Андрей Смирнов
Время чтения: ~19 мин.
Просмотров: 51

Что такое ntc термисторы

Измерения

 
   
 
 

Для измерения температуры в качестве термопреобразователей можно использовать полупроводниковые диоды и транзисторы. Это объясняется тем, что при постоянном значении тока, протекающего в прямом направлении, например через переход диода, напряжение на переходе практически линейно изменяется с изменением температуры.

Для того чтобы значение тока было постоянно, последовательно с диодом достаточно включить большое активное сопротивление. При этом ток, проходящий через диод, не должен вызывать его нагрева.

Построить градуировочную характеристику такого термодатчика можно по двум точкам — в начале и в конце измеряемого диапазона температур. На рисунке 1, а показана схема измерения температуры при помощи диода VD. Источником питания может служить батарейка.

Рис. 1. Схема измерения температуры при помощи диода (а) и транзисторов (б, в). Мостовые съемы позволяют увеличивать относительную чувствительность устройства, компенсируя начальное значение сопротивления датчика.

Аналогично влияет температура на сопротивление перехода эмиттер — база транзисторов. При этом транзистор может одновременно действовать и как датчик температуры, и как усилитель собственного сигнала. Поэтому применение транзисторов в качестве термодатчиков имеет преимущество перед диодами.

На рисунке 1, б показана схема термометра, в которой в качестве преобразователя температуры используется транзистор (германиевый или кремниевый).

При изготовлении термометров как на диодах, так и на транзисторах требуется построить градуировочную характеристику, при этом в качестве образцового средства измерений можно использовать ртутный термометр.

Инерционность термометров на диодах и транзисторах небольшая: на диоде — 30 с, на транзисторе — 60 с.

Практический интерес представляет мостовая схема с транзистором в одном из плеч (рис. 1, в). В этой схеме эмиттерный переход включен в одно из плеч моста R4, на коллектор подано небольшое запирающее напряжение.

Здесь Ваше мнение имеет значение

 —  поставьте вашу оценку (оценили — 6 раз)

   

Ключевые теги: диод, транзистор, температура

 
 
 
Смотри также:
 
   
  • Простой терморегулятор для строительного вагончика или аквариума
  • Источник питания для приборов на ОУ
  • Портативный прибор для подбора пары мощных транзисторов KB усилителя мощнос …
  • Простой цифровой термометр на КР572ПВ5
  • Цифровой термометр с полупроводниковым датчиком
  • Термометр для газового водонагревателя
  • Простые полупроводниковые термометры
  • Частотомер с линейной шкалой
  • Вольтметры постоянного и переменного тока
  • Ультралинейный бестрансформаторный усилитель НЧ на 10 вт
  • Простой электротермометр
  • Эфирная радиоточка на двух транзисторах
  • Вольтметры-индикаторы на светодиодах
  • Электронный термометр на аналоговой микросхеме
  • Компания National Semiconductor представила цифровой датчик температуры, ко …
 

Расшифровка спецификации конкретной модели

Это были основные параметры серии, теперь рассмотрим спецификацию для С831 (см. рис. 5).

Спецификация модельного ряда серии B598*1

Краткая расшифровка:

Величина тока для штатного режима работы, для нашей детали это почти половина ампера, а именно 470 мА (0,47 А).
Этот параметр указывает ток, при котором величина сопротивления начинает существенно меняться в большую сторону. То есть, когда через С831 протекает ток с силой 970 мА, срабатывает «защита» устройства. Следует заметить, что этот параметр связан с точкой температурного перехода, поскольку проходящий ток приводит к разогреву элемента.
Максимально допустимая величина тока для перехода в «защитный» режим, для С831 это 7 А

Обратите внимание, что в графе указано максимальное напряжение, следовательно, можно рассчитать допустимую величину мощности рассеивания, превышение которой с большой вероятностью приведет к разрушению детали.
Время срабатывания, для С831 при напряжении 265 вольт и токе 7 ампер оно составит менее 8 секунд.
Величина остаточного тока, необходимого для поддерживания защитного режима рассматриваемой радиодетали, она 0,02 А. Из этого следует, что на удержание сработавшего состояния требуется мощность 5,3 Вт (Ir x Vmax).
Сопротивление устройства при температуре 25°С (3,7 Ом для нашей модели)

Отметим, с измерения мультиметром этого параметра начинается проверка позистора на исправность.
Величина минимального сопротивления, у модели С831 это 2,6 Ом. Для полноты картины, еще раз приведем график температурной зависимости, где будут отмечены номинальное и минимальное значение R (см. рис. 6).

Рисунок 6. График температурной корреляции для B59831, значения RN и Rmin отмечены красным

Обратите внимание, что на начальном этапе нагрева радиодетали ее параметр R незначительно уменьшается, то есть в определенном диапазоне температур у нашей модели начинают проявляться NTS свойства. Эта особенность, в той или иной мере, характерна для всех позисторов

  1. Полное наименование модели (у нас B59831-C135-A70), данная информация может быть полезной для поиска аналогов.

  Новый форд куга тест драйв видео

Теперь, зная спецификацию, можно переходить к проверке на работоспособность.

Материал — терморезистор

Материал терморезистора должен иметь высокое значение температурного коэффициента сопротивления, химическую стойкость к воздействиям окружающей среды, достаточную тугоплавкость и прочность, большое удельное электрическое сопротивление. Изготавливают терморезисторы из металлов и полупроводников. Металлические терморезисторы выполняют из чистых металлов: меди, никеля, платины, железа. Наиболее часто применяют платину и медь, причем лучшим материалом является платина, из которой изготавливают технические, образцовые и эталонные преобразователи для измерения температур в диапазоне от — 200 до 500 С.

К материалам терморезисторов предъявляются следующие требования: возможно более высокое и постоянное значение температурного коэффициента сопротивления; химическая стойкость к воздействию окружающей среды; достаточная тугоплавкость и прочность; большое удельное электрическое сопротивление, что важно при изготовлении малогабаритных терморезисторов.

Требования, предъявляемые к материалу терморезистора: возможно более высокое значение температурного коэффициента сопротивления; химическая стойкость к воздействиям окружающей среды; достаточная тугоплавкость и прочность; большое удельное электрическое сопротивление, что важно при изготовлении малогабаритных преобразователей.

В большинстве случаев в качестве материала проводниковых терморезисторов применяют чистые металлы, так как сплавы имеют более низкий температурный коэффициент электрического сопротивления, чем чистые металлы, входящие в состав сплава. Кроме того, зависимость сопротивления от температуры для чистых металлов хорошо известна, в связи с чем часто приборы с их использованием допускают стандартную градуировку.

Зависимость диффузионного тока электрохимической ячейки и растворимости кислорода от температуры.

В — константа, зависящая от свойств материала терморезистора.

Температурная зависимость ТКС терморезисторов.

Минимальная мощность рассеяния и коэффициент рассеяния зависят от свойств материала терморезистора и характера его теплообмена с окружающей средой.

В качестве материала для терморезисторов применяют оксиды, сульфиды, нитриды и карбиды некоторых металлов, например, железа, никеля, марганца, кобальта, магния и титана. Материал терморезистора получают в виде порошка, который затем прессуют со связующим веществом для получения необходимой формы и размеров.

В принципе любой проводник с известной температурной зависимостью сопротивления может служить терморезистором. Но к материалу терморезистора предъявляют строгие требования: высокой химической стойкости в условиях работы преобразователя; линейности температурной зависимости сопротивления с достаточно высоким значением самого сопротивления и коэффициента его изменения от температуры; стабильности и воспроизводимости температурной зависимости сопротивления.

Общие виды герметизированного ( а и незащищенного ( б терморезисторов и их температурная характеристика ( в.

На рис. 111 — 10 приведены общий вид ( с габаритными размерами) и температурная характеристика двух типов терморезисторов. У выпускаемых в настоящее время терморезисторов есть один существенный недостаток, сильно ограничивающий область их применения: они не обладают взаимозаменяемостью, так как имеют большой разброс параметров, вследствие которого характеристики терморезисторов одного и того же типа не совпадают. Объясняется это тем, что даже ничтожная доля примесей в материале терморезистора заметно сказывается на его электрических свойствах, а технология их производства такова, что пока не удается получить полупроводниковый материал высокой чистоты.

Основная операция

Если предположить, в качестве приближения первого порядка, что зависимость между сопротивлением и температурой линейна , тогда

Δрзнак равноkΔТ,{\ Displaystyle \ Delta R = к \ Delta T,}

где

Δр{\ displaystyle \ Delta R}, изменение сопротивления,
ΔТ{\ displaystyle \ Delta T}, изменение температуры,
k{\ displaystyle k}, температурный коэффициент сопротивления первого порядка .

Термисторы можно разделить на два типа, в зависимости от знака . Если это положительное , сопротивление возрастает с повышением температуры, и устройство называется ( PTC ) термистор или позисторный . Если отрицательное, сопротивление уменьшается с увеличением температуры, и устройство называется термистором с ( NTC ). Резисторы, которые не являются термисторами, спроектированы так, чтобы иметь максимальное значение, близкое к 0, так что их сопротивление остается почти постоянным в широком диапазоне температур.
k{\ displaystyle k}k{\ displaystyle k}k{\ displaystyle k}k{\ displaystyle k}

Вместо температурного коэффициента k иногда используется температурный коэффициент сопротивления («alpha sub T»). Он определяется как
αТ{\ displaystyle \ alpha _ {T}}

αТзнак равно1р(Т)dрdТ.{\ displaystyle \ alpha _ {T} = {\ frac {1} {R (T)}} {\ frac {dR} {dT}}.}

Этот коэффициент не следует путать с параметром ниже.
αТ{\ displaystyle \ alpha _ {T}}а{\ displaystyle a}

PTC

Основные сведения

Позисторы, как было сказано, имеют положительный ТКС, то есть их сопротивление повышается при нагреве. Их изготавливают на основе титаната бария (BaTiO3). У позистора такой график температуры и сопротивления:

Кроме этого нужно обратить внимание на его вольтамперную характеристику:

Рабочий режим зависит от выбора рабочей точки позистора на ВАХ, например:

  • Линейный участок используется для измерения температуры;
  • Нисходящий участок используется в пусковых реле, реле времени, измерения мощности ЭМИ на СВЧ, противопожарной сигнализации и прочего.

На видео ниже рассказывается, что такое позисторы:

Где применяется

Сфера применения позисторов достаточно широка. В основном они используются в схемах защиты оборудования и устройств от перегрева или перегрузки, реже для измерения температуры, а также в качестве автостабилизирующих нагревательного элемента. Кратко перечислим примеры использования:

  1. Защиты электродвигателей. Устанавливаются в лобовой части каждой обмотки электродвигателя (для односкоростных трёхфазных 3, для двухскоростных 6 и т.д.), PTC-терморезистор предотвращает перегорание обмотки в случае заклинивания ротора или при выходе из строя системы принудительного охлаждения. Как работает эта схема? Позистор используется в качестве датчика, подключенного к управляющему устройству с исполнительными реле, пускателями и контакторами. В случае нештатной ситуации его сопротивление повышается и этот сигнал передаётся на управляющий орган, двигатель отключается.
  2. Защиты обмоток трансформатора от перегрева и (или) перегрузки, тогда позистор устанавливается последовательно с первичной обмоткой.
  3. Система размагничивания кинескопов ЭЛТ-телевизоров и мониторов. Кстати эта деталь часто выходит из строя и с этим случаем приходится сталкиваться при ремонте, характерен при этом выход из строя предохранителя.
  4. Нагревательный элемент в клеевых пистолетах. В автомобилях для прогрева впускного тракта, на пример на фото ниже изображен подогреватель канала ХХ карбюратора Pierburg.

Терморезисторы – это группа устройств, способных преобразовать температуру в электрический сигнал, который считывают посредством измерения падения напряжения или силы тока в цепи, где он установлен. Или же они сами по себе могут являться регулирующим органом, если это позволяют сделать его параметры. Простота и доступность этих устройств позволяет их широко использовать как для профессионального конструирования приборов, так и для радиолюбительской практики.

Напоследок рекомендуем просмотреть видео, на котором подробно рассказывается, что такое терморезистор, как он работает и где применяется:

Наверняка вы не знаете:

  • Онлайн расчет резистора для светодиода
  • Как зависит сопротивление проводника от температуры
  • Как сделать терморегулятор своими руками

Описание экспериментальной установки

Снятие вольтамперных характеристик выполняется по схеме, приведенной на рис.3.

Рис.3. Электрическая принципиальная схема установки

Измерительной цепь питается от источника постоянного регулируемого напряжения со встроенным вольтметром. Ток через терморезистор измеряется миллиамперметром.

Терморезистор ММТ-4 размещается в демонстрационной пробирке с клеммами, которая не позволяет горячей воде контактировать с корпусом терморезистора, в пробирку можно установить жидкостной термометр (желательно использовать ртутный термометр), для контроля температуры, непосредственно рядом с терморезистором.

Переменный резистор R2 необходим, только если используется нерегулируемый блок питания.

Диод как датчик температуры- функция полупроводника

Диод — наипростейший по своей комплектации прибор, обладающий свойствами полупроводника.

Между двумя крайностями диода (донорной и акцепторной) пролегает область пространственного заряда, иначе: p-n-переход. Этот «мост» обеспечивает проникновение электронов из одной части в другую, поэтому, в силу разноимённости составляющих его зарядов, внутри диода возникает довольно малый по силе, но всё-таки ток. Движение электронов по диоду происходит только в одну сторону. Обратный ход конечно есть, но совершенно незначительный, а при попытке подключить в этом направлении источник питания диод запирается обратным напряжением. Это увеличивает плотность вещества и возникает диффузия. Кстати, именно по этой причине диод носит название полупроводникового вентиля (в одну сторону движение есть, в другую — нет).

Если попытаться повысить температуру диода, то количество неосновных носителей (электронов двигающихся в обратном основному направлении) увеличится, а p-n-переход начнёт разрушаться.

Принцип взаимодействия между падением напряжения на диодном p-n-переходе и температурой самого диода была выявлена практически сразу после того, как он был сконструирован.

В результате p-n-переход диода из кремния — это наиболее простой температурный датчик. Его ТКН (температурный коэффициент напряжения) составляет 3 милливольта на градус цельсия, а точка прямого падения напряжения — около 0,7В.

Для нормальной работы данный уровень напряжения излишне мало, поэтому чаще используется не сам диод, а транзисторные p-n-переходы в комплекте с базовым делителем напряжения.

В результате, конструкция по своим качествам соответствует целой последовательности диодов. Как итог, показатель по падению напряжения может быть гораздо большим, чем 0,7В.

Поскольку ТКС (температурный коэффициент сопротивления) диода является отрицательным (- 2mV/°C), то он оказался весьма актуальным для использования в варикапах, где ему отводится роль стабилизатора резонансной частоты колебательного контура. Контроль осуществляется при помощи температуры.

Данные по падению напряжения на диодах

При анализе показаний цифрового мультиметра можно отметить, что данные по падению напряжения на p-n-переходе для кремниевых диодов составляют 690-700 мВ, а у германиевых — 400-450 мВ (хотя этот вид диодов на данный момент практически не используется).  Если во время замера температура диода поднимается, то данные мультиметра напротив снизятся. Чем значительнее сила нагрева, тем значительнее падают цифровые данные.

Обычно это свойство используется для стабилизации процесса работы в электронной системе (например, для усилителей звуковых частот).

Схема термометра на диоде.

Датчики температуры для микроконтроллера

На данный момент многие схемы строятся на микроконтроллерах, сюда же можно отнести и разнообразные измерители температуры, в которых могут быть применены полупроводниковые датчики при условии, что температура при их эксплуатации не превысит 125°C.

Поскольку градуирование температурных измерителей происходит ещё на заводе, калибровать и настраивать датчики нет никакой необходимости. Получаемые от них результаты в виде цифровых данных поступают в микроконтроллер.

Применение полученной информации зависит от программного наполнения контроллера.

Помимо прочего, такие датчики могут работать в термостатном режиме, то есть (при заранее заданной программе) включаться или выключаться по достижении определённой температуры.

Однако, если опорными станут другие температурные показатели, программу придётся переписывать.

Прочие сферы применения

Хотя на сегодняшний день выбор температурных датчиков весьма широк, никто не забывает про их диодный вариант, который достаточно часто применяется в электроутюгах,  электрокаминах и электронике в самом широком её смысле.

Несмотря на ограничения по температурному режиму диодные датчики имеют свои значительные плюсы:

— относительная дешевизна;

— скромные габариты;

— запросто подойдут к огромному числу электронных приборов;

— превосходная чувствительность и точность.

Благодаря всем этим качествам область применения датчиков данного типа растёт из года в год.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Простой электронный термометр на однопереходном транзисторе

категория

Радиосхемы для дома

И. Нечаев. г. КурскРадио, 1992 год, № 8, стр 17- 18

В этой статье разговор пойдет о возможности конструировать приборы для измерения температуры на расстоянии- за переделами дома или, скажем, в балконном «овощехранилище».Схем, позволяющих выполнять данную функцию, достаточно много, но есть определенные особенности при выборе термочувствительного датчика.

Как правило в большинстве случаев при конструировании подобных устройств чаще всего радиолюбителями применяются терморезисторы. Они обладают достаточно широким тепловым коэффициентом сопротивления (далее ТКС)- до 8% на градус. Однако он сильно изменяется в зоне измеряемых температур. Если для домашних термометров на этот факт можно и закрыть глаза, то если речь идет о широком диапазоне температур (например как в нашем случае- от — 40 град. С, до +40 град.С.) то возникают определенные проблемы с градуировкой измерительной шкалы прибора- она просто потеряет свою линейность.

Мы знаем также что и самый обычных p-n переход любого полупроводникового прибора может служить в качестве термодатчика, однако ТКН простого перехода очень мал- не более 0,3% на градус, и это требует введение дополнительных усилительных цепей, значительно что усложняет конструкцию.

Как показал опыт, для использования в качестве термодатчика лучше всего подходят однопереходные транзисторы типа КТ117 (они применялись в блоках питания телевизоров 2\3УСЦТ и найти их особого труда не составит) если его соединить как показано на картинке

В результате такого включения получим терморезистор сопротивлением 5… 10 кОм с КТС примерно 0,7…0,9% на градус С. При этом во всем диапазоне температур шкала прибора будет линейной. Это свойство однопереходного транзистора и позволило использовать его в качестве термодатчика в приборе, схема которого показана на рисунке

Основой рассматриваемого электронного термометра служит измерительный мост на резисторах R2- R5 в одно плечо которого включен однопереходный транзистор VT1. В диагональ моста установлен микроамперметр PA1 с нулем посередине. Источником питания может служить двухполупериодный выпрямитель— для этой цели в схему введен параметрический стабилизатор на транзисторе VT2 и стабилитроне VD1. Если прибор будет эксплуатироваться короткое время (включил, посмотрел, выключил) то тогда можно использовать и 9- ти Вольтовую батарею типа «Крона», в этом случае цепи стабилизации можно из схемы исключить.

Суть прибора заключается в следующем: все резисторы в схеме установлены постоянные, изменяемым является только лишь сопротивление термодатчика роль которого играет транзистор. При изменении температуры окружающей среды ток через термодатчик будет меняться. Причем меняться ток будет как в сторону увеличения при повышении температуры, так и в сторону уменьшения при уменьшении температуры.Получается что остается только лишь при помощи подбора резисторов измерительного моста и регулировкой подстроечного резистора R1 установить показания стрелки прибора в нулевое положение при 0 градусов С.

При настройке прибора можно воспользоваться следующими рекомендациями- в качестве эталона «нулевой» температуры можно использовать тающий лед из холодильника. Получить температуру в 40… 50 градусов С. также труда не составит- можно просто нагреть духовку до нужной температуры. Таким образом можно установить нулевое положение прибора и максимальное положительное сделав соответствующие отметки на шкале. «Минусовую» отметку можно сделать на таком-же расстоянии как и «плюсовую» потому что шкала измерений будет линейна.

Все детали термометра монтируются на печатной плате из одностороннего фольгированного текстолита, эскиз которой показан на рисунке

Примерный внешний вид устройства показан ни следующем рисунке

Для данного термометра лучше всего подойдет микроамперметр типа М4206 на ток 50 мкА с нулем посередине шкалы. Если вдруг данного прибора в наличие не оказалось, то можно использовать любой другой микроамперметр на указанный ток (желательно с большой измерительной шкалой), но тогда в схему необходимо будет ввести дополнительную кнопку чтобы была возможность контролировать положительные и отрицательные температуры раздельно как показано на рисунке

Ну и под конец: при необходимости прибор можно снабдить несколькими термодатчиками, включив из по следующей схеме

Таким образом мы получим возможность контролировать температуру на нескольких объектах- например дома и на улице.

Проверка сопротивления на плате

Элементы, имеющие омическое сопротивление до 200 Ом, должны прозваниваться в этом диапазоне измерений. Если же показания прибора указывают бесконечность, необходимо увеличить переключателем измеряемый диапазон с 200 Ом до 2000 Ом (2кОм) и выше в зависимости от испытываемого номинала. Перед тем как проверить мультиметром резистор не выпаивая его, нужно:

  • отключить источник питания;
  • отпаять один вывод R, так как из-за смешанного соединения элементов в схеме могут иметься различия между номиналом элемента и показаниями его фактической величины в общей схеме при измерении;
  • произвести замер.

Кроме постоянных резисторов, существуют следующие виды элементов:

  • переменный (реостат);
  • подстроечный;
  • термистор или терморезистор с отрицательным температурным коэффициентом;
  • позистор с положительным температурным коэффициентом;
  • варистор изменяет свои значения от приложенного к нему напряжения;
  • фоторезистор меняет свои значения от направленного на него светового потока.

Проверка резистора мультиметром для измерения работоспособности переменных и подстроечных элементов осуществляется путём присоединения к среднему выводу одного из щупов, к любому из крайних выводов второго щупа. Необходимо произвести регулировку движка измеряемого элемента в одну сторону до упора и обратно, при этом показание прибора должно измениться от минимума до паспортного или фактического сопротивления резистора. Аналогично нужно провести измерение со вторым крайним выводом потенциометра.

Чтобы проверить позистор мультиметром, необходимо подключить измерительный прибор к выводам и приблизить его к источнику тепла. Сопротивление должно увеличиваться в зависимости от приложенной к нему температуры. Тех, кто работает с электроникой, знают, как проверить мультиметром термистор. Перед этим нужно учесть, что при воздействии на него температуры нагретого паяльника его термосопротивление должно уменьшаться. Перед тем как проверить термистор и позистор на плате, необходимо выпаять один из выводов и после этого провести измерение.

Терморезисторы могут работать как при высоких температурах, так и при низких. Позисторы и термисторы применяются там, где необходимо контролировать температуру, например в электронных термометрах, температурных датчиках и других устройствах.

  • https://viktorkorolev.ru/razmagnichivanie-kineskopa-pozistor/
  • http://pro-avtosalon.info/info/kak-proverit-pozistor-multimetrom/
  • https://master-kleit.ru/origami/4r5qs-pozistor-kak-proverit/
  • https://rusenergetics.ru/instrumenty/kak-proverit-rezistor-multimetrom

NTC

Основные сведения

Сопротивление NTC-терморезисторов уменьшается при нагреве, их ТКС отрицательный. Зависимость сопротивления от температуры изображена на графике ниже.

Здесь вы можете убедиться, что при нагреве сопротивление NTC-терморезистора уменьшается.

Такие термисторы изготавливают из полупроводников. Принцип действия заключается в том, что с ростом температуры увеличивается концентрация носителей зарядов, электроны переходят в зону проводимости. Кроме полупроводников используются оксиды переходных металлов.

Обратите внимание на такой параметр как бета-коэффициент. Учитывается при использовании терморезистора для измерения температуры, для усреднения графика сопротивления от температуры и проведения расчетов с помощью микроконтроллеров

Бета-уравнение для приближения кривой изменения сопротивления термистора вы видите ниже.

Интересно: в большинстве случаев термисторы используют в диапазоне температур 25-200 градусов Цельсия. Соответственно могут использоваться для измерений в этих диапазонах, в то время как термопары работают и при 600 градусах Цельсия.

Где используется

Терморезисторы с отрицательным ТКС часто используют для ограничения пусковых токов электродвигателей, пусковых реле, для защиты от перегрева литиевых аккумуляторов и в блоках питания для уменьшения зарядных токов входного фильтра (емкостного).

На схеме выше приведен пример использования термистора в блоке питания. Такое применение называется прямым нагревом (когда элемент сам разогревается при протекании тока через него). На плате блока питания NTC-резистор выглядит следующим образом.

На рисунке ниже вы видите, как выглядит NTC-терморезистор. Он может отличаться размерам, формой, а реже и цветом, самый распространенный – это зелёный, синий и черный.

Ограничение пускового тока электродвигателей с помощью NTC-термистора получило широкое распространение в бытовой технике благодаря простоте реализации. Известно, что при пуске двигателя он может потреблять ток в разы и десятки раз превышающий его номинальное потребление, особенно если двигатель пускается не в холостую, а под нагрузкой.

Принцип работы такой схемы:

Когда термистор холодный его сопротивление велико, мы включаем двигатель и ток в цепи ограничивается активным сопротивлением термистора. Постепенно происходит разогрев этого элемента и его сопротивление падает, а двигатель выходит на рабочий режим. Термистор подбирается таким образом, чтобы в горячем состоянии сопротивление было приближено к нулю. На фото ниже вы видите сгоревший терморезистор на плате мясорубки Zelmer, где и используется такое решение.

Недостаток этой конструкции состоит в том, что при повторном пуске, когда термистор еще не остыл – ограничения тока не происходит.

Есть не совсем привычное любительское применение терморезистора для защиты ламп накаливания. На схеме ниже изображен вариант ограничения всплеска тока при включении таких лампочек.

Если терморезистор используется для измерения температуры – такой режим работы называют косвенным нагревом, т.е. он нагревается от внешнего источника тепла.

Интересно: у терморезисторов нет полярности, так что их можно использовать как в цепях постоянного, так и переменного тока не опасаясь переполюсовки.

Маркировка

Терморезисторы могут маркироваться как буквенным способом, так и содержать цветовую маркировку в виде кругов, колец или полос. При этом различают множество способов буквенной маркировки – это зависит от производителя и типа конкретного элемента. Один из вариантов:

На практике, если он применяется для ограничения пускового тока чаще всего встречаются дисковые термисторы, которые маркируются так:

5D-20

Где первая цифра обозначает сопротивление при 25 градусах Цельсия – 5 Ом, а «20» — диаметр, чем он больше – тем большую мощность он может рассеять. Пример такого вы видите на рисунке ниже:

Для расшифровки цветовой маркировки можно воспользоваться таблицей, изображенной ниже.

Из-за обилия вариантов маркировки можно ошибиться в расшифровке, поэтому для точности расшифровки лучше искать техническую документацию к конкретному компоненту на сайте производителя.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации