Андрей Смирнов
Время чтения: ~23 мин.
Просмотров: 50

Arduino nano

Введение

Arduino — это аппаратная платформа с открытым исходным кодом. Есть два элемента в названии: платы и программное обеспечение. Только платы от официального производителя arduino.cc можно назвать «Arduino». Название является товарным знаком. Всё начиналось с открытого исходного кода, но по мере того, как популярность программного обеспечения Arduino (IDE — Integrated Development Environment) стала расти, оно было расширено для поддержки многих других плат. Эти устройства более правильно называть «совместимые Arduino».

Arduino IDE — это кросс-платформенное приложение, которое обеспечивает отправную точку для всех проектов, связанных с Arduino.

Эта серия плат нацелена на широкую аудиторию — как профессиональных инженеров, так и юзеров, которые вообще ничего не понимают в контроллерах, но готовы с удовольствием сделать что-нибудь этакое электронное. И если вы относитесь к числу последних, не бойтесь купить одну из плат, чтобы сделать свой первый проект.

На стороне программного обеспечения есть «ядро» и «IDE». Ядром является библиотека C ++, называемая «ядром Arduino», которая уникальна для каждого типа процессора. Эта (обширная) библиотека позволяет использовать общие функции, такие как digitalRead() или digitalWrite(), для работы со множеством разных архитектур.

На аппаратной стороне трудно охватить все возможные варианты в сжатом виде

Таким образом, здесь основное внимание уделяется таким популярным вариантам, как: Uno, Mega, ESP8266, Zero и MKR. Некоторые из них мы упоминаем ниже

Готовим программное обеспечение

После того как вы купили нужные детали и их вам доставили — самое время подготовить программное обеспечение для того, чтобы мы могли взаимодействовать с нашим микроконтроллером. Нам нужно на наш компьютер установить Arduino IDE.

Как мы писали в обзорной статье про эту среду — используя программную среду Arduino IDE, можно, основываясь лишь на минимальных знаниях C++, решать самые разные творческие задачи, связанные с программированием и моделированием. Arduino IDE — это программная среда разработки, предназначенная для программирования одноимённой платы.

3.1 Скачиваем и устанавливаем ПО

Выбираем нужную версию, жмем «Just Download» и скачиваем:

После того как скачали ПО — запускам установку, открыв скачанный .EXE файл:

Дальше мы проходим все обычные шаги установки, как при установке любого другого приложения — соглашаемся с «лицензионным соглашением», ставим галочки, выбираем папку для установки и жмем ОК:

3.2 Запускам ПО и включаем русский язык

После того как мы прошли процесс установки мы увидим на рабочем столе иконку нашей Arduino IDE:

Нажимаем на иконку и видим процесс загрузки программы:

В итоге мы увидим такое окно:

Включаем русский язык.

Для включения русскоязычного интерфейса Arduino IDE нам нужно перейти в нужную вкладку и выбрать русский язык в списке:

File → Preferences → Language

Да, теперь, на этом шаге, у нас уже есть все комплектующие и установлено нужное программное обеспечение.

Работа в комплексе с другими системами

Самое первое, с чем вы можете познакомиться, даже без приобретения дополнительных устройств для разработки – это связь по последовательному порту. Он активируется по команде (скорость, например 9600). Подробно о каждой команде вы можете прочитать в обучающем разделе на официальном сайте проекта Arduino.ru. Вы можете обмениваться с компьютером информацией. Плата, в зависимости от программного кода, может вам присылать данные, а вы их, через монитор портов в Arduino IDE, можете читать.

Кроме последовательного порта, в ардуино UNO реализована поддержка таких интерфейсов:

  • I2C;
  • SPI.

Через них можно осуществлять «общение» между несколькими платами, а также подключать разную периферию: датчики и дисплеи.

Схема подключения SD card к Arduino

Предварительно отформатировав карту памяти, приступайте к её подключению.

Отформатировать карту можно этой программой: SD Card Formatter

Платы расширений облегчат задачу, ведь они позволят урегулировать напряжение до необходимых нам 3.3 В, а контроллеры уровня преобразуют питание логики в подходящие для флешки.

Плата расширений потребуется под микроконтроллеры до 5 В, учитывайте это при её выборе. Главное достоинство Ардуино – простота, и подключение вспомогательных модулей не стало исключением. Лучшим выбором станет именно структура запуска через hardware SPI пины, дабы не усложнять новичкам жизнь. Нам потребуются 13, 12 и 11 цифровые пины, а также четвёртые, чтобы наладить «chip\slave select» цепь. Под это, зачастую, берётся 10 пин, но если вы знаете, что делаете, можете выбрать и более подходящий.

Распиновка подключения Arduino Uno к SD

Обратите внимание на то, что в зависимости от форм-фактора и типа платы Ардуино, точки подключения могут варьироваться. Например, для меги необходимо соединить цепь с 50, 51, 52 и 53 слотом

Модуль SD card Arduino Uno Arduino Mega
VCC 3.3V или 5V (проверьте описание платы) 3.3V или 5V (проверьте описание платы)
CS 4 53
MOSI 11 51
CLK 13 52
MISO 12 50
GND GND GND

В последующие разы вы можете поэкспериментировать с последними пинами на обеих картах, но поначалу лучше выбрать именно те, что указаны выше. Так вы сможете отработать код, избавившись от нежелательных поломок и осечек, что значительно упростит задачу в будущем. Оставшиеся 5 В и GND подсоединяйте к соответствующим портам, здесь никаких особых инструкций нет.

Еще один вариант наглядной схемы:

В конце процедуры необходимо замкнуть CD в заземление, так система не сможет инициализировать карту памяти. Но, в случае необходимости, всегда можно применить резисторы в 10 кОм и вспомогательные порты, однако мы не будем останавливаться на этом пине, так как сейчас он нам не нужен.

Схема Arduino Nano ISCP

Наконец, надо сказать о подключении программатора. Для программирования контроллеров Atmel, на котором собран модуль Arduino, используется интерфейс ICSP. Для Arduino Nano icsp распиновка выглядит выглядит следующим образом (см. верхнюю часть предыдущего рисунка):

  1. MISO (ведущий принимает от ведомого);
  2. +5V (питание);
  3. SCK (тактовый импульс);
  4. MOSI (ведущий передает ведомому);
  5. RESET (сброс);
  6. GND (земля).

Первый пин 6-контактного разъема имеет в основании форму квадратика и нумеруется по часовой стрелке, если смотреть сверху. Чтобы не возникало сомнений по порядку нумерации выводов коннектора, ниже приводится фрагмент принципиальной схемы платы Ардуино:

Этот разъем подключается к программатору с интерфейсом SPI (интерфейс последовательного программирования контроллеров Atmel). Кроме того, прошивка контроллера может меняться из среды программирования через кабель USB, так что приобретать программатор становится необязательным (он нужен только в том случае, если отсутствует программа загрузчика).

Аналоговые, цифровые и шим пины Ардуино

Все пины можно разделить на несколько видов, различие будет только в количестве данных выводов на различных платах. Например, на Arduino Mega 2560 цифровых и аналоговых портов, значительно больше, чем на Uno или Nano из-за большего размера платы и производительности микроконтроллера. В остальном характеристики и способы программирования пинов не отличаются друг от друга.

  1. Power Pins — порты питания, режим их работы нельзя запрограммировать или изменить. Они выдают стабилизированное напряжение 5V или 3,3V, Vin выдает напряжение от источника питания, а GND — это заземление (общий минус);
  2. PWM Pins — порты с ШИМ модуляцией, которые можно запрограммировать, как цифровой выход/вход. Данные порты обозначены на плате знаком тильда (˜);
  3. Analog In — порты, принимающие аналоговый сигнал от датчиков, работают на вход. Данные порты тоже можно запрограммировать, как цифровой вход/выход. Данные пины не поддерживают ШИМ модуляцию.

Режим пинов назначается в процедуре void setup с помощью pinMode(), например:

void setup() {
    pinMode(10, OUTPUT); // объявляем пин 10 как выход
    pinMode(A2, OUTPUT); // объявляем пин A2 как выход

    pinMode(12, INPUT); // объявляем пин 12 как вход
    pinMode(A1, INPUT); // объявляем пин A1 как вход
}

Пояснения к коду:

  1. к выходу 10 и A2 можно подключить светодиод, который будет включаться и выключаться при вызове команды в программе;
  2. пин 10 может использоваться для ШИМ сигнала, например, чтобы плавно включить светодиод, а пин A2 может выдавать только цифровой сигнал (0 или 1);
  3. к входу 12 и A1 можно подключить цифровой датчик и микроконтроллер будет проверять наличие сигнала на этих пинах (логический нуль или единицу);
  4. к входу A1 можно подключить аналоговый датчик тогда микроконтроллер будет получать не только сигнал но и узнавать характеристику сигнала.

Мы не случайно разделили пины с ШИМ модуляцией (PWM Pins) и аналоговые. PWM пины создают аналоговый сигнал, к ним подключают сервопривод, шаговый двигатель и другие устройства, где требуется подавать сигнал с разными характеристиками. Аналоговые пины (Analog In) используются для подключения аналоговых датчиков, с них входящий сигнал преобразуется в цифровой с помощью встроенного АЦП.

Ардуино Uno пины: шим, аналоговые, цифровые


Arduino UNO распиновка платы на русском

ШИМ (PWM) порты
(Analog Out)
3, 5, 6, 9, 10, 11
Аналоговые порты
(Analog In)
A0, A1, A2, A3, A4, A5
на некоторых платах: A6, A7
Цифровые порты
(Digital In/Out)
все порты со 2 по 13 пин
можно использовать: A0 — A7

Из таблицы видно, какие пины на Arduino UNO поддерживают шим. Аналоговые пины (Analog In) используют, как цифровые если недостаточно портов общего назначения, например, вы хотите подключить к плате 15 светодиодов. Кроме того, на плате Arduino Uno и Nano порты A4 и A5 используются для I2C протокола (SDA и SCL пины) — они работают параллельно с пинами A4 и A5. Об этом мы расскажем чуть позже.

Ардуино Nano пины: шим, аналоговые, цифровые


Arduino Nano распиновка платы на русском

ШИМ (PWM) порты
(Analog Out)
3, 5, 6, 9, 10, 11
Аналоговые порты
(Analog In)
A0, A1, A2, A3, A4, A5
на некоторых платах: A6, A7
Цифровые порты
(Digital In/Out)
все порты со 2 по 13 пин
можно использовать: A0 — A7

Если вы заметили, то пины на Arduino Nano и Uno имеют одинаковое количество и назначение. Платы отличаются лишь своими габаритами. Nano — более компактная и удобная плата, для экономии места на нее не ставят разъем питания, для этого используются пины Vin и GND на которое подается питание от источника.

Ардуино Mega пины: шим, аналоговые, цифровые


Схема распиновки платы Arduino Mega 2560 r3

ШИМ (PWM) порты
(Analog Out)
все порты со 2 по 13 пин
дополнительно: 44, 45, 46 пин
Аналоговые порты
(Analog In)
с A0 до A15
Цифровые порты
(Digital In/Out)
все порты со 2 по 13, со 22 по 52 пин
можно использовать: A0 — A15

Пины коммуникации нежелательно использовать, как обычные цифровые порты. Особенно при таком количестве портов общего назначения, как на Mega 2560. Более подробную информацию о рассмотренных платах, а также о других микроконтроллерах семейства Arduino (Pro Mini, Leonardo, Due и пр.): характеристики, описание пинов, габариты и т.д. можно узнать в разделе Микроконтроллеры на нашем сайте.

Настройка программы Arduino IDE

После того как все детали соединены мы готовы снова вернуться к нашей Arduino IDE и создать блок кода для управления платой. Такой блок кода называют скетчем. Но для начала мы должны немного настроить нашу программу.

Сначала выбираем правильную плату с которой будем работать. Переходим в нужное меню и выбираем из списка нашу плату:

Tools → Board → Arduino Nano

Дальше мы обязательно должны выбрать на каком чипе сделана наша плата, т.к. Arduino Nano может идти в двух вариантах — с чипом ATmega168 и ATmega 328 (в нашем случае).

Tools → Processor → ATmega328

После мы убеждаемся, что правильно выбран серийный порт (Serial Port).

Tools → Port → COM8

И последнее — проверяем наш программер:

Установка драйверов

В Windows драйверы будут установлены автоматически, при подключении платы, если вы использовали установщик. Если вы загрузили и распаковали Zip архив или по какой-то причине плата неправильно распознана, выполните приведенную ниже процедуру.

  • Нажмите на меню «Пуск» и откройте панель управления.
  • Перейдите в раздел «Система и безопасность» (System and Security). Затем нажмите «Система» (System). Затем откройте диспетчер устройств (Device manager).
  • Посмотрите под Порты (COM и LPT) (Ports (COM & LPT)). Вы должны увидеть открытый порт с именем «FT232R USB UART». Если раздел COM и LPT отсутствует, просмотрите раздел «Другие устройства», «Неизвестное устройство».
  • Щелкните правой кнопкой мыши по порту FT232R USB UART и выберите опцию «Обновить драйверы…».
  • Затем выберите опцию «Выполнить поиск драйверов на этом компьютере».
  • Наконец, найдите каталог FTDI USB Drivers, который находится в папке «Drivers» программы Arduino.
  • После этого Windows завершит установку драйвера.

Распиновка Arduino Nano

У Arduino Nano распиновка выполнена так, как показано на картинке ниже:

1 – TX (передача UART) или порт D0;
2 – RX (прием UART) или порт D1;
3,28 – сброс (RESET);
4,29 – земля;
5…16 – порты D3…D13;
17 – напряжение 3,3 В;
18 – опорное напряжение АЦП;
19…26 – 8 каналов АЦП A0…A7;
27 – напряжение 5,0 В;
30 – плюс питания модуля 2-20 В

Первые два вывода используются либо для связи по классическому последовательному интерфейсу с другим устройством, либо как порты для двоичных данных. В arduino nano распиновка 5…16 выводов, кроме указанных, имеет дополнительные функции:

5 – прерывание INT0;
6 – прерывание INT1 / ШИМ / AIN0;
7 – таймер-счетчик T0 / шина I2C SDA / AIN1;
8 – таймер-счетчик T1 / шина I2C SCL / ШИМ;
9,12,13,14 – ШИМ;
16 – светодиод.

Более подробная схема вводов-выводов на рисунке ниже (нажмите для увеличения):

Распиновка Arduino Nano

AIN0 и AIN1 – это входы быстродействующего аналогового компаратора. Кроме того, имеется 6 каналов с выходом широтно-импульсного модулятора (ШИМ). К тому же имеется большее число пинов, на которые могут быть переведены запросы прерываний.

Проблема с микроконтроллерами заключается в том, что при больших функциональных возможностях (ведь в них кроме процессора есть еще довольно богатый набор периферийных устройств) они имеют ограниченное число выводов. Разработчику тут есть над чем подумать уже на этапе составления принципиальной схемы, ведь его цель – максимально использовать устройство, в то же время не допуская конфликтов между функциями выводов.

Распиновка Arduino Nano 3.0

У Arduino Nano 3.0 распиновка не отличается от той схемы, что приведена выше, несмотря на другой контроллер. ATmega328 отличается от ATmega168 вдвое большим объемами памяти всех видов:

  • flash,
  • оперативной,
  • EEPROM.

Это позволяет улучшить ПО прошивки и загручика, а также дать пользователю больше возможностей для его прикладной задачи. Arduino nano v 3.0 распиновка может быть использована для программирования, но для этих целей используется отдельный разъем. Об этом ниже.

Распиновка платы Arduino Nano

По обеим сторонам платы располагаются контакты пинов, с каждой стороны по 15 штук.

Назначение контактов:

  • 1, 2: работа с UART-интерфейсом;
  • 3, 28: сброс микроконтроллера;
  • 4, 29: общий провод;
  • 5: внешнее прерывание;
  • 6: внешнее прерывание / создание сигнала с широтно-импульсной модуляцией;
  • 7: работа с I2C-интерфейсом / таймер-счетчик 0;
  • 8: работа с I2C-интерфейсом / создание ШИМ-сигнала / таймер-счетчик 1;
  • 9, 12: создание ШИМ-сигнала;
  • 10, 11: цифровые пины ввода/вывода, специальных функций нет;
  • 13, 14, 15: работа с SPI-интерфейсом / создание ШИМ-сигнала;
  • 16: подключение светодиода / работа с SPI-интерфейсом;
  • 17: питание 3,3 В;
  • 18: опорное напряжение для АЦП;
  • 19-26: аналоговые входы (AP) для АЦП;
  • 27: питание 5 В;
  • 30: входной сигнал VIN 7-12 В.

У Arduino Nano 14 цифровых портов (DP) и 8 AP.

Описание элементов платы Arduino Nano V3

  • USB Jack – разъем USB Mini-B для подключения устройств USB;
  • Analog Reference Pin – для определения опорного напряжения АЦП;
  • Ground – земля;
  • Digital Pins (2-13) – цифровые выводы;
  • TXD – пин передачи данных по UART;
  • RXD – пин приема данных по UART;
  • Reset Button – кнопка перезагрузки микроконтроллера;
  • ISCP (In-Circuit Serial Programmer) – контакты для перепрограммирования платы;
  • Microcontroller ATmega328P – микроконтроллер — главный элемент на плате;
  • Analog Input Pins (A0-A7) – аналоговые входы;
  • Vin – вход используется для подачи питания от внешнего источника;
  • Ground Pins – земля;
  • 5 Volt Power Pin – питание 5 В;
  • 3 Volt Power Pin – питание 3.3 В;
  • RST – вход для перезагрузки;
  • SMD Crystal – кварцевый резонатор (жарг. «кварц») — прибор, в котором пьезоэлектрический эффект и явление механического резонанса используются для построения высокодобротного резонансного элемента электронной схемы;
  • TX LED (White) – светодиод — индикатор отправления данных по UART;
  • RX LED (Red) – светодиод — индикатор приёма данных по UART;
  • Power LED (Blue) – светодиод — индикатор питания;
  • Pin 13 LED (Wellow) – подключенный светодиод к 13-му пину.

Первая программа

Для того, чтоб лучше понять принцип работы платформы, давайте напишем первую программу. Эту простейшую программу (Blink) мы выполним в двух вариантах. Разница между ними только в сборке.

Принцип работы этой программы достаточно простой: светодиод загорается на 1 секунду и тухнет на 1 секунду. Для первого варианта нам не понадобиться собирать макет. Так как в платформе Arduino к 13 пину подключён встроенный светодиод.

Что еще можно сделать?

Мы создали одно из простейших устройств, но возможности по работе с Ардуино и другими микроконтроллерами, на самом деле, безграничны. С помощью разных дополнительных сенсоров можно реализовать много всяких устройств:

  • Анемометр — стационарный прибор для измерения скорости ветра;
  • Акселерометр — сенсор, позволяющий определять ускорение и ориентацию в пространстве;
  • Аналоговый термометр — аналоговый сенсор для измерения температуры;
  • Барометр — сенсор, позволяющий определять атмосферное давление и температуру;
  • Датчик влажности почвы — сенсор, позволяющий узнать о пересыхании земли
  • Датчик водорода — датчик для обнаружения водорода;
  • Датчик тока — аналоговый сенсор для измерения силы тока;
  • Датчик уровня воды — цифровой датчик уровня воды в ёмкости;
  • Датчик температуры и влажности — сенсор, предоставляющий информацию об окружающей температуре и влажности в виде цифрового сигнала;
  • Датчик пульса — аналоговый датчик для измерения частоты сердечных сокращений
  • Гироскоп — сенсор, позволяющий определять собственную угловую скорость.

Это лишь малая часть датчиков и сенсоров, которые вы можете использовать для создания своих устройств. Мы уже много интересного сделали и в планах еще много всего интересного сделать

Желаем вам отличных проектов. Подписывайтесь на нашу группу ВКонтакте.

Распиновка Arduino NANO v3

Главное отличие этой миниатюрной платы, заключается в отсутствии гнезда для внешнего источника питания, вместо этого используются VIN. Когда речь идет о создании миниатюрного устройства, то размер Arduino Nano v3 ATmega328 / ATmega168 играет решающую роль при выборе платформы. При этом, Ардуино УНО — это более удобная платформа для старта и начала изучения микроконтроллеров.


Arduino Nano распиновка платы на русском, ICSP

Платы могут выпускаться в двух вариантах — с припаянными ножками и без (ножки обычно идут в комплекте). Платы без ножек будет намного удобнее использовать в проектах на Ардуино, припаивая к портам платы провода напрямую. Платы с ножками можно устанавливать на макетных платах, используя для соединения с датчиками и модулями коннекторы (провода «папа-папа» и «папа-мама»).

Характеристики

В основе платы лежит процессор ATmega 328. Кроме него на плате находится модуль USB для связи с компьютером и прошивки. Этот модуль называется «USB-TTL преобразователь». На фирменных платах Arduino Uno для этой целей используется дополнительный микроконтроллер ATmega16U2.

Характеристики Arduino Uno R3
Микроконтроллер ATmega328
Рабочее напряжение
Напряжение питания (рекомендуемое) 7-12В
Напряжение питания (предельное) 6-20В
Цифровые входы/выходы 14 (из них 6 могут использоваться в качестве ШИМ-выходов)
Аналоговые входы 6
Максимальный ток одного вывода 40 мА
Максимальный выходной ток вывода 3.3V 50 мА
Flash-память 32 КБ (ATmega328) из которых 0.5 КБ используются загрузчиком
SRAM 2 КБ (ATmega328)
EEPROM 1 КБ (ATmega328)
Тактовая частота 16 МГц

Особенность этого чипа заключается в аппаратной поддержке USB, что позволяет организовывать связь без дополнительных преобразователей. В то время как ATmega328 не поддерживает такой функции, поэтому 16u2 выступает в роли преобразователя данных из USB в последовательный порт для МК AVR. В него залита программа для выполнения этой задачи.

Однако так происходит не всегда: в более мелких платах, таких как Arduino Nano, используют преобразователи уровней на базе различных микросхем, например FT232, CP21XX, Ch340g и подобных. Это решение является более дешевым и не требует прошивки дополнительного связывающего контроллера, как описано выше.

Внимание! Не всё так однозначно с DCcduino UNO r3 на ch340g. В ней как раз и использован более дешевый, чем в оригинале, вариант преобразователя USB-TTL.. На плате есть выход 3.3 В, он нужен для подключения периферии и некоторых датчиков, его пропускная способность по току равна 50 мА

На плате есть выход 3.3 В, он нужен для подключения периферии и некоторых датчиков, его пропускная способность по току равна 50 мА.

ATmega328 работает на частоте 16 МГц. Она фиксирована кварцевым резонатором, который вы можете, по желанию, заменить, тем самым ускорив работу Uno r3.

Важно! После замены кварцевого резонатора функции, связанные со временем, такие как Delay, не будут соответствовать введенным значениям. Это функция задержки времени, по умолчанию её аргументом является требуемое время задержки в мс

Функция прописана в библиотеках Ардуино, с учетом стандартной тактовой частоты в 16 МГц. Поэтому после замены кварца заданное время не будет соответствовать написанному. Для этого нужно либо подбирать опытным путем и устанавливать зависимости, либо править файлы библиотек.

Как преодолеть аппаратные ограничения

Большинство распространённых плат имеют аналогичные характеристики, среди них:

  • Uno;
  • Nano;
  • Pro mini;
  • и подобные.

Но с развитием ваших навыков разработки в этой среде появляется проблема нехватки мощности и быстродействия этой платформы. Первым шагом для преодоления ограничений является использование языка C AVR.

С его помощью вы ускорите на порядок скорость обращения к портам, частоту ШИМ и размер кода. Если вам и этого недостаточно, то вы можете воспользоваться мощными моделями с аналогичным подходом к разработке. Для этого подойдёт плата Arduino Mega2560. Еще более мощная – модель Due. В противном случае вам стоит ознакомиться с разновидностями одноплатных компьютеров и STM микроконтроллеров.

Ардуино Uno R3 – отличная плата для большинства проектов, которая служит для изучения устройств цифровой электроники.

Интерфейсы связи

Arduino Nano поддерживает интерфейс I2C для связи с различными устройствами и периферией. Один из часто встречающихся способов применения – это связь с дисплеем через шину I2C. Благодаря особой технологии вы можете выводить наборы символов и данных на дисплей, используя всего лишь 2 пина, в Нано это пины D4 SDA) и D5 (SCL).

К Ардуино Нано подключение аналогично — используйте отмеченные ранее пины. Для работы с дисплеем вам понадобится библиотека, которую можно скачать ниже:

Код программы ниже:

#include <Wire.h> 
#include <LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd(0x27,16,2);  // установка адреса LCD на 0x27 для 16 символов и 2 строк

void setup()
{
  lcd.init();                      // инициализация дисплея 
 
  // Print a message to the LCD.
  lcd.backlight();
  lcd.print("Hello, world!");
}

void loop()
{
}

Пример скетча — управление задней подсветкой модуля I2C LCD1602:

#include <Wire.h>
#include <LiquidCrystal_I2C.h>

#if defined(ARDUINO) && ARDUINO >= 100
#define printByte(args)  write(args);
#else
#define printByte(args)  print(args,BYTE);
#endif

LiquidCrystal_I2C lcd(0x27,16,2);  // установка адреса LCD на 0x27 для 16 символов и 2 строк

void setup(){
  
  lcd.init();                      // инициализация дисплея  
  lcd.backlight();
  
  lcd.home();
  
  lcd.print("Hello world...");
  lcd.setCursor(0, 1);
  lcd.print("dfrobot.com");
  
}

int backlightState = LOW;
long previousMillis = 0;
long interval = 1000;
  
void loop(){
  
  unsigned long currentMillis = millis();
 
  if(currentMillis - previousMillis > interval) {
    previousMillis = currentMillis;   

    if (backlightState == LOW)
      backlightState = HIGH;
    else
      backlightState = LOW;

    if(backlightState == HIGH)  lcd.backlight();
    else lcd.noBacklight();
  }
}

Работа с SPI требует два пина под передачу данных (master in и out):

  • для выбора системы, с которой идёт «общение» (SS или CS – crystal/system select),
  • сигнал тактирования SCLK.

На официальном сайте есть специальная библиотека для работы с ним. При написании программ не забудьте подключить её директивой:

#include SPI.h

Теперь можно организовывать систему связи.

Заключение

Arduino Nano одна из самых маленьких полноценных версий плат Ардуино. По сути своей, она с точностью повторяет Arduino Uno, но имеет два главных отличия:

  1. Размеры платы.
  2. Связь платы UNO с компьютером осуществляется с помощью USB serial преобразователя на базе микроконтроллера типа Atmega8u.

На нано-плате использован преобразователь на базе ft232, однако более дешевые китайские версии используют другой способ связи с ПК Arduino Nano CH341. По сути, эти микросхемы являются основой для USB-UART конвертера.

Конструктор Arduino создан для любителей электроники и робототехники начального уровня, чтобы помочь им обойти сложности низкоуровнего программирования микроконтроллеров, где требуются знания инженера-профи и опыт. Да и монтажника высокого разряда тоже, особенно для новой версии платы.

Паковать крупные платы в большие корпуса в последние десятилетия стало моветоном. Микроконтроллеры слегка улучшили ситуацию тем, что схемы с их использованием стали значительно компактнее, к тому же повысилась простота повторения результата или конструкции.

Вместе с тем активное распространение Ардуино-плат для освоения разработки и проектирования устройств на микроконтроллерных системах породило новый виток в вопросе качества и эргономики.

Всего выпущено несколько платформ Arduino, Nano является одной из них, в миниатюрном исполнении

В то же время сохраняется легкость подключения при помощи разъемов с шагом выводов 2,54 мм, что важно для любительских экспериментов. Для программирования используется Arduino IDE (среда разработки) и язык высокого уровня, похожий на Си, а фактически это и есть C/C++, просто структура программы немного изменена

Вместо функции main() используются две другие: setup() и loop(). Компилятор сам создает из них остальное)

Достоинства. Функциональная маленькая плата Arduino Nano, ничуть не уступающая по функциям большой UNО, – дешевле, удобнее для монтажа и сборки миниатюрных устройств.

Конечно, нельзя забывать, что это все та же 8-битная Атмега, которая имеет свой потенциал, и нельзя возлагать на неё невозможное – используйте её там, где ей место, а именно в малой автоматизации без особых прецизионных задач.

Разработчику программы для Arduino приходится также иметь дело со схемотехникой подключаемых устройств. Он должен знать уровни допустимых токов и напряжений, обеспечивать защиту электроники при использовании деталей с большой индуктивностью (моторов, катушек реле). Ардуино объединяет две области знаний: электронику и программирование, основу для построения роботов (здесь немного не хватает еще механики).

Раз уж тут объединены программирование и электроника, то ключевой вещью в использовании модуля становится спецификация его выводов, или распиновка, как еще принято говорить. Выводы модуля можно классифицировать разными способами, поскольку их функции зависят от программной конфигурации контроллера. Кроме того, поскольку есть две версии модулей, один из них использует чип ATmega168, а другой ATmega328, то появляется вопрос, есть ли у них различия в подключении.

В каждом конкретном проекте назначение каждого пина конфигурируется программой пользователя. При запуске контроллера сначала выполняется инициализация регистров конфигурации. Поэтому беспокойства по поводу функций выводов в отлаженном устройстве быть не должно.

Конечно, наборы Ардуино (Arduino) не предназначены для разработки встраиваемых приложений, работающих с большой скоростью в ответственных случаях, поэтому при их использовании возможны косяки, тем более что пользователи еще только учатся.

Arduino UNO: порты ввода вывода, питание

Рабочее напряжение — 5 В при подключении через USB с любых устройств (компьютер, ноутбук, зарядка от смартфона и т.д.). При одновременном подключении внешнего адаптера (аккумулятора, кроны, блока питания), питание автоматически переключается, но плату можно по-прежнему программировать через компьютер. Рекомендуемое питание Arduino Uno от батареек или аккумулятора от 7 до 12 В.


Arduino Uno питание от блока питания 12 вольт

Arduino UNO: питание от внешнего источника

5V     – на пин Ардуино подает 5В, его можно использовать для питания устройств
3.3V – на пин подается напряжение 3.3В от внутреннего стабилизатора
GND – вывод земли
VIN  – пин для подачи внешнего напряжения
IREF – пин для информирования о рабочем напряжении платы

Можно питание на микроконтроллер подать через порт VIN с помощью проводов. «Плюс» от внешнего источника подается на порт VIN, а «Минус» на GND (заземление). Подача внешнего напряжения 5 Вольт на пин 5V не допустимо, так как питание Genuino Arduino Uno обходит стороной стабилизатор, что может привести к поломке. Все цифровые порты на плате выдают стабилизированное напряжение в 5 Вольт.

Arduino NANO: порты ввода вывода, питание

Рабочее напряжение платы — 5В при подключении через кабель USB. В случае одновременного подключения внешнего источника, питание Arduino NANO v3 автоматически переключается на источник с большим напряжением. Рекомендуемое питание от батареек или другого источника от 7 до 12 В. Подача напряжения на пин 5V не допустимо — плата может сгореть, питание следует подавать через VIN.


Схема портов платы Arduino Nano v3.0 ch340g

NANO v3.0: питание от внешнего источника

5V    – на пин выводится стабилизированное напряжение 5В
3.3V – на пин выводится стабилизированное напряжение 3.3 В
GND – вывод земли (заземление)
VIN   – пин для подачи внешнего напряжения 7–12 В
IREF – пин информирования о рабочем напряжении платы

Расположение выводов, распиновка

Разработчики платы Arduino очень удобно и логично расположили выводы платы. Дело в том, что при разработке на «чистых» МК АВР приходилось обращаться к выводу порта, для этого нужно было запомнить название каждой ножки на чипе. Здесь это гораздо проще. На самой плате указано название каждого из пинов. Удобства добавляет и то, что пины разбиты на 3 группы:

  1. Digital – блок цифровых пинов.
  2. Analog – блок аналоговых пинов.
  3. Power – блок пинов, которые связаны с питанием и работой микросхемы.

Распиновка платы

При этом в разделе Digital пины, которые могут выдавать ШИМ-сигнал (PWM), помечены тильдой «~». Для служебных целей и проверки работоспособности контроллера на плате установлен светодиод, который подключен к 13-му выводу, а из среды разработки Arduino IDE к нему можно обращаться через встроенную директиву LED_BUILTIN. Такие схемы расположения пинов называются «Arduino UNO pinout», при этом, вместо UNO, может быть указано название другой платы, которая вас интересует.

Порты ввода/вывода и питание

К портам ввода/вывода относят:

  • цифровые разъемы;
  • аналоговые разъемы;
  • разъемы, выводящие ШИМ-сигнал;
  • разъемы для работы с АЦП, I2C (TWI), SPI, UART.

Для работы с каждым интерфейсом в языке C для Arduino предусмотрена отдельная библиотека, что облегчает работу программисту, который пишет код.

Питание к плате модели «Нано» можно подключить 3 способами:

  1. Через разъем mini-USB. Этот способ удобен тем, что разработчику не надо подводить к плате дополнительный ток. Подобный источник питания поддерживает системы, позволяющие регулировать значение входного тока.
  2. Через нерегулируемые источники на 6-20 В.
  3. Через регулируемый источник питания 5 В.

Плата Arduino Nano запрограммирована таким образом, что в случае подключения питания ко всем доступным пинам микроконтроллер выберет сигнал с наибольшей величиной напряжения, а остальные выводы питания заблокирует.

Питание от внешнего источника

Питание через нерегулируемые источники на 6-20 В обеспечивается подсоединением блока источника сигнала к пину 30 и общему проводу соответственно.

К микроконтроллеру можно подключить источник сигнала, который по амплитуде превышает допустимый. Но тогда его необходимо подводить к плате через ограничительный резистор, чтобы диоды смогли ограничить сигнал по амплитуде и не быть пробитыми, иначе контроллер на плате сгорит.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации