Андрей Смирнов
Время чтения: ~19 мин.
Просмотров: 0

Какие бывают изоляторы вл и для чего они предназначены?

Проходные изоляторы

Проходные изоляторы предназначены для проведения проводника сквозь заземленные кожухи трансформаторов и аппаратов, стены и перекрытия зданий.

Проходные изоляторы для внутренней установки до 35 кВ включительно имеют полый фарфоровый корпус без наполнителя с небольшими ребрами. Для крепления изолятора в стене, перекрытии предусмотрен фланец, а для крепления проводника — металлические колпаки. Длина фарфорового корпуса определяется номинальным напряжением, а диаметр внутренней полости — сечением токоведущих стержней, следовательно, номинальным током.

Рис.5. Проходной изолятор для внутренней установки 10 кВ, 250-630 А

Рис.6. Проходной изолятор для внутренней установки 20 кВ, 8000-12500 А

Изоляторы с номинальным током до 2000 А (рис.5) снабжены алюминиевыми стержнями прямоугольного сечения. Изоляторы с номинальным током свыше 2000 А (рис.6) поставляются без токоведущих стержней. Размеры внутренней полости выбраны здесь достаточными, чтобы пропустить через изолятор шину или пакет шин прямоугольного сечения, а при очень большом токе — трубу круглого сечения.

Фланцы и колпаки, в особенности у изоляторов с большим номинальным током, изготовляют из немагнитных материалов (специальных марок чугуна, а также силумина — сплава на основе алюминия и кремния) во избежание дополнительных потерь мощности от индуктированных токов. У изоляторов, предназначенных для ввода жестких и гибких шин в здания РУ или шкафы КРУ наружной установки, часть фарфорового корпуса, обращенная наружу, имеет развитые ребра (рис.7) для увеличения разрядного напряжения под дождем.

Рис.7. Проходной изолятор наружно-внутренней установки 35 кВ, 400-630 А

Проходные изоляторы 110 кВ и выше в зависимости от назначения получили названия линейных или аппаратных вводов. Кроме фарфоровой они имеют бумажно-масляную изоляцию. На токоведущий стержень наложены слои кабельной бумаги с проводящими прокладками между ними. Размеры слоев бумаги и прокладок выбраны так, чтобы обеспечить равномерное распределение потенциала как вдоль оси, так и в радиальном направлении.

Рис.8. Герметизированный бумажно-масляный ввод 500 кВ с выносным бачком давления

Ввод (рис.8) состоит из следующих частей: металлической соединительной втулки 1, предназначенной для закрепления ввода в кожухе аппарата или в проеме стены, верхней 2 и нижней 3 фарфоровых покрышек, защищающих внутреннюю изоляцию от атмосферной влаги и служащих одновременно резервуаром для масла, заполняющего ввод. Вводы, предназначенные для аппаратов с маслом, имеют укороченную нижнюю часть; это объясняется более высоким разрядным напряжением по поверхности фарфора в масле сравнительно с разрядным напряжением в воздухе.

Вводы обычно герметизированы. Для компенсации температурных изменений в объеме масла предусмотрены компенсаторы давления, встроенные в верхнюю часть ввода или помещенные в особый бачок давления 4, соединенный с вводом гибким трубопроводом. Вводы имеют измерительное устройство, которое служит для контроля давления в системе ввод-бак.

Подготовка и монтаж

Технологический процесс сооружения ВЛЭП состоит из подготовительных, строительно-монтажных и пусковых работ. К первым относят закупку оборудования и материалов, железобетонных и металлических конструкций, изучение проекта, подготовку трассы и пикетаж, разработку ППЭР (плана производства электромонтажных работ).

Строительные работы включают в себя рытье котлованов, установку и сборку опор, распределение по трассе арматуры и комплектов заземления. Непосредственно монтаж воздушных линий электропередач начинают с раскатки проводов и тросов, выполнения соединений. Затем следует подъем их на опоры, натяжка, визирование стрел провеса (наибольшего расстояния между проводом и прямой линией, соединяющей точки его крепления к опорам). В завершение увязывают провода и тросы на изоляторах.

Кроме общих мер безопасности, работы на воздушных линиях электропередач подразумевают соблюдение следующих правил:

  • Прекращение всех работ при приближении грозового фронта.
  • Обеспечение защиты персонала от воздействия наведенных в проводах электрических потенциалов (закорачивание и заземление).
  • Запрещение работы в ночное время (кроме монтажа пересечений с путепроводами, железными дорогами), гололеде, тумане, при скорости ветра более 15 м/с.

Перед вводом в эксплуатацию проверяют стрелу провеса и габариты линии, измеряют падение напряжения в соединителях, сопротивление заземляющих устройств.

Конструкция ИП

Проходные изоляторы ИП должны обладать максимальной механической и электрической прочностью, поэтому материал, из которого они изготавливаются, может быть следующим:

  • полимер;
  • фарфор;
  • закаленное стекло.

Изолятор сконструирован для того, чтобы пробивное напряжение было выше напряжения перекрытия. Наружные изоляторы постоянно находятся под влиянием внешних факторов окружающей среды, поэтому их поверхность ребристая. Это сделано специально для улучшения работы изделия.

Изоляторы по назначению подразделяют на проходные, опорные и подвесные, также существует виды установки для размещения в постройках и сооружениях или для наружной установки.

Проходной ИП-10 чаще всего изготавливают из фарфора. Конструктивное выполнение такого изолятора определяют исходя из номинального напряжения тока и промышленной частоты сети. Само изделие состоит из фарфорового корпуса цилиндрической формы, на осях которого установлены ребра, плотно скрепленные с помощью цементно-песчаного раствора.

Что из себя представляют электрические изоляторы?

Электрические изоляторы представляют собой диэлектрический элемент электроустановки, конструктивно выполняемый из изоляционного материала и армирующих деталей. Диэлектрик предназначен для электрического отделения, а металлические конструкции позволяют зафиксировать как сам изолятор, так и проводники на нем. В качестве диэлектрического материала используется стекло, полимер или керамика.

Назначение

Электрические изоляторы предназначены для крепления шин, проводов, тралеи и прочих токоведущих элементов к корпусу электроустановки, консолям опор и прочим конструкциям. Помимо этого они изолируют проводники при прохождении через стены, позволяют отделить электроустановки друг от друга и прочие несущие функции.

В зависимости от места установки их подразделяют на внутренней и наружной

Также немаловажное значение играет класс напряжения, на который рассчитан тот или иной изолятор. Из-за чего будет отличаться его конструктивное исполнение и определенные технические характеристики, определяющие возможность их применения в тех или иных электроустановках

Основные технические характеристики

В соответствии с требованиями нормативных документов, для электрических изоляторов регламентируются такие характеристики:

  • Сухоразрядное напряжение — это  такая величина, при которой произойдет электрический разряд в условиях сухого состояния поверхности. Перекрытие изолятора
  • Мокроразрядное напряжение – определяет такую же величину, как и предыдущий параметр, но при условии попадания дождя на поверхность. При этом рассматривается такой вариант, когда направление струй располагается под углом 45°.

Рис. 2. Изолятор под дождем

При таком потоке струй под углом 45°, которые обозначены на рисунке 2 буквой А, обеспечивается максимальное обтекание поверхности Б, и, как следствие, обеспечивается минимальное сопротивление электрическому току – от 9,5 до 10,5 кОм*см. Этот параметр всегда ниже сухоразрядного.

  • Напряжение пробоя – представляет собой такую величину, при которой произойдет пробой между двумя полюсами. В зависимости от конструкции, полюса могут быть представлены стержнем и шапкой либо шиной и фланцем.
  • Механическая прочность – проверяется нагрузкой на изгиб, разрыв или срез головки. При этом конструкцию жестко закрепляют и прикладывают к ней усилие, плавно повышаемое до такого уровня высочайшего напряжения в материале, которое приводит к разрушению.
  • Термическая устойчивость – испытывается посредством попеременного нагревания и резкого охлаждения. Состоит из двух-трех циклов, в зависимости от материала и конструкции. После чего прикладывается электрический потенциал, создающий множественные разряды.

Проверка технических характеристик.

Следует отметить, что испытательные процедуры не являются обязательными для всех изоляторов, выпускаемых на заводе. Электрическим, термическим и механическим воздействиям подвергаются только 0,5% от партии. Обязательной для всех изоляторов  является проверка напряжением перекрытия в течении трех минут, при котором на изоляторе возникают искровые разряды.

У подвесных изоляторов обязательно проверяется механическая характеристика. Для этого в течении минуты к нему прикладывается механическая нагрузка, которую регламентируют заводские или государственные нормы.

Такие испытания обеспечивают нормальную работу электрических изоляторов при номинальных токах и номинальных напряжениях в сети. А также, достаточный уровень надежности. Кроме этого, некоторые модели подвергаются периодической проверке в ходе эксплуатации. По результатам периодических осмотров и испытаний они могут проходить очистку, выбраковку и замену.

Это интересно: Испытание кабеля повышенным напряжением — методика, нормы, сроки

Основные характеристики

Ко всем изоляторам, независимо от их назначения, предъявляются общие требования. Они должны обеспечивать достаточный уровень электрической прочности. Этот показатель зависит от значения напряженности электрического поля, при котором изоляционный материал начинает терять свои диэлектрические свойства.

Каждый изолятор должен иметь достаточную механическую прочность, обеспечивающую устойчивость к динамическим воздействиям, возникающим при коротких замыканиях между токоведущими частями. Свойства изоляторов сохраняются неизменными, несмотря на дождь, снегопад и прочие агрессивные воздействия окружающей среды. Теплостойкость изолирующих устройств обеспечивает сохранение их свойств при перепадах температур в определенных пределах. Поверхность изоляторов должна быть устойчивой к действию электрических разрядов.

  • Номинальное и пробивное напряжения. Пробивным считается минимальное значение напряжения, вызывающее пробой изолятора.
  • Значения разрядных и выдерживаемых напряжений, при которых изолятор сохраняет работоспособность в сухом и мокром состоянии.
  • Импульсные разрядные напряжения с различными полярностями.

Механическими характеристиками изоляторов считаются их вес и размеры, а также минимальное значение номинальной разрушающей нагрузки, измеряемой в ньютонах. Данная нагрузка воздействует на головку изолятора перпендикулярно оси.

Подвесные изоляторы

Подвесные изоляторы предназначены для крепления многопроволочных проводов к опорам воздушных линий и РУ. Их конструируют так, чтобы они могли противостоять растяжению.

Рис.9. Подвесной тарельчатый изолятор

Тарельчатый изолятор (рис.9) имеет фарфоровый или стеклянный корпус в виде диска с шарообразной головкой. Нижняя поверхность диска выполнена ребристой для увеличения разрядного напряжения под дождем, а верхняя поверхность диска — гладкой, с небольшим уклоном для стекания дождя. Внутри фарфоровой (стеклянной) головки цементом закреплен стальной оцинкованный стержень. Сверху фарфоровую головку охватывает колпак из чугуна с гнездом для введения в него стержня другого изолятора или ушка для крепления гирлянды к опоре. Число изоляторов в гирлянде выбирают в соответствии с номинальным напряжением.

Внутренней и наружной поверхностям фарфоровой головки придана такая форма, чтобы при тяжении провода фарфор испытывал только сжатие (как известно, прочность фарфора при сжатии значительно больше, чем при растяжении). Так обеспечивают высокую механическую прочность тарельчатых изоляторов. Они способны выдерживать тяжения порядка 104-105Н. Механическую прочность подвесных изоляторов характеризуют испытательной нагрузкой, которую изоляторы должны выдерживать в течение 1 ч без повреждений.

Расчетную нагрузку на тарельчатые изоляторы принимают равной половине часовой испытательной.

В местностях, прилегающих к химическим, металлургическим, цементным заводам, воздух содержит значительное количество пыли, серы и других веществ, которые образуют на поверхности изоляторов вредный осадок, снижающий их электрическую прочность. Вблизи моря и соленых озер воздух имеет большую влажность и содержит значительное количество соли, которая также образует вредный осадок.

Нормальные изоляторы, используемые в районах, удаленных от источников загрязнения, имеют отношение длины пути утечки к наибольшему рабочему напряжению около 1,5 см/кВ. Для РУ, подверженных загрязнению, применяют изоляторы особой конструкции или увеличивают число изоляторов в гирляндах. Прибегают также к периодической обмывке или обтирке изоляторов.

Рис.10. Подвесной изолятор для местностей с загрязненным воздухом

Тарельчатые изоляторы, предназначенные для местностей с загрязненным воздухом (рис.10), имеют увеличенную длину пути тока утечки и выполнены так, чтобы поверхность их была в наибольшей мере доступна очищающему действию дождя и ветра.

При одинаковой степени загрязнения и увлажнения разрядные напряжения у изоляторов особой конструкции приблизительно в 1,5 раза выше, чем у изоляторов обычного исполнения.

Конструкция подвесных изоляторов

Изолятор ПФГ-6А

Подвесные изоляторы существуют следующих типов:

  • цепочечные,
  • тарельчатые (с шапкой и стержнем),
  • паучковые,
  • «моторные»,
  • длинностержневые.

Первыми подвесными изоляторами, пригодными для промышленной эксплуатации, были цепочечные фарфоровые изоляторы Хьюлетта (E. Hewlett)

Они были разработаны одновременно с тарельчатыми изоляторами, но имели важное практическое преимущество: в их конструкции не использовалась цементная связка (посредством которой соединялись детали тарельчатых изоляторов), что повышало их механическую надёжность. Однако, они обладали более сложной системой соединения в гирлянды (петлями крест-накрест, наподобие изоляторов-«орехов») и худшими электрическими характеристиками по сравнению с тарельчатыми изоляторами

Позднее в качестве альтернативы обычным тарельчатым изоляторам с цементной связкой были созданы паучковые, «моторные» и бесцементные изоляторы различных конструкций. Эти типы подвесных изоляторов, как и цепочечные, в настоящее время более не применяются, так как проблема с надёжностью цементной связки была решена, что уничтожило их преимущества. Наиболее распространённым типом подвесных изоляторов в настоящее время являются тарельчатые изоляторы с шапкой и стержнем и цементной связкой.

Тарельчатые подвесные изоляторы состоят из:

  • фарфоровой или стеклянной изолирующей детали — «тарелки»,
  • шапки из ковкого чугуна,
  • стержня в форме пестика.

Шапка и стержень скрепляются с изолирующей деталью портландцементом марки не ниже 500. Конструкция гнезда шапки и головки стержня обеспечивает сферическое шарнирное соединение изоляторов при формировании гирлянд. Число изоляторов в гирлянде обусловлено напряжением ЛЭП, степенью загрязнения атмосферы, типом изоляторов и материалом опор. Для крепления проводов могут применяться изолирующие конструкции из нескольких параллельно подвешенных гирлянд изоляторов.

Подвесные полимерные(композитные) изоляторы состоят из стеклопластикового стержня, полимерной оболочки и оконцевателей.

Конструкция подвесных изоляторов [ править | править код ]

Подвесные изоляторы существуют следующих типов:

  • цепочечные,
  • тарельчатые (с шапкой и стержнем),
  • паучковые,
  • «моторные»,
  • длинностержневые.

Первыми подвесными изоляторами, пригодными для промышленной эксплуатации, были цепочечные фарфоровые изоляторы Хьюлетта (E. Hewlett)

Они были разработаны одновременно с тарельчатыми изоляторами, но имели важное практическое преимущество: в их конструкции не использовалась цементная связка (посредством которой соединялись детали тарельчатых изоляторов), что повышало их механическую надёжность. Однако, они обладали более сложной системой соединения в гирлянды (петлями крест-накрест, наподобие изоляторов-«орехов») и худшими электрическими характеристиками по сравнению с тарельчатыми изоляторами

Позднее в качестве альтернативы обычным тарельчатым изоляторам с цементной связкой были созданы паучковые, «моторные» и бесцементные изоляторы различных конструкций. Эти типы подвесных изоляторов, как и цепочечные, в настоящее время более не применяются, так как проблема с надёжностью цементной связки была решена, что уничтожило их преимущества. Наиболее распространённым типом подвесных изоляторов в настоящее время являются тарельчатые изоляторы с шапкой и стержнем и цементной связкой.

Тарельчатые подвесные изоляторы состоят из:

  • фарфоровой или стеклянной изолирующей детали — «тарелки»,
  • шапки из ковкого чугуна,
  • стержня в форме пестика.

Шапка и стержень скрепляются с изолирующей деталью портландцементом марки не ниже 500. Конструкция гнезда шапки и головки стержня обеспечивает сферическое шарнирное соединение изоляторов при формировании гирлянд. Число изоляторов в гирлянде обусловлено напряжением ЛЭП, степенью загрязнения атмосферы, типом изоляторов и материалом опор. Для крепления проводов могут применяться изолирующие конструкции из нескольких параллельно подвешенных гирлянд изоляторов.

Подвесные полимерные(композитные) изоляторы состоят из стеклопластикового стержня, полимерной оболочки и оконцевателей.

Изоляторы и опции

АО «ПО Элтехника» производит и предлагает КРУ/ КСО-строительным заводам следующую номенклатуру для производства ячеек среднего напряжения:

  • Опорные изоляторы и опорные изоляторы с емкостным делителем на напряжение 10кВ;
  • Опорные изоляторы и опорные изоляторы с емкостными делителями на напряжение 17,5кВ;
  • Опорные изоляторы и опорные изоляторы с емкостным делителем на напряжение 20кВ;
  • Проходные изоляторы на токи 630А и 1250А;
  • Блок индикации напряжения и устройство для фазировки;
  • Проходные изоляторы для КРУ на токи до 3150А.

Изоляторы из эпоксидного компаунда, изготовленные АО «ПО Элтехника», обладают высокими техническими показателями:

  • Механической прочностью при изгибе и кручении;
  • Стойкостью к динамическим нагрузкам;
  • Электрической прочностью;
  • Гидрофобностью;
  • Стабильностью габаритно-присоединительных размеров.

Изолятор опорный типа ИО У3

Опорный изолятор ИО У3 предназначен для надежного удерживания токоведущих элементов в электротехнических устройствах среднего напряжения.

Изолятор опорный типа ИО-С УЗ

Опорный изолятор ИО­-С У3 предназначен для надежного удерживания токоведущих элементов в электротехнических устройствах среднего напряжения. Благодаря емкостному делителю напряжения, встроенному в корпус, устройство позволяет получать сигнал о наличии напряжения на присоединенном токоведущем элементе. Данный сигнал отображается на блоке индикации напряжения.

Блок индикации напряжения

Блок индикации напряжения переменного тока сигнализирует о наличии рабочего напряжения в главных токоведущих цепях электротехнического устройства 6–10 кВ. Блок индикации напряжения применяется совместно с опорными изоляторами типа ИО­С УЗ.

Устройство для фазировки

Устройство предназначено для проверки правильности подключения кабелей по фазам. Устройство подключается к стационарным блокам индикации напряжения. Устройство обеспечивает полную безопасность персонала при проведении фазировки кабелей под рабочим напряжением.

Изолятор проходной типа Т 5-75 УЗ

Проходной изолятор Т 5­-75 У3 с токопроводом предназначен для пропускания электрического тока напряжением до 10 кВ через металлическую перегородку, находящуюся под другим электрическим потенциалом. Изолятор поставляется в комплекте с латунными гайками для крепления токоведущих шин.

Изолятор проходной типа Д 5-75 У3

Проходной изолятор Д 5-­75 У3 предназначен для изоляции токоведущих шин на напряжение до 10 кВ, проходящих через перегородку, имеющую другой электрический потенциал.

Изолятор проходной типа Д 1-75-1250 УЗ

Проходной изолятор Д 1-­75-­1250 У3 предназначен для изоляции разъемных соединений главных цепей в ячейках КРУ с выкатными элементами. Изолятор рассчитан на ток до 1250 А, ток термической стойкости 31,5 кА. Выпускается в двух вариантах исполнения центральной резьбовой втулки: М10 и М16.

Изолятор проходной типа Д 1-75-1600 УЗ

Проходной изолятор Д 1-75­-1600 У3 предназначен для изоляции разъемных соединений главных цепей в ячейках КРУ с выкатными элементами. Изолятор рассчитан на ток до 1600 А, ток термической стойкости 40 кА.

Изолятор проходной типа Д 1-75-2000 УЗ

Проходной изолятор Д 1­-75-­2000 У3 предназначен для изоляции разъемных соединений главных цепей в ячейках ьКРУ с выкатными элементами. Изолятор рассчитан на ток до 2000 А, ток термической стойкости 40 кА. Выпускается в двух вариантах исполнения центральной резьбовой втулки: М16 и М20.

Изолятор проходной типа Д 1-75-3150 УЗ

Проходной изолятор Д 1­-75-­3150 У3 предназначен для изоляции разъемных соединений главных цепей в шкафах КРУ с выкатными элементами. Изолятор рассчитан на ток до 3150 А, ток термической стойкости 40 кА.

Проходной изолятор [ править | править код ]

Предназначен для прово́да токоведущих элементов через стенку, имеющую другой электрический потенциал. Проходной изолятор с токопроводом содержит токоведущий элемент, механически соединенный с изоляционной частью.

Изоляторы предназначены для крепления токопроводов, а также для создания изоляционных промежутков между токопроводами различных фаз и между токопроводами и заземленными конструкциями. По назначению изоляторы подразделяются на станционные, линейные и аппаратные.

Станционные изоляторы предназначены для закрепления токопроводов в закрытых распределительных устройствах, а также для пропуска их через стены и перекрытия. Они соответственно подразделяются на опорные и проходные.

Линейные изоляторы предназначены для закрепления проводов на ВЛ и ОРУ. Они подразделяются на штыревые, стержневые и подвесные.

Изоляторы высоковольтной аппаратуры, опорные и проходные, являются неотъемлемой частью аппаратуры и по конструктивному исполнению могут быть разной формы.

Диэлектрические материалы, из которых изготавливаются изоляторы, должны иметь высокую электрическую и механическую прочность. Эти характеристики должны обеспечиваться как в нормальных условиях эксплуатации, так и в аварийных режимах, при различных атмосферных условиях, быть негигроскопичными, трекингостойкими, работать в широком диапазоне температур и в агрессивной среде.

Всем этим требованиям удовлетворяют следующие материалы: глазурированный электротехнический фарфор, стекло и некоторые пластмассы.

Фарфор обладает следующими характеристиками: электрическая прочность ; механическая прочность фарфора зависит от характера деформации , , ;

допустимый перепад рабочих температур 70ºC. Одно из достоинств фарфора как изоляции – низкая стоимость.

Стекло имеет электрическую прочность . Механические характеристики стекла примерно такие же, как у фарфора. Закаленное стекло допускает нагрузку до 530 кН. Стеклянные изоляторы могут изготавливаться методом штамповки и не требуют глазуровки. Прозрачность стекла позволяет легко обнаруживать трещины и другие дефекты, что облегчает контроль во время производства и эксплуатации.

Общий недостаток фарфоровых и стеклянных изоляторов – значительная масса и размеры.

В настоящее время широкое распространение получили изоляторы на основе стеклопластиков и полимерных покрытий. Полимерные изоляторы практически не повреждаются при транспортировке и имеют значительно меньшую (в 7–10 раз) металлоемкость подвесок, меньшую массу и размеры.

Металлическую арматуру изоляторов изготавливают из стали, ковкого и немагнитного чугунов или цветного металла. Немагнитный чугун и цветной металл применяются при больших токах с целью снижения потерь. Для крепления арматуры к диэлектрику используют высококачественные цементы и другие связующие.

Рис. 2.1 – Опорные изоляторы

Для изготовления изоляторов высоковольтной аппаратуры используется также эпоксидная смола, бакелизированная бумага и слоистые пластики. В высоковольтных вводах применяют бумажномасляную и маслобарьерную изоляцию, защищенную фарфоровыми покрышками.

Под воздействием токов короткого замыкания, ветра, гололеда и веса проводов высоковольтная изоляция испытывает большие механические нагрузки и вибрации. Кроме того изоляция ВЛ и ОРУ подвержена воздействию тумана, дождя, загрязнению и резким колебаниям температуры. Поэтому изоляционные материалы должны обеспечивать длительную электрическую прочность с учетом климатических условий и уровня перенапряжений, а также достаточную механическую прочность.

Для обеспечения надежной и безопасной работы изоляция подвергается испытанию повышенным напряжением. Значения испытательных напряжений для изоляции разных классов напряжения приводятся в таблицах. Для изоляторов внутренней установки определяющим является сухоразрядное напряжение , а для изоляторов наружной установки – мокроразрядное – напряжение перекрытия под дождем.

Последнее изменение этой страницы: 2017-02-05; Нарушение авторского права страницы

Напряжение пробоя ИП

Напряжение пробоя фарфоровых ИП может быть разным в зависимости от толщины слоя фарфора. Несмотря на это, конструкция изоляторов определяется по необходимой механической прочности, расчетным напряжением перекрытия и дополнительным мерам по удалению короны.

При работе проходного изолятора 10 кВ не принимают меры для удаления коронирования. При номинальных напряжениях свыше 35 кВ применяют меры по установке короны возле стержня напротив фланца, как раз в том месте, где наибольшая напряженность в воздухе.

Для того чтобы предотвратить коронирование, изоляторы изготавливают без воздушной полости вокруг металлического прута, установленного внутри изолятора. Во время этого поверхность ИП металлизируется со стержнем. А для того чтобы устранить появление разрядов внизу ИП, поверхность под ним также металлизируется и дополнительно заземляется.

Изолятор

I

Изолятор

специально оборудованное помещение для временного размещения инфекционных больных, а также лиц, у которых подозревают инфекционную болезнь, и общавшихся с ними, представляющих эпидемическую опасность для окружающих, — см. Изоляция инфекционных больных.

II

Изолятор (франц. isolateur)

обособленное помещение, оборудованное и оснащенное всем необходимым для поддержания строгого противоэпидемического режима, предназначенное для временного размещения инфекционных больных и лиц, у которых заподозрены инфекционные заболевания, а при определенных болезнях — также лиц, находившихся в общении с больными.

Значения в других словарях

  1. изолятор — Изол/я́тор/. Морфемно-орфографический словарь
  2. Изолятор — I Изоля́тор (франц. isolateur, от isoler — отделять, разобщать) (медицинский), специально оборудованное помещение, предназначенное для изоляции (См. Большая советская энциклопедия
  3. изолятор — сущ., кол-во синонимов: 21 аквариум 6 беррит 1 бокс 16 виброизолятор 1 гетинакс 2 диэлектрик 11 диэлектрит 1 керит 4 мегомит 1 медизолятор 2 микалекс 2 микарта 1 мипора 4 непроводник 1 ролик 17 сизо 2 силосель 1 стирофом 1 теплоизолятор 1 шизо 7 электроизолятор 1 Словарь синонимов русского языка
  4. изолятор — изолятор I м. 1. Помещение для больных, нуждающихся в изолировании изолирование 1., изоляции изоляция I 1. 2. Специальное помещение для лиц, находящихся под следствием; следственный изолятор. II м. Толковый словарь Ефремовой
  5. изолятор — Изолятор, изоляторы, изолятора, изоляторов, изолятору, изоляторам, изолятор, изоляторы, изолятором, изоляторами, изоляторе, изоляторах Грамматический словарь Зализняка
  6. изолятор — ИЗОЛ’ЯТОР, изолятора, ·муж. 1. Изолирующий предмет, изолирующее вещество (см. изолировать в 3 ·знач.; физ., тех.). Каучук, фарфор и стекло являются хорошими изоляторами. 2. Стеклянный или фарфоровый ролик для электрических проводов (тех.). Толковый словарь Ушакова
  7. изолятор — I. ИЗОЛЯТОР I а, м. isolateur. 1. Вещество, не проводящее электрический ток. БАС-1. Каучук, фарфор и стекло являются хорошими изоляторами. Уш. 1934. 2. Изделие (обычно из фарфора) для изоляции и поддержки электрических проводов. БАС-1. Словарь галлицизмов русского языка
  8. изолятор — ИЗОЛЯТОР, а, м. 1. То же, что диэлектрик, а также вещество, плохо проводящее тепло (спец.). 2. Электротехническое устройство для изоляции частей электрооборудования. Подвесной и. Аппаратный и. 3. Особое помещение для больных или других лиц, нуждающихся в изоляции. Больной помещён в и. Толковый словарь Ожегова
  9. изолятор — -а, м. 1. физ. Вещество, не проводящее электрического тока; диэлектрик. 2. Прибор из фарфора, пластических масс и т. д. для подвешивания проводов и кабелей или для ввода проводов в здание. Высоковольтные изоляторы. Подвесные изоляторы. Малый академический словарь
  10. изолятор — ИЗОЛЯТОР — приспособление (из тканей, стекла, бумаги или другого материала), употребляемое для защиты цветков, соцветий или групп соцветий от опыления нежелательной пыльцой. Ботаника. Словарь терминов
  11. изолятор — – 1) тело, плохо проводящее электричество (см. диэлектрик) или тепло; 2) приборы из фарфора, пластических масс и др. Большой словарь иностранных слов
  12. изолятор — ИЗОЛЯТОР -а; м. 1. Физ. Вещество, не проводящее электрический ток; диэлектрик. Каучук — хороший и. Использовать янтарь в качестве изолятора. 2. Прибор из фарфора, пластических масс и т. Толковый словарь Кузнецова
  13. изолятор — орф. изолятор, -а Орфографический словарь Лопатина
  14. изолятор — ИЗОЛЯТОР (франц. isolateur, от isoler — отделять, разобщать), помещение для содержания больных и подозрительных по заболеванию заразными болезнями. Входит в состав вет. лечебниц и леч. сан. пунктов. Является обязательным для крупных пром. животноводч. Сельскохозяйственный словарь
  15. изолятор — ИЗОЛЯТОР (франц. isolateur, от isoler — отделять, разобщать), помещение для обособленного содержания (изоляции) больных заразными болезнями и подозрительных по заболеванию животных. Иногда необходимо изолировать и подозреваемых в заражении животных. Ветеринарный энциклопедический словарь
  16. ИЗОЛЯТОР — ИЗОЛЯТОР — в медицине — см. Бокс. ИЗОЛЯТОР (от франц. isoler — разобщать) — 1) вещество с очень большим удельным электрическим сопротивлением (диэлектрик)… Большой энциклопедический словарь
  • Блог
  • Ежи Лец
  • Контакты
  • Пользовательское соглашение

2005—2020 Gufo.me

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации