 или 0.262 – 14*60 или 80-20 … +60120 – 140белый, теплый, синий, желтый, зеленый, красный, RGB, RGBW
56305.6х3.010.557150-25 … +85120холодный, нейтральный, теплый
57305.7х3.01 или 20.5 или 150 или 158150 или 300-40 … +65120холодный, белый, нейтральный, теплый
30143.0х1.410.129 – 11*30-40 … +85120холодный, нейтральный, теплый, синий, желтый, зеленый, красный, оранжевый
28352.8х3.510.2 или 0.5 или 120 или 50 или 10060 или 150 или 300-40 … +65120холодный, нейтральный, теплый

* – зависит от цвета свечения кристалла

А теперь рассмотрим каждый из этих типов более подробно.

smd 5050

В отличие от 3528, 5050 имеет исключительно трехкристальное или четырехкристальное (RGBW) исполнение. Если прибор одноцветный, то все три кристалла имеют одинаковый или близкий (для выравнивания цветовой характеристики) цвет светового излучения. Это значит, что диод 5050 имеет втрое большую яркость, чем его однокристальный собрат smd 3528. Как и в первом случае, кристаллы защищены компаундом с люминофором или без него.


Трехкристальный светодиод 5050

Это, пожалуй, наиболее популярный прибор, используемый для декоративной подсветки и освещения. Он имеет оптимальное отношение стоимость/мощность и может обеспечить любой цвет подсветки (в случае использования rgb5050), включая белый повышенной яркости (четырехкристальный вариант), за счет простого изменения мощности на каждом из кристаллов.

Чаще всего такие светодиоды встраивают в такие светодиодные декоративные ленты, как:

  • одноканальная, где три кристалла соединены параллельно и питаются одним напряжением;
  • RGB и RGBW, имеющие три и четыре канала соответственно.

Благодаря достаточно высокой мощности диодов уже при их плотности 60 шт. на 1 метр светодиодной ленты она может успешно использоваться не только для декоративной подсветки, но и для освещения интерьера. При этом цветовую температуру и даже цвет освещения пользователь может изменять самостоятельно, для этого достаточно установить соответствующий контроллер.

Принцип работы.

Кристалл состоит из полупроводниковых материалов, которые расположены слоями. Свечение появляется после протекания электричества между границами их соприкосновения. В одном полупроводнике (n) преобладают электроны (отрицательные частицы), а в другом (p) –  ионы – дырки (положительные частицы). Полупроводниковые соединения способны пропускать электричество только  от p -слоя к n -слою, т.е. в одну сторону.

Схема появления излучения.

Под воздействием электричества электроны из n-слоя и дырки из р-слоя начинают двигаться к р-n-переходу. Происходит рекомбинация дырки и электрона — между р-n-границей протекает ток. Электроны переходят на низший энергетический уровень, с высоких орбиталей на более низкие. Освобождается энергия, которая  излучается в виде фотонов.

Описанный процесс протекает во всех полупроводниковых диодах. Но длина волны фотона не всегда находится в заметном человеческому глазу спектре. Для появления видимости необходимо движение элементарных частиц в определенном интервале: от 400 до 700 нм. Это достигается подбором определенных химических веществ. У каждого есть особая длина волны и цвет излучения.

Самые удачные материалы получаются из соединений типа AIIIBV и AIIBVI где II, III, V и VI – валентности элементов. Например, уже упоминавшийся арсенид галлия, фосфат индия или селенид цинка  и теллурид кадмия. Подобные соединения называют прямозонными. Возможно получение разнообразных  по свечению светодиодов: от ультрафиолетовых до инфракрасных.

К другой группе относятся непрямозонные полупроводники. Это карбид кремния, сам кремний, германий и другие. Диоды из них свет светят очень неярко. Впрочем, научные работы по использованию таких веществ продолжаются. Основные поиски решения ведутся в области технологий квантовых точек и фотонных кристаллов.

Кроме света при p-n-переходе освобождается еще и тепло. Для его отвода необходим теплоотвод (часто в этой роли выступает корпус изделия) или радиатор.

Конденсаторы

Конденсатор представляет собой систему, включающую два и более электродов, выполненных в виде пластин – обкладок. Они разделяются диэлектриком, который значительно тоньше, чем обкладки конденсатора. Все устройство имеет взаимную емкость и обладает способностью к сохранению электрического заряда. На простейшей схеме конденсатор представлен в виде двух параллельных металлических пластин, разделенных каким-либо диэлектрическим материалом.

На принципиальной схеме рядом с изображением конденсатора указывается его номинальная емкость в микрофарадах (мкФ) или пикофарадах (пФ). При обозначении электролитических и высоковольтных конденсаторов, после номинальной емкости указывается значение максимального рабочего напряжения, измеряемого в вольтах (В) или киловольтах (кВ).     

Дополнительная маркировка стеклянных моделей

Диоды в стеклянных корпусах имеют свои собственные обозначения, которые мы рассмотрим далее. Они настолько простые (в отличие от вариантов с пластиковыми корпусами), что практически сразу же запоминаются наизусть, нет необходимости каждый раз использовать справочник.

Цветовая маркировка используется для пластиковых диодов, например, для SOT-23. Твердый корпус модуля имеет два гибких вывода. На самом корпусе, рядом с вышеописанной полосочкой, дописываются таким же цветом несколько цифр, разделенных латинской буквой. Обычно запись имеет вид 1V3, 9V0 и так далее, разнообразие позволяет подобрать любые параметры по обозначению, как и в SMD.

Что же значит эта кодовая маркировка? Она показывает напряжение стабилизации, на которое рассчитан данный элемент. К примеру, 1V3 показывает нам, что это значение равно 1.3 В, второй же вариант – 9 вольт. Обычно чем больше сам корпус, тем большим стабилизирующим свойством он обладает. На фото ниже показан стабилитрон в стеклянном корпусе с маркировкой катода 5.1 В

Заключение

Правильный подбор параметров стабилитрона позволит получить стабильный ток, который из него подается на цепь. Обязательно подбирайте такие параметры предохранителя, используя соответствующий справочник, чтобы входное напряжение не испортило деталь, ему желательно находиться приблизительно в середине диапазона UCT ± ΔUCT.

Стабилитрон относится к одному из применяемых радиоэлектронных элементов. Каждый более-менее качественный блок питания содержит узел стабилизации напряжения, которое может изменяться при изменении сопротивления нагрузки либо при отклонении входного напряжения от номинального значения.

Стабилизация напряжения выполняется главным образом с целью обеспечения нормального режима работы остальных радиоэлементов устройства, например микросхем, транзисторов, микроконтроллеров и т.п.

Стабилитроны широко используются в маломощных блоках питания либо в отдельных его узлах, мощность которых редко превышает десятки ватт.

Главное преимущество стабилитронов – их малая стоимость и габариты, поэтому они до сих пор не могут вытисниться интегральными стабилизаторами напряжения типа LM7805 или 78L05 и т.п.

Стабилитрон очень похож на диод, поскольку его полупроводниковый кристалл помещен в аналогичный корпус.

Условное графическое обозначение стабилитрона на чертежах электрических схем также похоже на обозначение диода, только со стороны катода добавлена короткая горизонтальная черточка, направленная в сторону анода.

Диоды и стабилитроны

Диоды относятся к простейшим полупроводниковым приборам, функционирующим на основе электронно-дырочного перехода, известного как p-n-переход. Свойство односторонней проводимости наглядно передается на графических обозначениях. Стандартный диод изображается в виде треугольника, символизирующего анод. Вершина треугольника указывает направление проводимости и упирается в поперечную черту, обозначающую катод. Все изображение пересекается по центру линией электрической цепи.

Для маркировки диодов используется буквенное обозначение VD. Оно отображает не только отдельные элементы, но и целые группы, например, диодные мосты. Тип того или иного диода указывается возле его позиционного обозначения.

Базовый символ применяется и для обозначения стабилитронов, представляющих собой полупроводниковые диоды с особыми свойствами. В катоде присутствует короткий штрих, направленный в сторону треугольника, символизирующего анод. Данный штрих располагается неизменно, независимо от положения значка стабилитрона на принципиальной схеме.

Маркировка стабилитронов

Маркировка наносится на корпус стабилитрона в виде цифр и букв (или буквы). Различают принципиально два разных типа маркировки. Стабилитрон в стеклянном корпусе имеет привычную для нас маркировку, непосредственно обозначающую номинальное напряжение стабилизации. Цифры могут быть разделены буквой V, выполняющую роль десятичной точки. Например, 5V1 означает 5,1 В.

Менее понятный способ маркировки состоит из четырех цифр и буквы в конце. Если вы не опытный радиолюбитель, то без даташита никак не обойтись. Для примера расшифруем параметры опорного диода серии 1N5349B. Больше всего нас интересует первый столбец, в котором приведено номинальное напряжение 12 В. Второй столбец – номинальное значения ток – 100 мА.

Катод стабилитрона любого типа обозначается кольцом черного или синего цвета, которое наносится на корпус со стороны соответствующего вывода.

Заключение

Правильный подбор параметров стабилитрона позволит получить стабильный ток, который из него подается на цепь. Обязательно подбирайте такие параметры предохранителя, используя соответствующий справочник, чтобы входное напряжение не испортило деталь, ему желательно находиться приблизительно в середине диапазона UCT ± ΔUCT.

Программа Color and Code имеет обширный сервис и позволяет решать комплекс задач разнообразного характера в одном приложении: находить номинал или вид радиокомпонентов по кодовой или цветовой маркировке, определять электрические параметры радиокомпонентов; выполнять радиотехнические расчеты; находить тип и выбирать нужные размеры радиокомпонентов; подбирать аналоги радиодеталей; изучать назначения ножек микросхем.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации