Андрей Смирнов
Время чтения: ~20 мин.
Просмотров: 1

Пробник для проверки оптопар

Параметры и особенности работы устройства

Опираясь на точную конструкцию прибора, можно определить его электрическую прочность. Под этим термином понимается значение напряжения, возникающего между цепями входа и выхода.Так, производители оптопар, обеспечивающих гальваническую изоляцию, демонстрируют целый ряд моделей с различными корпусами:

1. DIP;
2. SOP;
3. SSOP;
4. Miniflat-lead.

В зависимости от типа корпуса у оптопары формируется то или иное напряжение изоляции. Чтобы создать условия, в которых уровень напряжения достаточный для пробоя изоляции был достаточно велик, следует сконструировать оптопару таким образом, чтобы следующие детали были расположены достаточно далеко друг от друга:

  • Световой диод и оптический регистратор;
  • Внутренняя и внешняя сторона корпуса.

В отдельных случаях можно обнаружить оптопары специализированной группы, изготавливаемые в соответствии с международным стандартом безопасности. Уровень электрической прочности у этих моделей на порядок выше. Другой значимый параметр транзисторной оптопары носит название «коэффициента передачи тока». Согласно значению этого коэффициента устройство относят к той или иной категории, что и отображается в названии модели.

Относительно уровня нижней рабочей частоты оптронов никаких ограничений нет: они хорошо функционируют в цепи с постоянным током. А верхняя граница рабочей частоты этих приборов, задействованных в передаче сигналов цифрового происхождения, исчисляется в сотнях мегагерц. Для оптронов линейного типа этот показатель ограничивается десятками мегагерц. Для самых медленных конструкций, включающих в себя лампу накаливания, наиболее характерна роль низкочастотных фильтров, работающих на частотах, не достигающих 10 Герц

Существует две основные причины тому, что работа транзисторной пары сопровождается шумовыми эффектами:

  • Проходная ёмкость между световым диодом и транзисторной базой;
  • Паразитная ёмкость между коллектором и фототранзисторной базой.

Чтобы побороть первую причину, понадобится вмонтировать особый экран. Вторая же устраняется через верно подобранный рабочий режим.

Датчик скорости с оптопарой.

Оптореле

Оптореле, иначе называемое твердотельным реле, обычно используется для регуляции работы цепи с большими управляющими токами. Роль управляющего элемента здесь обычно выполняют два MOSFET транзистора со встречным подключением, подобная конфигурация обеспечивает возможность функционирования в условиях переменного тока.

Классификация видов оптореле

Для оптореле определено три типа топологий:

  1. Нормально разомкнутые.Предполагается, что управляющая цепь будет замыкаться лишь в момент подачи управляющего напряжения на выводы светового диода.
  2. Нормально замкнутые.Предполагается, что управляющая цепь будет размыкаться лишь в момент подачи управляющего напряжения на выводы светового диода.
  3. Переключающая.Третья топология предполагает сочетание каналов нормально-замкнутого и нормально разомкнутого типа.

Оптореле подобно оптопаре имеет характеристику по электрической прочности.

Разновидности оптореле

  • Модели стандартного типа;
  • Модели, имеющие малое сопротивление;
  • Модели, имеющие малое СxR;
  • Модели, имеющие малое напряжение смещения;
  • Модели, имеющие высокое напряжение изоляции.

Основные типы транзисторов

Существует два основных типа транзисторов — биполярные и полевые. В первом случае выходной ток создается при участии носителей обоих знаков (дырок и электронов), а во втором случае — только одного. Определить неисправность каждого из них поможет прозвонка транзистора мультиметром.

Биполярные транзисторы по своей сути являются полупроводниковыми приборами. Они оборудованы тремя выводами и двумя р-п-переходами. Принцип действия этих устройств предполагает использование положительных и отрицательных зарядов — дырок и электронов. Управление протекающими токами выполняется с помощью специально выделенного управляющего тока. Данные устройства широко применяются в электронных и радиотехнических схемах.

Биполярные транзисторы состоят из трехслойных полупроводников двух типов — «р-п-р» и «п-р-п». Кроме того в конструкции имеется два р-п-перехода. Соединение полупроводниковых слоев с внешними выводами осуществляется через невыпрямляющие полупроводниковые контакты. Средний слой считается базой, которая подключается к соответствующему выводу. Два слоя, расположенные по краям, также подключены к выводам — эмиттеру и коллектору. На электрических схемах для обозначения эмиттера используется стрелка, показывающая направление тока, протекающего через транзистор.

В разных типах транзисторов у дырок и электронов — носителей электричества могут быть собственные функции. Более всего распространен тип п-р-п из-за лучших параметров и технических характеристик. Ведущую роль в таких устройствах играют электроны, выполняющие основные задачи по обеспечению всех электрических процессов. Они примерно в 2-3 раза более подвижные, чем дырки, поэтому и обладают повышенной активностью. Качественные улучшения приборов происходят также за счет площади перехода коллектора, которая значительно больше площади перехода эмиттера.

В каждом биполярном транзисторе имеется два р-п-перехода. Когда выполняется проверка транзистора мультиметром, это позволяет проверять работоспособность устройств, контролируя значения сопротивлений переходов при подключении к ним прямого и обратного напряжения. Для нормальной работы п-р-п-устройства на коллектор подается положительное напряжение, под действием которого открывается базовый переход. После возникновения базового тока, появляется коллекторный ток. При возникновение в базе отрицательного напряжения, транзистор закрывается и течение тока прекращается.

Базовый переход в р-п-р-устройствах открывается под действием отрицательного напряжения на коллекторе. Положительное напряжение дает толчок для закрытия транзистора. Все необходимые коллекторные характеристики на выходе можно получить, плавно изменяя значения тока и напряжения. Это позволяет эффективно проверить биполярный транзистор тестером.

Существуют электронные устройства, все процессы в которых управляются действием электрического поля, направленного перпендикулярно току. Эти приборы называются полевыми или униполярными транзисторами. Основными элементами являются три контакта — исток, сток и затвор. Конструкция полевого транзистора дополняется проводящим слоем, исполняющим роль канала, по которому течет электрический ток.

Данные устройства представлены модификациями «р» или «п»-канального типа. Каналы могут располагаться вертикально или горизонтально, а их конфигурация бывает объемной или приповерхностной. Последний вариант также разделяется на инверсионные слои, содержащие обогащенные и обедненные. Формирование всех каналов происходит под воздействием внешнего электрического поля. Устройства с приповерхностными каналами имеют структуру, в состав которой входит металл-диэлектрик-полупроводник, поэтому они называются МДП-транзисторами.

Биполярный транзистор

Наиболее распространенные транзисторы. Используются в основном в схемах усиления или генерации сигнала: в усилителях, генераторах, модуляторах, инверторах и т. д. Бывают двух типов: p-n-p и n-p-n. Не углубляясь в структуру полупроводникового прибора, достаточно будет сказать, что каждый p-n переход представляет собой диод. Строго говоря, это не совсем так, но для проверки работоспособности такое представление вполне допустимо. Таким образом, последовательность p-n-p представима в виде двух диодов, соединенных катодами, а n-p-n – двух диодов, соединенных анодами. Чтобы проверить, работоспособность такого элемента, нужно мультиметром замерить сопротивление переходов.

Определение работоспособности p-n-p полупроводника:

  • Берется мультиметр. Черный провод (обозначим его как Ч) помещается в гнездо COM (минус).
  • Красный (К) – в гнездо VΩmA (плюс).
  • Тестер выставляется на замер электрического сопротивления. Предельное значение выбирается 2 кОм. Это означает, что мультиметр может корректно измерять сопротивление от 0 до 2000 Ом. При превышении данного порога, на экране прибора загорится «1».
  • Для замера прямых сопротивлений Ч закрепляется на базе элемента.
  • Чтобы замерить величину сопротивления эмиттерного перехода, К помещается на эмиттер.
  • Измеренное значение должно быть от 500 до 1200 Ом. Аналогично и для коллектора.
  • Для измерения обратных сопротивлений на базе элемента закрепляется К. Ч поочередно помещается на коллектор и эмиттер. Полученные значения должны превышать установленный порог в 2кОм. Об этом, в обоих случаях, будет свидетельствовать цифра «1» на экране тестера.
  • Для n-p-n полупроводника применяется та же самая методика. За исключение того, что в п.1 Ч и К помещаются в противоположные гнезда. Тем самым меняется полярность щупов тестера.

Если изначально нет информации относительно расположения базы, коллектора, эмиттера, это нетрудно определить. Измерительный прибор устанавливается в состояние п. 1 и п. 2 вышеприведенной схемы. К (плюс) помещается на правый вывод полупроводника. Ч (минус) поочередно замыкается на средний и левый выводы. Если в обоих случаях тестер покажет «1», то данный контакт и есть база. В противном случае аналогичным образом тестируем оставшиеся контакты.

Определение полярности альтернативными методами

Если случилось так, что мультиметра под рукой нет, а полярность необходимо найти, можно использовать альтернативные и «народные» средства.

К примеру, заряды проводки динамиков проверяются при помощи батарейки на 3 вольта. Для этого необходимо на короткий промежуток времени прикоснуться проводами, присоединенными к батарейке, к выводам динамика.

Если диффузор в динамике начинает двигаться наружу, это будет значить, что положительная клемма динамика присоединена к плюсу батарейки, а отрицательная к минусу. Если же диффузор движется внутрь – полярность перепутана: положительная клемма замкнута на минусе, а отрицательная на плюсе.

Если необходимо подключить блок питания постоянного напряжения или аккумулятор, но на них нет маркировки полярности, а под рукой нет мультиметра, плюс и минус можно определить «народными» методами при помощи подручных материалов.

Самый простой способ определения полярности, которым можно воспользоваться дома – это использовать картофель. Для этого необходимо взять один клубень сырого картофеля и разрезать пополам. После этого два провода (желательно разного цвета или с любым другим отличительным знаком) оголенными концами втыкаются в срез картофеля на расстоянии 1-2 сантиметра друг от друга.

Другие концы проводов подключаются к проверяемому источнику постоянно тока, и прибор включается в сеть (если это аккумулятор, то после подсоединения проводов больше ничего делать не нужно) на 15-20 минут. По истечении этого времени на срезе картофеля, вокруг одного из проводов образуется светло-зеленое пятно, которое будет признаком плюсового заряда провода.

Второй способ также не требует, каких либо, особых устройств или инструментов. Для определения полярности проводов источника постоянного тока понадобится емкость с теплой водой, в которую опускаются два подключенных к источнику питания провода.

После включения прибора в сеть вокруг одного из проводов начнут появляться пузыри газа (водород) – это процесс электролиза воды. Эти пузырьки образуются вокруг источника отрицательного заряда.

Следующий способ подойдет в том случае, если есть не используемый, рабочий компьютерный кулер. Способ определения полярности данным методом заключается в том, что кулер необходимо запитать от проверяемого источника бесперебойного питания. Но зачастую в кулерах присутствует три провода:

  • черный, отвечает за отрицательный заряд;
  • красный, отвечает за положительный заряд;
  • желтый, является датчиком оборотов.

В данном случае желтый провод игнорируется и никуда не подключается. Если после подключения кулера к источнику постоянного напряжения, кулер начал работать, то полярность определена правильно, плюс подключен к красному проводу, а минус – к черному. А если кулер не срабатывает – это будет означать что полярность неправильная.

Для этого необходимо дотронутся индикатором до одного из выводов аккумулятора, прижать палец к обратной стороне индикатора (к контакту на рукоятке), а ко второму выводу аккумулятора дотронуться рукой.

Если индикатор начал светиться, то заряд проверенного вывода, с которым он контактирует, имеет положительное значение, а если индикатор не засветился – вывод отрицательный. Но у этого способа определения полярности есть один недостаток.

Если аккумулятор разрядился или поврежден (пробит), индикатор будет загораться при контакте с обеими клеммами, из-за чего определить значения полюсов аккумуляторной батареи будет невозможно.

PC817 характеристики

  • Прямой ток — 50 мА;
  • Пиковый прямой ток — 1 А;
  • Обратное напряжение — 6 В;
  • Рассеяние мощности — 70 мВт.
  • Напряжение коллектор-эмиттер — 35 В;
  • Напряжение эмиттер-коллектор — 6 В;
  • Ток коллектора — 50 мА;
  • Мощность рассеяния коллектора — 150 мВт.

Есть ещё важный параметр — коэффициент передачи по току (CTR) измеряемый в %. В оптопаре PC817 он определяется буквой после основного кода, также как и большинстве других оптопар и других полупроводниковых приборов.

№ моделиМетка коэффициентаCTR (%)
PC817AA80 — 160
PC817BB130 — 260
PC817CC200 — 400
PC817DD300 — 600
PC8*7ABA или B80 — 260
PC8*7BCB или C130 — 400
PC8*7CDC или D200 — 600
PC8*7ACA,B или C80 — 400
PC8*7BDB,C или D130 — 600
PC8*7ADA,B,C или D80 — 600
PC8*7A,B,C,D или без метки50 — 600

Классика вопроса: как проверить биполярный транзистор мультиметром

Этот популярный проводник выполняет две задачи:

  • Режим усиления сигнала. Получая команду на управляющие выводы, прибор дублирует форму сигнала на рабочих контактах, только с большей амплитудой;
  • режим ключа. Подобно водопроводному крану, полупроводник открывает или закрывает путь электрическому току по команде управляющего сигнала.

Полупроводниковые кристаллы соединены в корпусе, образуя p-n переходы. Такая же технология применяется в диодах. По сути – биполярный транзистор состоит из двух диодов, соединенных в одной точке одноименными выводами. Чтобы понять, как проверить транзистор мультиметром, рассмотрим отличие pnp и npn структуры.

Так называемый «прямой» (см. фото) С обратным переходом, как изображено на фото Разумеется, если вы спаяете диоды так, как показано на условной схеме – транзистор не получится. Но с точки зрения проверки исправности – можно представить, что у вас обычные диоды в одном корпусе.

То есть, положив перед собой схему полупроводниковых переходов, вы легко определите не только исправность детали в целом, но и локализуете конкретный неисправный p-n переход. Это поможет понять причину поломки, ведь полупроводник работает не автономно, а в составе электросхемы.

Как проверить биполярный транзистор мультиметром — видео.

Возникает резонный вопрос: Как определить маркировку выводов транзистора, не имея каталога? Такая практика пригодится не только для проверки радиодеталей. При сборке монтажной платы, незнание конструкции транзистора приведет к его перегоранию.

С помощью мультиметра можно определить назначение выводов.

Важно! Это правило работает лишь в случае с исправным транзистором. Впрочем, если деталь неисправна, вам незачем определять названия контактов.. Мультиметр выставляем в режим измерения сопротивления, предел шкалы – 2000 Ом

Выводы прибора – красный плюс, черный минус. Транзистор располагаем любым удобным способом, выводу условно определяем как «левый», «средний», «правый»

Мультиметр выставляем в режим измерения сопротивления, предел шкалы – 2000 Ом. Выводы прибора – красный плюс, черный минус. Транзистор располагаем любым удобным способом, выводу условно определяем как «левый», «средний», «правый».

Определение базы

Красный щуп на левый контакт, замеряем сопротивление на среднем и правом выводах. В нашем случае это значение «бесконечность» (на индикаторе «1»), и 816 Ом (типичное сопротивление исправного p-n перехода при прямом подключении). Фиксируем результат измерений.Красный щуп на середину, производим замер левого и правого контактов

С «бесконечностью» все понятно, обращаем внимание на то, что вторая пара показала результат, отличный от первого измерения. Это нормально, эмиттерный и коллекторный переходы имеют разное сопротивление

Об этом позже.Красный щуп на правый контакт, производим замеры оставшихся комбинаций. В обоих случаях получаем единичку, то есть «бесконечное» сопротивление. При таком раскладе, база находится на правом выводе. Этих данных недостаточно для пользования деталью. У производителей нет единого стандарта по расположению эмиттера и коллектора, поэтому определяем выводы самостоятельно.

Определение остальных выводов

Черный щуп на «базу», меряем сопротивление переходов. Одна ножка показала 807 Ом (это коллекторный переход), вторая – 816 Ом (эмиттерный переход).

Важно! Эти значения сопротивления не являются константой, в зависимости от производителя и мощности транзистора величина может незначительно отклоняться. Главное правило – сопротивление коллектора относительно базы меньше, чем сопротивление эмиттера.. Точно таким же способом производится проверка исправности биполярного транзистора

В ходе определения контактов, мы заодно проверили исправность детали. Если вам известно расположение выводов – проверяете переходы «база-эмиттер» и «база коллектор», меняя полярность щупов

Точно таким же способом производится проверка исправности биполярного транзистора. В ходе определения контактов, мы заодно проверили исправность детали. Если вам известно расположение выводов – проверяете переходы «база-эмиттер» и «база коллектор», меняя полярность щупов.

При прямом подключении – вы увидите значения, аналогичные предыдущим замерам. При обратном – сопротивление должно быть бесконечным. Если это не так – переходы относительно базы неисправны. Последняя проверка – переход «эмиттер-коллектор». В обоих направлениях исправная деталь покажет бесконечное сопротивление. Если в ходе тестирования вы получили именно такие результаты – ваш биполярный транзистор исправен.

Как работают оптронные устройства

Рассмотрим работу двух видов оптронных устройств: оптическо-электронное и оптическое.

Работа оптическо-электронного аппарата основывается на превращении энергии света в электрическую. Переход энергии происходит при помощи твердого тела и процессов электрических фотоэффектов и сияния («горения», «свечения») при воздействии электрического поля.

Эффект фотоэлектричества означает, что твердое тело может излучать электроны под действием фотонов.

Функционирование оптического устройства происходит при тесном взаимодействии электромагнитного испускания и твердого тела.

Сфера применения устройства

Используются они в самых различных сферах:

  • В качестве элементов гальванической развязки оптроны применяются: для связи блоков аппаратуры, между которыми имеется значительная разность потенциалов; для защиты входных цепей измерительных устройств от помех и наводок.
  • Другая важнейшая область применения оптронов – оптическое, бесконтактное управление сильноточными и высоковольтными цепями. Запуск мощных тиристоров, симисторов, управление электромеханическими релейными устройствами. Импульсные блоки питания.
  • Создание “длинных” оптронов (приборов с протяженным гибким волоконно-оптическим световодом) открыло совершенно новое направление применения изделий оптронной техники – связь на коротких расстояниях.
  • Различные оптроны находят применение и в радиотехнических схемах модуляции, автоматической регулировки усиления и других.
  • Воздействие по оптическому каналу используется здесь для вывода схемы в оптимальный рабочий режим, для бесконтактной перестройки режима.
  • Возможность изменения свойств оптического канала при различных внешних воздействиях на него позволяет создать целую серию оптронных датчиков: таковы датчики влажности и загазованности, датчика наличия в объеме той или иной жидкости, датчики чистоты обработки поверхности предмета, скорости его перемещения.
  • Универсальность оптронов как элементов гальванической развязки и бесконтактного управления, разнообразие и уникальность многих других функций являются причиной того, что сферами применения optocoupler стали вычислительная техника, автоматика, связная и радиотехническая аппаратура, автоматизированные системы управления, измерительная техника, системы контроля и регулирования, медицинская электроника, устройства визуального отображения информации.

Вид оптопары с разных сторон.

Преимущества оптронов

  • возможность обеспечения гальванической развязки между входом и выходом;
  • для оптронов не существует каких-либо принципиальных физических или конструктивных ограничений по достижению сколь угодно высоких напряжений и сопротивлений развязки и сколь угодно малой проходной емкости;
  • возможность реализации бесконтактного оптического управления электронными объектами и обусловленные этим разнообразие и гибкость конструкторских решений управляющих цепей;
  • однонаправленность распространения информации по оптическому каналу, отсутствие обратной реакции приемника на излучатель;
  • широкая частотная полоса пропускания оптрона, отсутствие ограничения со стороны низких частот;
  • возможность передачи по оптронной цепи, как импульсного сигнала, так и постоянной составляющей;
  • возможность управления выходным сигналом оптрона путем воздействия на материал оптического канала и вытекающая отсюда возможность создания разнообразных датчиков, а также разнообразных приборов для передачи информации;
  • возможность создания функциональных микроэлектронных устройств с фотоприемниками, характеристики которых при освещении изменяются по сложному заданному закону;
  • невосприимчивость оптических каналов связи к воздействию электромагнитных полей, что обусловливает их защищенность от помех и утечки информации, а также исключает взаимные наводки;
  • физическая и конструктивно-технологическая совместимость с другими полупроводниковыми и радиоэлектронными приборами.

Недостатки оптронов

  • значительная потребляемая мощность, обусловленная необходимостью двойного преобразования энергии (электричество – свет – электричество) и невысокими КПД этих переходов;
  • повышенная чувствительность параметров и характеристик к воздействию повышенной температуры и проникающей радиации;
  • временная деградация параметров optocoupler;
  • относительно высокий уровень собственных шумов, обусловленный, как и два предыдущих недостатка, особенностями физики светодиодов;
  • сложность реализации обратных связей, вызванная электрической разобщенностью входной и выходной цепей;
  • конструктивно-технологическое несовершенство, связанное с использованием гибридной непланарной технологии, с необходимостью объединения в одном приборе нескольких – отдельных кристаллов из различных полупроводников, располагаемых в разных плоскостях.

Структура оптрона

Классификация разновидностей оптопар

Существует несколько характеристик, в соответствии с которыми можно разделить модели оптопар на несколько групп.

В зависимости от степени интеграции:

  • элементарный оптрон – включает в себя 2 и более элемента объединённых общим корпусом;
  • оптронная интегральная схема – конструкция состоит из одной и более оптопар и, помимо этого, ещё может быть оснащена дополняющими элементами (например, усилителем).

В зависимости от типа фотоприёмника:

  • Фоторезисторные (или просто резисторные оптопары);
  • Фотодиодные оптопары;
  • Фототранзисторные (используется обычный или составной биполярный фототранзистор) оптопары;
  • Фототиристорные, либо фотосимисторные оптопары;
  • Оптопары функционирующие с помощью фотогальванического генератора (солнечная батарейка).

Конструкция устройств последнего вида зачастую дополняются полевыми транзисторами, за управление затвором которого отвечает тот же генератор.

Фотосимисторные оптроны или те, которые оснащены полевыми транзисторами, могут называться «оптореле», либо «твердотельное реле».

Рис.1: Устройство оптрона

Оптоэлектронные устройства работают по-разному в зависимости от того, к какому из двух видов направлений они относятся:

Электронно-оптическое.

Работа прибора базируется на принципе, в соответствии с которым происходит преобразование световой энергии в электрическую. Причём, переход осуществляется посредством твёрдого тела  и происходящих в нём процессов внутреннего фотоэлектрического эффекта (выражающегося в испускании веществом электронов под воздействием фотонов) и эффекта свечения под действием электрического поля.

Оптическое.

Прибор функционирует благодаря тонкому взаимодействию твёрдого тела и электромагнитного излучения, а также используя лазерные, голографические и фотохимические устройства.

Фотонные электронно-вычислительные машины компонуются с использованием одной из двух категорий оптических элементов:

  • Оптронов;
  • Кванто-оптических элементов.

Они являются моделями устройств соответственно электронно-оптического и оптического направлений.

Будет ли оптрон передавать сигнал линейно, определяется теми характеристиками, которыми обладает вмонтированный в конструкцию фотоприёмник. Наибольшую линейность передачи можно ожидать от резисторных оптронов. Как следствие, процесс эксплуатации подобных устройств отличается наибольшим удобством. Ступенью ниже стоят модели с фотодиодами и одиночными биполярными транзисторами.

Для обеспечения работы импульсных приборов применяют оптроны на биполярных, либо полевых транзисторах, поскольку там нет необходимости в линейной передаче сигнала.

Наконец, фототиристорные оптроны монтируют, чтобы обеспечить гальваническую изоляцию и безопасность эксплуатации устройства.

Описание устройства

Излучатель – бескорпусный светодиод, – как правило, помещают в верхней части металлического корпуса, а в нижней – на кристаллодержателе – укрепляют кристалл кремниевого фотоприемника, например фототиристора. Все пространство между светодиодом и фототиристором заливают твердеющей прозрачной массой. Эту заливку покрывают отражающим внутрь световые лучи слоем, который препятствует рассеянию света за пределы рабочей зоны. Мало отличается от описанной конструкция резисторного оптрона.

Здесь в верхней части металлического корпуса укреплена сверхминиатюрная лампа накаливания, а в нижней – фоторезистор на основе селенистого кадмия. Фоторезистор изготавливают отдельно, на тонкой подложке из ситалла. На нее напыляют пленку из полупроводникового материала – селенида кадмия, а затем – формообразующие электроды из токопроводящего материала (например алюминия). К электродам приваривают выходные выводы. Жесткое соединение лампы и подложки между собой обеспечивается затвердевшей прозрачной массой. Отверстия в корпусе для выводов оптрона залиты стеклом. Герметичное соединение крышки и основания корпуса обеспечено сваркой.

Вольт-амперная характеристика (ВАХ) тиристорного оптрона примерно такая же, что и у одиночного тиристора. При отсутствии входного тока (I=0 – темновая характеристика) фототиристор может включиться только при очень высоком значении приложенного к нему прямого напряжения (800…1000 В). Так как практически приложение столь большого напряжения недопустимо, то эта кривая имеет чисто теоретический смысл.

Если приложить к фототиристору прямое рабочее напряжение (от 50 до 400 В, в зависимости от типа оптрона), включение прибора возможно только при подаче входного тока, который теперь является управляющим. Скорость включения оптрона зависит от значения входного тока. Типичные значения времени включения t=5…10 мкс. Время выключения оптрона связано с процессом рассасывания неосновных носителей тока в переходах фототиристора и зависит только от значения протекающего выходного тока. Реальное значение времени выключения находится в пределах 10…50 мкс.

Максимальный и рабочий выходной ток фоторезисторного оптрона резко уменьшается при увеличении температуры окружающей среды выше 40 градусов по цельсия. Выходное сопротивление этого оптрона до значения входного тока 4 мА остается постоянным, а при дальнейшем увеличении входного тока (когда яркость свечения лампы накаливания начинает возрастать) резко уменьшается. Кроме описанных выше, существуют оптроны с так называемым открытым оптическим каналом. Здесь осветителем служит светодиод инфракрасного излучения, а фотоприемником могут быть фоторезистор, фотодиод или фототранзистор.

Отличие этого оптрона в том, что его излучение выходит наружу, отражается от какого-либо внешнего предмета и возвращается в оптрон, к фотоприемнику. В таком оптроне выходным током может управлять не только входной ток, но также изменение положения внешней отражающей поверхности. У оптронов с открытым оптическим каналом оптические оси излучателя и приемника расположены либо параллельно, либо под небольшим углом. Существует конструкции подобных оптронов с соосным расположением оптических осей. Такие приборы называют оптопрерывателями.

Оптрон или оптопара.

Как проверить резистор (сопротивление) с помощью мультиметра если он в килоомах

Как и при любом измерении, при измерении сопротивления необходимо соблюдать некоторые меры предосторожности. Таким образом можно избежать повреждения мультиметра и сделать более точные измерения

Рассмотрим как проверить резистор, как узнавать его исправноть по внешним признакам, как узнать точные данные.

Не забудьте убедиться, что тестируемая цепь не включена. При некоторых обстоятельствах необходимо измерять значения сопротивления, действительные в цепи

При этом очень важно убедиться, что цепь не включена. Мало того, что ток, протекающий в цепи, сделает недействительными любые показания, но если напряжение будет достаточно высоким, то возникший ток может повредить мультиметр.
Убедитесь, что конденсаторы в тестируемой цепи разряжены

Любой ток, который течет в результате приведет их к изменению показаний счетчика. Кроме того, любые конденсаторы в цепи, которые разряжены, могут заряжаться в результате тока от мультиметра, и в результате может потребоваться короткое время для установления показаний.

Проверка оптопары

Для быстрой проверки оптопары я провел несколько тестовых экспериментов. Сначала на макетной плате.

Вариант на макетной плате

В результате удалось получить очень простую схему для проверки PC817 и других похожих оптронов.

Первый вариант схемы

Первый вариант я забраковал по той причине что он инвертировал маркировку транзистора с n-p-n на p-n-p

Поэтому чтобы не возникало путаницы я изменил схему на следующую ;

Второй вариант схемы

Второй вариант работал правильно но неудобно было распаять стандартную панельку

SCS- 8

Третий вариант схемы

Uf — напряжение на светодиоде при котором начинает открываться фототранзистор.

в моем варианте Uf = 1.12 Вольт.

В результате получилась такая очень простая конструкция:

Как видно из фото деталь развернута не по ключу.

Используя которую можно очень быстро проверить деталь. За свою практику ремонтов конечно не часто , но я сталкивался с неработающими оптопарами и раньше мне приходилось заморачиваться над проверкой детали когда иногда бывало заходил в тупик во время сложного ремонта.

Конечный вариант — все очень просто.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации