Андрей Смирнов
Время чтения: ~15 мин.
Просмотров: 25

Проверка тиристоров всех видов мультиметром

Варисторы: применение

Такие приборы играют важную роль в жизни человека.

Из всего вышеперечисленного можно сказать, что варистор, принцип работы которого заключается в защите электроники от высокого напряжения в сети, помогает предотвратить поломку многих электрических приборов и сохранить проводку в целостности. Основным местом являются электрические цепи в различном оборудовании. Например, они встречаются в пусковых элементах освещения, которые еще называются балластами. Также устанавливаются в электрических схемах специальные варисторы, применение которых необходимо для стабилизации напряжения и тока.

Такие устройства используются еще в линиях электропередач. Но там они называются разрядниками, рабочее напряжение которых составляет более двадцати тысяч вольт.

Варисторы могут работать в большом диапазоне напряжения, который начинается с совсем маленького значения в 3 В, и заканчивается 200 В. Что касается силы тока элемента, то здесь диапазон составляет от 0,1 до 1 А. Такие показатели тока действительны только для низковольтного технического оборудования.

Назначение и характеристики

Изготавливаются такого типа резисторы путём спекания при высокой температуре полупроводника и связующего материала. В качестве полупроводника используется карбид кремния, находящийся в порошкообразном состоянии, или оксид цинка, а связующего вещества — стекло, лак, смола. Полученный после спекания элемент подвергается металлизации с дальнейшим формированием выводов. По своей конструкции приборы выполняются в форме, похожей на диск, таблетку, цилиндр, или плёночного вида.

Обладая свойством резко уменьшать своё сопротивление при возникновении на его выводах определённого напряжения, варистор применяется в электронных схемах в качестве защитного элемента. При возникновении броска напряжения определённой величины полупроводниковый прибор мгновенно снижает своё внутреннее сопротивление до десятков Ом, тем самым практически закорачивая цепь, не давая импульсу повредить остальные элементы схемы. Поэтому важным параметром варистора является значение напряжения, при котором наступает пробой устройства.

Принцип работы элемента подразумевает его включение параллельно цепи питания. После его срабатывания и уменьшения напряжения на входе он самовосстанавливается до первоначального значения. Из-за малой инерционности это происходит мгновенно.

Основные параметры

Перед тем как проверить варистор на исправность, необходимо понимать не только принцип его действия, но и знать, какими характеристиками он обладает. Как и любой электронный элемент, варистор имеет ряд характеристик, которые позволяют его использовать в различных схемах. Основным параметром является вольт-амперная характеристика (ВАХ). Она наглядно показывает, как меняется ток при той или иной величине напряжения. Изучая ВАХ, можно увидеть что варистор, обладая симметрично-двунаправленной характеристикой, работает как в прямой, так и обратной зоне синусоиды, напоминая стабилитрон.

  • Um — наибольшее допустимое рабочее напряжение для тока переменной или постоянной величины.
  • P — мощность, которую может рассеять на себе элемент без ухудшения своих параметров.
  • W — допустимая энергия в джоулях, которую может поглотить радиоэлемент при воздействии одиночного импульса.
  • Ipp — наибольшее значение импульсного тока, для которого определена форма импульса.
  • Co — ёмкость, значение которой измеряется у варистора в нормальном состоянии.

Но на практике особое внимание уделяется в основном параметру Um. Эта характеристика показывает уровень напряжения, при котором происходит пробой элемента и начинает течь ток

Виды устройств

Разнообразие встречаемых видов варисторов обусловлено тем, что производители стремятся в первую очередь повысить их быстродействие. Поэтому и используются SMD технологии безвыводного монтажа, что позволяет добиваться малого времени срабатывания при скачке входного напряжения. Типовое время срабатывания элементов с выводами находится в пределе 15−25 наносекунд, а SMD — 0,5 наносекунд.

Маркировка элементов

Независимо от производителя существует стандарт маркировки варисторов. На сам элемент принято наносить цифробуквенный код, в котором зашифровываются основные параметры. Например, для дискового типа это обозначение выглядит как S6K210, где:

  • S — материал, из которого изготовлен варистор;
  • 6 — диаметр корпуса элемента, указывается в миллиметрах;
  • K — величина допуска отклонения;
  • 210 — значение рабочего напряжения, выраженное в вольтах.

На схемах радиоэлемент графически обозначается как перечёркнутый прямоугольник. На перечёркивающей палочке делается полочка, над которой ставится буква U. Подписывается на схемах элемент латинскими буквами RU.

Основные типы транзисторов

Существует два основных типа транзисторов — биполярные и полевые. В первом случае выходной ток создается при участии носителей обоих знаков (дырок и электронов), а во втором случае — только одного. Определить неисправность каждого из них поможет прозвонка транзистора мультиметром.

Биполярные транзисторы по своей сути являются полупроводниковыми приборами. Они оборудованы тремя выводами и двумя р-п-переходами. Принцип действия этих устройств предполагает использование положительных и отрицательных зарядов — дырок и электронов. Управление протекающими токами выполняется с помощью специально выделенного управляющего тока. Данные устройства широко применяются в электронных и радиотехнических схемах.

Биполярные транзисторы состоят из трехслойных полупроводников двух типов — «р-п-р» и «п-р-п». Кроме того в конструкции имеется два р-п-перехода. Соединение полупроводниковых слоев с внешними выводами осуществляется через невыпрямляющие полупроводниковые контакты. Средний слой считается базой, которая подключается к соответствующему выводу. Два слоя, расположенные по краям, также подключены к выводам — эмиттеру и коллектору. На электрических схемах для обозначения эмиттера используется стрелка, показывающая направление тока, протекающего через транзистор.

В разных типах транзисторов у дырок и электронов — носителей электричества могут быть собственные функции. Более всего распространен тип п-р-п из-за лучших параметров и технических характеристик. Ведущую роль в таких устройствах играют электроны, выполняющие основные задачи по обеспечению всех электрических процессов. Они примерно в 2-3 раза более подвижные, чем дырки, поэтому и обладают повышенной активностью. Качественные улучшения приборов происходят также за счет площади перехода коллектора, которая значительно больше площади перехода эмиттера.

В каждом биполярном транзисторе имеется два р-п-перехода. Когда выполняется проверка транзистора мультиметром, это позволяет проверять работоспособность устройств, контролируя значения сопротивлений переходов при подключении к ним прямого и обратного напряжения. Для нормальной работы п-р-п-устройства на коллектор подается положительное напряжение, под действием которого открывается базовый переход. После возникновения базового тока, появляется коллекторный ток. При возникновение в базе отрицательного напряжения, транзистор закрывается и течение тока прекращается.

Базовый переход в р-п-р-устройствах открывается под действием отрицательного напряжения на коллекторе. Положительное напряжение дает толчок для закрытия транзистора. Все необходимые коллекторные характеристики на выходе можно получить, плавно изменяя значения тока и напряжения. Это позволяет эффективно проверить биполярный транзистор тестером.

Существуют электронные устройства, все процессы в которых управляются действием электрического поля, направленного перпендикулярно току. Эти приборы называются полевыми или униполярными транзисторами. Основными элементами являются три контакта — исток, сток и затвор. Конструкция полевого транзистора дополняется проводящим слоем, исполняющим роль канала, по которому течет электрический ток.

Данные устройства представлены модификациями «р» или «п»-канального типа. Каналы могут располагаться вертикально или горизонтально, а их конфигурация бывает объемной или приповерхностной. Последний вариант также разделяется на инверсионные слои, содержащие обогащенные и обедненные. Формирование всех каналов происходит под воздействием внешнего электрического поля. Устройства с приповерхностными каналами имеют структуру, в состав которой входит металл-диэлектрик-полупроводник, поэтому они называются МДП-транзисторами.

Starting VDR

After having all basic software parts ready on the system the VDR with its OSD must be configured.

If a hardware decoder for picture output is used, then the connected TV should be turned on. When using software output the client for this must be started after VDR.

First, learn the key definitions; that is, connecting keys on the remote control to VDR’s internal commands.

NoteTo edit the keyboard configuration, or (more likely) to delete it to go back to learning the keys the special configuration file can be modified. VDR stores its key-definitions in /etc/vdr/remote.conf.

We begin with starting VDR:

* Preparing start of vdr:
*   config files ...                                        
*   Waiting for prerequisites (devices nodes etc.) ...      
* Starting vdr ...                                          
* First start of vdr: No check for running vdr possible
* until control device (remote/keyboard) keys are learnt!

NoteUsers of software decoders should now start the client program that opens the window to show the TV picture and the OSD.

For users of vdr-softdevice:

For users of vdr-xineliboutput:

The most useful keys for VDR are:

  • Cursor keys (Left/Right/Up/Down)
  • Menu/Exit/Ok
  • Colors (Red/Green/Yellow/Blue)
  • Number keys (0-9)

ImportantIf not many keys exist on the remote be sure to assign these. Some remotes have Play/Pause/etc. on the same keys as the colors, so use them for the colors.

Now that the basic installation is over it is time to configure VDR. Switch to the output screen and follow the on-screen instructions. VDR asks the user to press various keys on the remote control so it can learn the correct key codes. If a remote control is not present, then the keyboard can be used as an alternative.

Now add the VDR init script to the default runlevel to get it started each time the computer boots:

Принцип действия, обозначение на схеме, варианты применения

Внешне варистор очень похож на конденсатор, но его внутреннее устройство, как видно из рисунка 3, совершенное иное.

Рисунок 3. Конструкция варистора (1) и его обозначение на схемах (2)

Обозначения:

  • А – два металлических электрода в форме диска;
  • В – вкрапления оксида цинка (размер кристаллов не соблюден);
  • С – оболочка полупроводника, сделанная на основе синтетических отвердителей (эпоксидов);
  • D – керамический изолятор;
  • Е – выводы.

Помимо конструкции, на рисунке 3 показано обозначение элемента на принципиальных схемах (2).

Содержание оксида цинка в керамическом изоляционном слое определяет порог срабатывания варистора, как только напряжение станет выше допустимого, сопротивление резко снижается и проходящий через полупроводник ток увеличивается. Вырабатывающаяся в результате этого процесса тепловая энергия рассеивается в воздухе.

Такой принцип действия позволяет не допустить выход из строя электронных устройств при краткосрочном перепаде напряжения. Длительный импульс вызовет перегрев и разрушение варистора, но на этот процесс требуется время. Хоть оно исчисляется долями секунды, в большинстве случаев, этого достаточно для срабатывания плавкого предохранителя.

Именно поэтому после замены предохранителя необходимо проверять варистор (внешний осмотр и тестирование мультиметром). В противном случае, следующий перепад напряжения, с большой долей вероятности, приведет к разрушению компонентов электронного устройства.

Теперь, когда мы разобрались с основами, можно перейти к проверке варистора

Определяем работоспособность элемента (пошаговая инструкция)

Для данной операции нам потребуются следующие инструменты:

  • Отвертка (как правило, крестовая). Чтобы добраться до платы блока питания, потребуется разобрать корпус электронного устройства, тут без отвертки не обойтись.
  • Щетка, для очистки печатной платы. Как показывает практика, в БП накапливается много пыли. Особенно это характерно для устройств с принудительным охлаждением, типичный пример, – блок питания компьютера.
  • Паяльник. В силовой части БП на плате большие дорожки и нет мелких элементов, поэтому допустимо использовать устройства мощностью до 75 Вт.
  • Канифоль и припой.
  • Мультиметр или другой прибор, позволяющий измерить сопротивление.

Когда все инструменты готовы, можно приступать к процедуре. Действуем по следующему алгоритму:

  1. Разбираем корпус устройства. В данном случае дать детальную инструкцию как это сделать затруднительно, поскольку конструкции приборов существенно отличаются друг от друга. Эту информацию можно найти в инструкции к оборудованию или на сайте производителя, также поможет поиск на тематических форумах и блогах.
  2. Добравшись до печатной платы БП, следует очистить ее от пыли. Делать это нужно аккуратно, чтобы не повредить радиодетали. Бывали случаи, когда от чрезмерного усилия, в процессе чистки, щетка повреждала транзистор, тиристор или другой компанент.
  3. Когда пыль удалена, находим варистор, он имеет характерный вид, поэтому спутать его можно разве что с конденсатором, но последний отличается маркировкой. Варистор в силовой части БП
  4. Найдя элемент, тщательно осматриваем его на предмет повреждений. Это могут быть трещины, сколы и другие нарушения целостности корпуса. В большинстве случаев, определить неисправность можно на этом этапе. При обнаружении повреждений элемент выпаиваем и меняем на такой же или аналог. Подобрать его можно самостоятельно (расшифровка маркировки приводилась выше) или посоветовавшись с продавцом радиодеталей. Варистор со следами повреждений
  5. Если визуальный осмотр не дал результатов, следует проверить варистор мультиметром, для этого выпаиваем деталь.
  6. Для проведения измерения подключаем щупы к мультиметру (на рисунке 7 гнезда показаны зеленым цветом) и переводим его в режим измерения максимального сопротивления (красный круг на рис. 7). Если у вас мультиметр другого типа, воспользуйтесь инструкцией к прибору. Рисунок 7. Установка режима отмечена красным, гнезда для щупов – зеленым
  7. Касаемся щупами выводов и измеряем сопротивление варистора. Оно должно быть бесконечно большим. Иное значение указывает на неисправность варистора, следовательно, его необходимо заменить.

Важный момент! Прежде, чем измерить сопротивление, убедитесь, что пальцы не касаются стальных наконечников щупов, в этом случае прибор покажет сопротивление кожного покрова.

  1. Произведя замену (если в этом есть необходимость), собираем устройство.

Варистор – это своеобразный полупроводниковый резистор, имеющий нелинейную вольтамперную характеристику. То есть, пока электрическое напряжение на его контактах не достигло какого-то порогового значения, он не будет пропускать ток (вернее будет, но пренебрежительно малый по сравнению с токами, протекающими в схеме, где он установлен). В случае превышения этого уровня, варистор откроется (его сопротивление с нескольких миллионов Ом упадет до единиц и долей Ом).

Принцип действия, обозначение на схеме, варианты применения

Внешне варистор очень похож на конденсатор, но его внутреннее устройство, как видно из рисунка 3, совершенное иное.

Рисунок 3. Конструкция варистора (1) и его обозначение на схемах (2)

Обозначения:

  • А – два металлических электрода в форме диска;
  • В – вкрапления оксида цинка (размер кристаллов не соблюден);
  • С – оболочка полупроводника, сделанная на основе синтетических отвердителей (эпоксидов);
  • D – керамический изолятор;
  • Е – выводы.

Помимо конструкции, на рисунке 3 показано обозначение элемента на принципиальных схемах (2).

Содержание оксида цинка в керамическом изоляционном слое определяет порог срабатывания варистора, как только напряжение станет выше допустимого, сопротивление резко снижается и проходящий через полупроводник ток увеличивается. Вырабатывающаяся в результате этого процесса тепловая энергия рассеивается в воздухе.

Такой принцип действия позволяет не допустить выход из строя электронных устройств при краткосрочном перепаде напряжения. Длительный импульс вызовет перегрев и разрушение варистора, но на этот процесс требуется время. Хоть оно исчисляется долями секунды, в большинстве случаев, этого достаточно для срабатывания плавкого предохранителя.

Именно поэтому после замены предохранителя необходимо проверять варистор (внешний осмотр и тестирование мультиметром). В противном случае, следующий перепад напряжения, с большой долей вероятности, приведет к разрушению компонентов электронного устройства.

Способы проверки

Любой ремонт электроники и электрооборудования начинается с внешнего осмотра, а потом переходят к измерениям. Такой подход позволяет локализовать большую часть неисправностей. Чтобы найти варистор на плате посмотрите на рисунок ниже — так выглядят варисторы. Иногда их можно перепутать с конденсаторами, но можно отличить по маркировке.

Если элемент сгорел и маркировку прочесть невозможно — посмотрите эту информацию на схеме устройства. На плате и в схеме он может обозначаться буквами RU. Условное графическое обозначение выглядит так.

Есть три способа проверить варистор быстро и просто:

  1. Визуальный осмотр.
  2. Прозвонить. Это можно сделать муьтиметром или любым другим прибором, где есть функция прозвонки цепи.
  3. Измерением сопротивления. Это можно сделать омметром с большим пределом измерений, мультиметром или мегомметром.

Варистор выходит из строя, когда через него проходит большой или длительный ток. Тогда энергия рассеивается в виде тепла, и если её количество больше определённого конструкцией — элемент сгорает. Корпус этих компонентов выполняется из твердого диэлектрического материала, типа керамики или эпоксидного покрытия. Поэтому при выходе из строя чаще всего повреждается целостность наружного покрытия.

Можно визуально проверить варистор на работоспособность — на нем не должно быть трещин, как на фото:

Следующий способ — проверка варистора тестером в режиме прозвонки. Сделать это в схеме нельзя, потому что прозвонка может сработать через параллельно подключенные элементы. Поэтому нужно выпаять хотя бы одну его ножку из платы.

Важно: не стоит проверять элементы на исправность не выпаивая из платы – это может дать ложные показания измерительных приборов. Так как в нормальном состоянии (без приложенного к выводам напряжения) сопротивление варистора большое — он не должен прозваниваться

Прозвонку выполняют в обоих направлениях, то есть два раза меняя местами щупы мультиметра

Так как в нормальном состоянии (без приложенного к выводам напряжения) сопротивление варистора большое — он не должен прозваниваться. Прозвонку выполняют в обоих направлениях, то есть два раза меняя местами щупы мультиметра.

На большинстве мультиметров режим прозвонки совмещен с режимом проверки диодов. Его можно найти по значку диода на шкале селектора режимов. Если рядом с ним есть знак звуковой индикации — в нем наверняка есть и прозвонка.

Другой способ проверки варистора на пробой мультиметром является измерение сопротивления. Нужно установить прибор на максимальный предел измерения, в большинстве приборов это 2 МОма (мегаомы, обозначается как 2М или 2000К). Сопротивление должно быть равным бесконечности. На практике оно может быть ниже, в пределах 1-2 МОм.

Интересно! То же самое можно сделать мегаомметром, но он есть далеко не у каждого. Стоит отметить, что напряжение на выводах мегаомметра не должно превышать классификационное напряжение проверяемого компонента.

На этом заканчиваются доступные способы проверки варистора. В этот раз мультиметр поможет радиолюбителю найти неисправный элемент, как и в большом количестве других случаев. Хотя на практике мультиметр в этом деле не всегда нужен, потому что дело редко заходит дальше визуального осмотра. Заменяйте сгоревший элемент новым, рассчитанным на напряжение и диаметром не меньше чем был сгоревший, иначе он сгорит еще быстрее предыдущего.

Материалы по теме:

  • Как проверить резистор в домашних условиях
  • Прозвонка проводов и кабелей
  • Как пользоваться мультиметром

Video output methods

Now decide on one (and only one) of the following video output devices which show the picture and the overlayed On Screen Display (OSD).

Hardware decoding: full-featured DVB cards

For Fujitsu_Siemens, Hauppage WinTV and TechnoTrend Premium S2300 and cards based on this reference design, or general hardware decoding for SDTV (MPEG1 and MPEG2):

Hardware decoding: DXR3/Hollywood+ cards

To use a DXR3 card for VDR output the plugin is needed:

FILE

modules="em8300"

The em8300 module need some configuration that depends on the exact revision of that card.

Hardware decoding: PVR350 cards

Since PVR350 cards have an onboard MPEG-Decoder chip it should be used to its full potential. In order for this to happen the plugin is needed. If is not yet installed emerge should automatically install it. To have the module loaded at boot time add it to the /etc/conf.d/modules list:

FILE

modules="ivtv"

Software decoding: vdr-xineliboutput

Some people prefer to use , because it can work remotely. Follow the next set of instructions to configure on a host and client. First, the host setup:

Adding command line options at this point is crucial for xineliboutput to work. For more options, see vdr —help.

FILE

_EXTRAOPTS="--local=none --remote=37890"

The next step is to edit /etc/vdr/svdrphosts.conf. This file describes a number of host addresses that are allowed to connect to the SVDRP port of the video disk recorder running on the host system.

FILE

# (The proper syntax is: IP-Address)
127.0.0.1             (always accept localhost)
192.168.1.0/24        (any host on the local net)
#204.152.189.113      (a specific host)
#0.0.0.0/0            (any host on any net - USE THIS WITH CARE!)

When using to view the picture on the same computer as the one running VDR it is now possible to continue with .

Later (after having started VDR) the vdr-sxfe xvdr://hostname command can be used to connect to the VDR and view its picture and OSD.

NoteThere is also a plugin which simulates the existence of a real output device () for some fancy uses like record-only servers, but that is more advanced than a normal VDR setup.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации