Андрей Смирнов
Время чтения: ~20 мин.
Просмотров: 36

Прогрев монолитного бетона

Температура при строительстве

Данный параметр имеет большое влияние на набор бетоном окончательной прочности. Также следует учесть, что свежий раствор может промерзать в том случае, когда в течение 3 дней его температура была на уровне +10° С. Поэтому необходим электродный прогрев бетона в зимнее время.Знайте, что при укладке бетона при 5° С, вам придется ждать в 2 раза дольше достижения им прочности, сравнить которую можно с температурой 20° С.

Когда же столбик термометра опустится ниже точки замерзания, гидратация может просто остановиться. Нельзя также забывать следующее — несвязанная вода в бетонном растворе при замерзании начнет увеличиваться в объеме.

Если процессы замерзания и оттаивания будут повторяться многократно, это станет причиной:

  • разрыхления структуры;
  • уменьшения влаги;
  • выветривания бетона;
  • цена работ увеличится.

Но, когда смесь набрала прочность превышающую 5 Н/мм2, она становится устойчивой к однократному замерзанию. При этом срок распалубки необходимо увеличить на период, когда бетон был ниже 0° С.

Общая схема прогрева бетона в зимнее время электродами

В этом случае необходимо следить за тем, чтобы он быстро набирал прочность, чтобы промерзание не нарушило процесс.

К примеру:

  • в течение месяца бетон следует защищать от осадков в виде снега и дождя;
  • он не должен первую зиму соприкасаться с рассыпной солью, использующуюся против обледенения.

Температура свежего состава относительно DIN 1045 не должна быть ниже параметров, которые принимаются в зависимости от окружающей температуры и вида и количества цемента.

В первом случае это приведет к быстрому твердению и снижению пластичности материала, что затруднит с ним работу.

Также это станет причиной:

  • больших усадок;
  • преждевременного набора прочности;
  • низкой итоговой прочности бетонного материала.

Чтобы этого не происходило, в каждом конкретном случае разрабатывается, например, технологическая карта прогрева бетона электродами.

Как защитить

Для этого следует провести следующие действия:

  • подогревайте воду для затворения и заполнитель, никогда не применяйте замороженный последний компонент;
  • используйте цементы повышенного класса прочности. Они быстрее твердеют и выделяют при этом процессе больше тепла, чем цементы низших классов прочности;

Использование для бурения отверстий оборудования с алмазными коронками

  • увеличивайте содержание цемента, чтобы ускорить набор прочности;
  • понизьте соотношение между цементом и водой, это позволит раствору быстрее затвердеть и набрать прочность, одновременно выделяя высокий уровень тепла;
  • добавляйте своими руками в особых случаях и после проведения испытаний на соответствие ускоритель твердения. Не используйте хлорсодержащие ускорители твердения в предварительно напряженном бетоне.

Что необходимо делать при транспортировке раствора и его укладке:

  • защищайте транспортные средства от теплопотерь. Не используйте открытые лотки и транспортерные ленты;
  • укладывайте по возможности предварительно подогретый бетон в подогретую опалубку и сразу же уплотняйте;
  • держите арматуру и плоскости опалубки свободными от снега, для прогрева можете использовать нагретый воздух или пламенные горелки. Никогда не используйте струю горячей воды;
  • не укладывайте бетон на замерзшие конструкции и на замерзшую землю;
  • поддерживайте температуру бетона по возможности в течение первых 3 дней не ниже +10° С, а также отапливайте примыкающие помещения.

Прогрев бетона зимой способом «термоса»

Способ основан на свойстве цементно-песчаной смеси, при затворении ее водой, выделять тепло. Получается, что если это тепло сберегать с помощью утепленной опалубки и укрывания наружной плоскости раствора опилками, шлаком или камышитом, тепло может сохраняться внутри конструкции время, нужное для затвердения бетона. Однако это время будет зависеть от объемности конструкции и площади ее теплоотдачи. Рассчитать его можно по формуле:

M=A/V,

где M — степень массивности конструкции, A — площадь теплоотдачи конструкции, а V — ее объем. Условие таково: если М= больше, чем 10, то «метод термоса» при бетонировании будет работать. Если М=8-10, то метод сработает, если смесь прогреть до температуры 60-80°С.

В остальных случаях применение метода не даст нужного результата. Поэтому применяются другие методы, с использованием внутреннего и внешнего подогрева бетонной смеси.

Сколько греть бетон?

Для экономии, время прогрева бетона требуется сократить к минимуму. Но в каждом случае время считается отдельно, что связано с определенными факторами. Это температура наружного воздуха, возможность и качество теплоизоляции, мощность обогревателей.

Обогрев бетона проводом зависит от того, как он проложен внутри конструкции и потребляемой мощности. В общем случае расчет времени зависит от температуры конструкции. В большинстве методик монолит разогревается до 60ºС, но делается это медленно, не более 10 градусов за один час нагрева. Это обеспечивает его равномерность, повышая качество материала. После набора смесью 50% прочности, ее постепенно охлаждают с еще более низкой скоростью в 5ºС за час, с использованием термоизоляции. Таким образом, прогрев может проходить как в течение нескольких часов, так и суток.

Самые частые ошибки при твердении и прогреве бетона

Решив использовать тот или иной способ прогрева, строители допускают ошибки, которые в будущем решат судьбу всего сооружения не в его пользу. При прогреве электродами обычно фиксируются разные ошибки. Назовем самые частые, типичные их них.

Ошибка первая –  электроды некачественно контактируют с бетоном. Это чревато несвоевременным отключением электропрогрева. Работы, связанные с бетонированием рискуют сорваться из-за того, что плохое вибрирование бетонной смеси может спровоцировать появление воздушных пузырьков. Когда бетон частично контактирует с поверхностью электрода, в этих местах увеличивается удельное сопротивление и происходит закипание воды. В результате появляется пар, который блокирует поверхность, в итоге, ее прогрев не осуществляется.

Ошибка вторая – смещение элементов и контактирование с арматурой. Устанавливая разнофазные электроды, строители могут сместить их, даже не подозревая об этом, и допустить соприкосновение с арматурой. Если это произойдет, замыкания не избежать — провода расплавятся, перегорят и выведут из строя трансформатор.

Ошибка третья — выгорание электродной стали и вскипание бетона, в случае, когда плотность тока повышается в приэлектродной зоне. Здесь происходит ряд процессов, которые влияют на итоговую марочную прочность материала. Возможен локальный перегрев, обезвоживание бетона, процесс гидратации замедляется и образуется пористая структура бетона.

Вскипание бетона при электродном прогреве

При использовании греющих проводов (ПНСВ). При этом методе также допускается несколько ошибок. Вот самые распространенные из них.

Ошибка первая — отключение нагревательного элемента, вызванное его повреждением или обрывом. Это происходит в тех случаях, когда специалисты не проверяют целостность проводов и не контролируют процесс подключения схем питания нагревательных элементов. В итоге, какая-то часть бетонной конструкции лишена внешнего источника тепла. За счет чего меняется температурный режим твердения и не обеспечивается равномерный прогрев. Из-за такой ошибки, неравномерно прогретые части конструкции промерзают, на них появляются трещины, щели, углубления. В итоге бетон не добирает прочности и, как результат, конструкции постепенно разрушаются.

Ошибка вторая — нарушение правильности укладки проводов и их изоляции. Этим грешат многие, укладывая греющий провод. Первое, надо знать о том, что нельзя допускать излишней длины элемента. Это чревато не только его перерасходом, а и более плотной навивкой в теле конструкции, отсутствием подачи достаточной погонной нагрузки на греющий провод. В итоге, скорость прогрева бетона падает, а продолжительность работ увеличивается. Нельзя и уменьшать длину провода. Ведь в этом случае перегревается не только сам бетон, а и греющие элементы – изоляция плавится, а значит, короткое замыкание обеспечено. Среди минусов такого способа называют трудоемкость процесса, привязку к сложным расчетам, подводку более крупных мощностей электроэнергии для прогревания больших площадей.

Тепляк для прогрева бетона

Как происходит строительство зимой?

Обязательным компонентом любого бетонного раствора является вода, но при низких температурах она просто замерзает и гидратация цемента прекращается. Кристаллы льда расширяются, и монолит начинает крошиться. Даже при термоизоляции, вместо предусмотренных технологией 28 дней, бетон набирает твердость гораздо дольше, что негативно сказывается на себестоимости работ. Оптимальный выход – электропрогрев бетона, позволяющий ускорить работы и обеспечить нужную прочность.

Это наиболее экономичный метод прогрева бетонной смеси в зимнее время, не требующий больших расходов

Важно, чтобы весь объем прогревался одновременно, чего сложно достигнуть, применяя другие технологии обогрева монолитных конструкций в зимних условиях

Режимы электропрогрева могут быть различны

  • Двухстадийный прогрев – нагрев уложенной смеси и изотермическая выдержка. На момент отключения питания бетон должен набрать определенную прочность (устанавливается проектом в процентах от марочной прочности и зависит от ответственности, нагрузок, условий работы будущей конструкции, вида бетона и пр.). Прогрев в две стадии с изотермией назначают для конструкций, имеющих модуль поверхности больше 15.
  • Трехстадийный прогрев – нагрев, изотермическая выдержка и остывание. Требуемая прочность будет обеспечена к моменту остывания прогреваемых конструкций. Применяют режим для элементов, имеющих степень массивности от 6 до 15.
  • Две стадии – нагрев и остывание с выдержкой термосом, с полной теплоизоляцией конструкции и/или применением греющей опалубки, в зависимости от значений минусовых температур атмосферного воздуха. Критическая прочность обеспечивается к завершению остывания бетона. Режим назначают для элементов, имеющих степени массивности до 6.

После уплотнения бетона в конструкции подключают питание электродов, при этом минимум температуры бетонной смеси составляет +5⁰С. Затем нагрев увеличивают, при этом скорость повышения температуры следует держать не больше 8 градусов в час при прогреве элементов со степенью массивности от 3 до 6, 10 градусов в час – соответственно для конструкций со степенью массивности от 6, и 15 градусов в час – для стоечно-балочного каркаса и тонких стен (120 – 150 мм) протяженностью до 5,75-6,0м.

Для различных видов цемента рассчитаны предельные допуски температур бетона при любых режимах электропрогрева. В частном строительстве в основном применяют портландцемент ПЦ400 и ПЦ500 (быстротвердеющий). Для данных марок цемента установлены пределы температур при модулях поверхности соответственно:

  • От 16 до 20 — +55⁰С.
  • От 10 до 15 — +65⁰С.
  • От 6 до 9 — +70⁰С.

Время изотермической выдержки зависит от вида вяжущего (активности цемента), температурных параметров прогрева и назначенной проектом прочности бетона. Это время определяется по видам бетонов и проверяется лабораторно – испытанием кубиковой прочности на сжатие. Скорость остывания бетонной конструкции должна быть минимальная, предел составляет для элементов с модулем поверхности:

  • От 6 до 10 — 10 градусов/час.
  • От 10 и выше — 5 градусов/час.

Распалубку бетона выполняют не ранее, чем поверхность его остынет до +5⁰С, но при этом нельзя допускать смерзания опалубки с бетоном. После распалубки бетон повторно теплоизолируют в случаях, когда разница температуры атмосферного воздуха и бетонных поверхностей больше 20 градусов.

Инфракрасный метод разогрева

Технология нагрева термоматами довольно проста:

  • в раствор вводятся добавки, ускоряющие твердение;
  • на поверхность кладутся специальные маты;
  • осуществляется подача питающего напряжения.

Этот способ используется для обогрева бетонных поверхностей, расположенных в горизонтальной плоскости.

Преимущества технологии:

  • пониженный уровень энергозатрат;
  • простота осуществления;
  • регулировка интенсивности излучения;
  • возможность нагрева через опалубку.

Обогрев таким способом осуществляется за счет воздействия инфракрасного излучения

Недостатки:

  • интенсивное испарение воды из бетона, который следует защитить от преждевременного высыхания;
  • повышенные затраты на приобретение матов для прогрева увеличенной площади.

Концепция Вольты

Как свидетельствуют записки учёного, уже в 1778 году он получил представление о разнице потенциалов, которые называл tension – напряжение. С 1775 года Вольта придерживается концепции электрической ёмкости – capacita, выдвинутой его учителем Беккарией. Вольта уже знает, что электрофорус способен накопить заряд, называет прибор конденсатором, и решает подтвердить теорию практикой. Иначе – найти взаимосвязь напряжения, ёмкости и объёмом (quantita) заряда.

Вольта начал с лейденской банки. Он заряжал её от статического генератора и пробовал определить энергию конденсатора тремя путями:

  1. Наблюдал получаемую искру электрической дуги от различной конструкции лейденских банок, заряженных одинаковым напряжением.
  2. Измерял количество произведённой электростатическими генераторами трения работу, пока показания электрометра не росли до определённого уровня.
  3. Разряжал лейденские банки на открытом воздухе и пытался сравнить производимый ими электрический шок по истечении времени.

Все перечисленное привело исследователя к странным выводам, что высокие лейденские банки более вместительные (при одинаковых площадях обкладок и прочих равных условиях). Вероятно, это связано со скоростью разряда их дуги на воздухе вследствие различий в кривизне поверхностей. Силу разряда Вольта увязывал с электрическим током: чем быстрее течёт флюид, тем более жаркий (по ощущениям) эффект. В результате, Вольта счёл, что разница потенциалов единственная определяет процесс возникновения удара. Он решил, что напряжение допустимо измерить двумя путями:

  1. Через количество оборотов генератора статического заряда.
  2. Сравнивая силу электрического удара при разряде лейденской банки.

Вольта нашёл, что заряжая пустую лейденскую банку от полной, шок получается вдвое слабее. Постепенно (1782 год) Вольта пришёл к выводу, что вышеуказанные величины соотносятся между собой: tension x capacity ~ load, в современном мире выглядит как U C = q или C = q / U.

Вольта заключил, что ёмкость больше там, где при меньшем напряжении вмещается больше заряда. Последовало заключение, что количество накопленного флюида прямо пропорционально площади обкладок плоского конденсатора. Что согласуется с современными формулами. Вольта обобщил знания на случай произвольного проводника (экспериментировал со стержнями лейденских банок). Изменяя расстояние между обкладками, установил:

С ~ S / d.

Что фактически стало выражением ёмкости плоского конденсатора. Вольта объяснил зависимость наличием некоего сопротивления (resistance) между обкладками, подразумевая воздух. Изменяя дистанцию, удаётся варьировать этот параметр в обе стороны. Это слегка не согласуется с современными концепциями, но Вольта помог Георгу Ому 40 лет спустя вывести зависимость между током и напряжением.

Фактически измерения проделывались на основе работы поля, проявлявшейся лишь вследствие заряда конденсатора. Очевидно, что указанная величина равна энергии – одной из первых физических характеристики, использованных для вывода аналитических выражений.

Технология прогрева бетона термоматами

1. Подготовительный этап прогрева бетона 

На подготовительном этапе специалистами оценивается условия и порядок проведения мероприятий по прогреву бетона. Рассчитывается количество термоматов, способ их укладки и схема подключения. Если размеры бетонируемой площадки не позволяют укладывать термоматы для прогрева бетона по одному, то их предварительно скрепляют между собой, подключают питающий кабель.

2. Основной этап прогрева бетона 

Термомат ТЭМС.jpg1. На залитый бетон укладывается полиэтиленовая плёнка (для предотвращения преждевременного испарения воды и увеличения срока службы термоматов). 2. Поверх полиэтиленовой плёнки укладываются термоматы для прогрева бетона, при этом не допускается их взаимное перекрытие. 3. Осуществляется подключение термоматов к питающему проводу по «параллельной» схеме. 4. Подается электропитание на термоматы для прогрева бетона.

Прогрев бетона происходит в автоматическом режиме. Первые 4-5 часов, всё выделенное тепло поглощается бетоном и термоматы работают не отключаясь. Затем с прогревом бетона начинает повышаться температура на греющей поверхности термомата и при её достижении 70°С секции отключаются. Повторное включение секций термомата происходит при достижении нижнего температурного порога (55-60°С)

При таком режиме работы температура бетона не превысит 60-70°С и значит нет опасности его перегрева.Практика показывает, что для достижения 70% прочности от r28 достаточно 10-20 часов прогрева бетона термоматами, где r28 — прочность бетона набираемая за 28 суток при нормальных условиях.Следует принимать во внимание марку бетона и начальные условия (температура воздуха, толщина изделия). Время прогрева бетона прямо пропорционально марке бетона и обратно пропорционально толщине изделия.Во избежание перегрева и возможного прогорания термомата, необходимо обеспечить достаточный теплообмен. Не допускается размещение между матом и обогреваемым объектом, каких либо теплоизолирующих материалов препятствующих передаче тепловой мощности от термомата к обогреваемому объекту

Не допускается размещение между матом и обогреваемым объектом, каких либо теплоизолирующих материалов препятствующих передаче тепловой мощности от термомата к обогреваемому объекту.

3. Заключительный этап прогрева бетона После окончания процесса твердения бетона необходимо отключить подачу электропитания на термоматы для прогрева бетона. Рекомендуется подождать 1-2 часа после отключения электропитания для того чтобы температура бетона постепенно выровнялась с температурой окружающей среды. После этого термоматы можно аккуратно убирать.Срок службы термомата напрямую зависит от бережного отношения к нему. Не допускается хождение по термоматам и бросание тяжелых и острых предметов на его поверхность. Складывать термомат можно только по специальным линиям сгиба.

All StylingAbsolut

Процедура укладки и технология прогрева

Прежде, чем устанавливать систему прогрева, необходимо смонтировать арматуру и опалубку. Только после этого можно приступать к раскладке ПНСВ. Интервал между поворотами должен составлять 80-200 мм. Конкретное расстояние выбирается в зависимости от наружной температуры, уровня влажности и скорости ветра. Провод не должен иметь натяжение. Для его крепления к арматуре нужно использовать специальные зажимы. Минимальный радиус изгиба – 25 см. Также необходимо позаботиться об отсутствии перехлестов жил, по которым передается ток. Они должны прокладываться на расстоянии 15 мм друг от друга. При нарушении этого правила возникает рис короткого замыкания.

Наибольшей популярностью пользуется схема укладки под названием «змейка». Укладка ПНСВ в данном случае чем-то напоминает процедуру монтажа теплого пола. При таком методе расход греющего кабеля будет минимальным, а обогреть получится максимальный объем массива. Заливать бетон нужно в сухую опалубку, при этом температура раствора должны быть выше +50С, а схема подключена правильно. Также необходимо проверить, чтобы холодные концы были выведены на необходимую длину.

Перед началом прогрева бетона необходимо ознакомиться с инструкцией, которая идет в комплекте с проводом ПНСВ. Подключение через секции шинопроводов может осуществляться двумя способами: через «звезду» или «треугольник». Первая схема подразумевает соединение трех проводов в один узел. Подключение к трансформатору выполняется через свободные контакты. Во втором случае система делится на 3 участка, каждый из которых подключается к выводам трехфазного трансформатора.

Прогрев бетонной смеси с помощью кабеля ПНСВ выполняется в несколько этапов:

  1. Каждый час температура плавно повышается на 100С. Так удастся обеспечить равномерность прогрева.
  2. В условиях постоянной температуры прогрев нужно осуществлять до момента набора смеси половины своей технологической прочности. Оптимальным показателем является 600С, а максимальным – 800С.
  3. Остывать бетон должен на 50С в час. При несоблюдении данной рекомендации существует вероятность растрескивания монолита.

Если все технологические требования были соблюдены, то материал наберет необходимую прочность. ПНСВ после завершения работ остается в массиве и выполняется функции дополнительного армира.

Применять такие кабели, как ВЕТ или КДБС намного проще, так как их подключение производится напрямую в бытовую сеть или щитовую с напряжением 220В. Разделение на секции устраняет возможность перегрузок. Единственным недостатком таких этих кабелей является высокая стоимость. В связи с этим их реже используют при масштабном строительстве.

Также довольно большой популярностью пользуется технология, при которой опалубка оснащается электродами и ТЭНами. В этом случае греющий кабель не нужен, однако данный способ требует больших энергозатрат. Связано это с тем, при затвердевании бетона его сопротивление повышается, что делает проводимость воды ниже.

Зачем греть раствор

Термоматы для подогрева

Отрицательная температура оказывает негативное влияние на процесс гидратации или застывания бетонной смеси. Раствор такого типа состоит из цемента, песка, воды и щебня.

В данной смеси именно вода является катализатором процесса застывания раствора. Но при отрицательной температуре влага замерзает, что ставит под угрозу не только процесс набора прочности раствора, но и дальнейшие строительные работы.

Основная задача работы по разработке схемы подключения – как прогреть бетон при производстве бетонирования в зимний период для обеспечения оптимального для процесса застывания температурного режима.

Рекомендуемые микроклиматические параметры для производства бетонирования зимой:

  • Оптимальный температурный режим для схватывания бетона без добавок и подогрева +10…+20 градусов;
  • Бетонирование при температуре от -20 до +10 градусов заставит вас задуматься о том, как правильно греть бетон;
  • Если температура ниже -20 градусов, все работы с раствором запрещены.

Принцип действия устройства

Когда температура окружающей среды опускается ниже значения + 4 0 С, для работы с бетонными растворами требуется их дополнительный подогрев. В настоящее время существует масса способов, позволяющих осуществлять работы с материалом в зимнее время.

К таким методам относятся, к примеру:

  • обогрев при помощи инфракрасных лучей;
  • утепление опалубки.

Однако все они являются достаточно затратными. Поэтому можно назвать наиболее экономичным и эффективным.

На фото — схема размещения нагревательного провода

Действия такого механизма достаточно просты:

  1. Для работы требуется сам трансформатор и провода, причем их длина выбирается для каждого объекта отдельно.
  2. Последние с одной стороны присоединяются к каркасу из арматуры, а с другой – подводят к подстанции для прогрева бетона.
  3. При прохождении через провода электрического тока их температура может повышаться до +80 0 С.
  4. После этого происходит распределение выделяемого во время нагрева тепла по всему объему бетонной смеси . В результате она может в зимний период прогреться до температур в +40-50 0 С.

Наиболее эффективными для такого процесса являются провода, толщина стальной жилы которых — 1,2 или 3 мм. При этом существует отдельная группа, специально изготовленная для подогрева бетонных смесей (ПНСВ-1,2).

При расчете нужного количества проводов следует помнить, что на 1 м 3 смеси уходит около 60 м, цена зависит от сечения и количества жил.

Для таких целей используются такие типы трансформаторов:

  • КТП-ОБ (20,60 и 160);
  • КТПТО-80.

Одно такое устройство способно обогреть бетонную смесь, объемом 20-30 кубометров.

Требования перед процессом обогрева

Провод для обогрева бетонной смеси укладывается своими руками на сам каркас из арматуры, а также между ними, сразу после их укладки в опалубку. При этом натягивать провода не рекомендуется ().

Для выходящего от трансформатора провода должна быть предусмотрена пластмассовая изоляция. При этом данный провод должен быть в 2-3 раза толще, используемого в бетонной смеси.

Требования во время процесса обогрева

Все работы с трансформатором должны осуществляться специалистами, которые имеют необходимый опыт. Во время работы станции не допускается нахождения кого-либо еще, кроме монтера.

Перед началом работ все сотрудники, которые будут осуществлять свою деятельность в непосредственной близости к трансформатору, обязаны получить инструкции по технике безопасности.

Давайте более детально остановимся на технических особенностях одного из используемых для подогрева бетона трансформаторов – КТПТО-80-11-У1:

  1. Станция для прогрева бетона КТПТО 80 использует напряжение номиналом в 380В, при частоте 50Гц и мощности 80 кВА.
  2. Это устройство разработано специально для использования в период строительных работ.
  3. На нем установлена функция, позволяющая осуществлять регулировку температуры в автоматическом режиме.
  4. Кроме того, прогревочная станция для бетона может использоваться кратковременно и не по основному назначению. К примеру, она идеально подходит в качестве питания временного освещения, а также может быть использована в качестве источника тока для строительных инструментов, питающихся от трехфазных источников напряжением в 42В.

Основой данной станции является трансформатор силового типа – ТМТО-80, который оснащается:

  • защитным кожухом;
  • салазками;
  • шкафом управления.

К его выходам необходимо подсоединять провода, которые будут использоваться для прогрева бетонной смеси. После чего они раскладываются по всему ее объему.

После включения трансформатора, провод оказывается под воздействием напряжения, которое и служит для обогрева. Благодаря хорошему подогреву, даже при низких температурах окружающей среды бетон будет затвердевать равномерно, без образования кристаллов льда внутри его структуры.

Как влияет температура окружающей среды на состояние бетона

При создании монолитных сооружений набор прочности сильно зависит от климатических условий. Ключевые факторы, влияющие на затвердевание бетона – влажность и температура. Сильное понижение первой приводит к усиленному испарению влаги и обезвоживанию материала. Вследствие этого возникают усадочные трещины, замедляется набор прочности.

При анализе ситуации, когда можно ли заливать бетон, необходимо учитывать влияние температурного режима на процессы, происходящие в бетоне. Основной химической реакцией во время заливки является гидратация цемента водой. Активность воды сильно зависит от степени ее нагретости. В жаркую погоду твердение смеси происходит при быстрой потере влаги и неравномерном прогреве слоев. Это плохо отражается на состоянии поверхности – она трескается. При умеренных климатических условиях проведение бетонных работ дает наилучшие результаты. Скорость протекания гидратации обеспечивает оптимальный режим затвердевания.

При работе в холодное время нужно учитывать последствия кристаллизации воды в растворе. Это может быть сильное замедление скорости работы вплоть до невозможности получения нужной прочности. Методы прогрева бетона в зимний период направлены на преодоление этих трудностей.

Расчет подогрева

Теперь, когда вы знаете при какой температуре нужно греть бетон, необходимо разобраться, как рассчитать подогрев.

Расчеты такого рода для каждого метода должны учитывать следующие параметры:

  • Вид бетонной конструкции;
  • Общая площадь изделия, требующего подогрева;
  • Объем раствора;
  • Необходимая электрическая мощность.

Заключение

Использование термоматов для прогрева бетонных конструкций относится к категории современных и технологичных способов ускорения необходимых работ. Подобный способ не требует покупки или аренды дополнительного электрического оборудования, которое бы отвечало за температурный режим. Использование термоматов позволит подготовить бетон за 10-20 часов (в среднем на полное высыхание ему понадобится не менее полутора недель). Не стоит забывать и об особенности излучаемых инфракрасных лучей, которые способны проникать вглубь любого материала, воздействуя на его структуру. Раньше технологию использовали только крупные предприятия, которые предпочли инфракрасные лучи обычному пару.

Сами маты представляют собой теплоизлучающую пленку, в оболочке которой расположен компактный и плоский нагревательный элемент. Теплоотражающий и теплоизолирующий слой у мата расположен только с одной стороны, что дает возможность направлять инфракрасные лучи в нужное направление. ПВХ оболочка достаточно гибкая, поэтому повредить нагревательный элемент во время транспортировки достаточно сложно. Толщина изделия не превышает 1,5 см. В использовании тепломаты просты и технологичны. Прогрев происходит равномерно по используемой поверхности.

В заключение

Заливка бетона зимой

Подогрев бетонного раствора в зимний период — это необходимая составляющая производства строительных работ. Методов подогрева бетонной массы может быть достаточно много и выбор той или иной схемы следует производить индивидуально для каждой конструкции в соответствии с ее основными параметрами.

А видео в этой статье откроет вам еще больше особенностей и нюансов процесса подогрева раствора для создания монолитных бетонных изделий.

При электропрогреве бетона в температурных условиях ниже +5°C используют специальные масляные или воздушные трехфазные трансформаторы для понижения напряжения сети 200 или 380 В. Но в случае небольших объемов при заливке фундамента на дачном участке своими руками, например, иногда рациональнее использовать сварочный аппарат (двухфазный), который зачастую уже имеется в наличии, а не покупать или арендовать тот же ТСЗП-80. Способ для так называемых «домашних условий».

Такое решение имеет место быть, хотя, и сопряжено с определенными трудностями. Попытаемся разобраться в них для типов греющих элементов ПНСВ провода и электродов.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации