Андрей Смирнов
Время чтения: ~21 мин.
Просмотров: 49

Закон кулона, конденсатор, сила тока, закон ома, закон джоуля

Закон Кулона в квантовой механике

В квантовой механике закон Кулона формулируется не при помощи понятия силы, как в классической механике, а при помощи понятия потенциальной энергии кулоновского взаимодействия. В случае, когда рассматриваемая в квантовой механике система содержит электрически заряженные частицы, к оператору Гамильтона системы добавляются слагаемые, выражающие потенциальную энергию кулоновского взаимодействия, так, как она вычисляется в классической механике. Это утверждение не следует из остальных аксиом квантовой механики, а получено путём обобщения опытных данных.

Так, оператор Гамильтона атома с зарядом ядра Z имеет вид:

H=−ℏ22m∑j∇j2−Ze2∑j1rj+∑i>je2rij.{\displaystyle H=-{\frac {\hbar ^{2}}{2m}}\sum _{j}\nabla _{j}^{2}-Ze^{2}\sum _{j}{\frac {1}{r_{j}}}+\sum _{i>j}{\frac {e^{2}}{r_{ij}}}.}

Здесь m — масса электрона, е — его заряд, rj{\displaystyle r_{j}} — абсолютная величина радиус-вектора j-го электрона r→j{\displaystyle {\vec {r}}_{j}}, а rij=|r→i−r→j|{\displaystyle r_{ij}=|{\vec {r}}_{i}-{\vec {r}}_{j}|}. Первое слагаемое выражает кинетическую энергию электронов, второе слагаемое — потенциальную энергию кулоновского взаимодействия электронов с ядром и третье слагаемое — потенциальную кулоновскую энергию взаимного отталкивания электронов. Суммирование в первом и втором слагаемом ведется по всем Z электронам. В третьем слагаемом суммирование идёт по всем парам электронов, причём каждая пара встречается однократно.

Измерение электричества

Цифровой мультиметр, позволяющий измерять ток, напряжение, сопротивление и проверять транзисторы.

Одним из первых измерительных приборов явился простейший электроскоп, изобретённый английским священником и физиком Абрахамом Беннетом — два листочка золотой электропроводной фольги, помещённые в стеклянную ёмкость. С тех пор измерительные приборы значительно эволюционировали — и теперь они могут измерять разницу в единицы нанокулон. С помощью особо точных физических инструментов, российский учёный Абрам Иоффе и американский физик Роберт Эндрюс Милликен сумели измерить электрический заряд электрона

Ныне, с развитием цифровых технологий, появились сверхчувствительные и высокоточные приборы с уникальными характеристиками, которые, благодаря высокому входному сопротивлению, почти не вносят искажений в измерения. Помимо измерения напряжения такие приборы позволяют измерять и другие важные характеристики электрический цепей, таких, как омическое сопротивление и протекающий ток в широком диапазоне измерений. Самые продвинутые приборы, называемые из-за их многофункциональности мультиметрами, или, на профессиональном жаргоне, тестерами, позволяют измерять также и частоту переменного тока, емкость конденсаторов и осуществлять проверку транзисторов и даже измерять температуру.

Как правило, современные приборы имеют встроенную защиту, не позволяющую вывести прибор из строя при неправильном применении. Они компактны, просты в обращении и абсолютно безопасны в работе — каждый из них проходит через ряд испытаний на точность, проверяется в тяжёлых режимах работы и заслужено получает сертификат безопасности.

Автор статьи: Сергей Акишкин

Cтепень точности закона Кулона

Закон Кулона — экспериментально установленный факт. Его справедливость неоднократно подтверждалась всё более точными экспериментами. Одним из направлений таких экспериментов является проверка того, отличается ли показатель степени r в законе от 2. Для поиска этого отличия используется тот факт, что если степень точно равна двум, то поле внутри полости в проводнике отсутствует, какова бы ни была форма полости или проводника.

Эксперименты, проведённые в 1971 г. в США Э. Р. Уильямсом, Д. Е. Фоллером и Г. А. Хиллом, показали, что показатель степени в законе Кулона равен 2 с точностью до .

Для проверки точности закона Кулона на внутриатомных расстояниях У. Ю. Лэмбом и Р. Резерфордом в 1947 г. были использованы измерения относительного расположения уровней энергии водорода. Было установлено, что и на расстояниях порядка атомных 10−8 см, показатель степени в законе Кулона отличается от 2 не более чем на 10−9.

Коэффициент в законе Кулона остается постоянным с точностью до 15·10−6.

Поправки к закону Кулона в квантовой электродинамике

На небольших расстояниях (порядка комптоновской длины волны электрона, ≈3.86·10−13 м, где  — масса электрона,  — постоянная Планка,  — скорость света) становятся существенными нелинейные эффекты квантовой электродинамики: на обмен виртуальными фотонами накладывается генерация виртуальных электрон-позитронных (а также мюон-антимюонных и таон-антитаонных) пар, а также уменьшается влияние экранирования (см. перенормировка). Оба эффекта ведут к появлению экспоненциально убывающих членов порядка в выражении для потенциальной энергии взаимодействия зарядов и, как результат, к увеличению силы взаимодействия по сравнению с вычисляемой по закону Кулона. Например, выражение для потенциала точечного заряда в системе СГС, с учётом радиационных поправок первого порядка принимает вид:

где  — комптоновская длина волны электрона,  — постоянная тонкой структуры и . На расстояниях порядка ~ 10−18 м, где  — масса W-бозона, в игру вступают уже электрослабые эффекты.

В сильных внешних электромагнитных полях, составляющих заметную долю от поля пробоя вакуума (порядка ~1018 В/м или ~109 Тл, такие поля наблюдаются, например, вблизи некоторых типов нейтронных звёзд, а именно магнитаров) закон Кулона также нарушается в силу дельбрюковского рассеяния обменных фотонов на фотонах внешнего поля и других, более сложных нелинейных эффектов. Это явление уменьшает кулоновскую силу не только в микро- но и в макромасштабах, в частности, в сильном магнитном поле кулоновский потенциал падает не обратно пропорционально расстоянию, а экспоненциально.

Закон Кулона и поляризация вакуума

Явление поляризации вакуума в квантовой электродинамике заключается в образовании виртуальных электронно-позитронных пар. Облако электронно-позитронных пар экранирует электрический заряд электрона. Экранировка растет с ростом расстояния от электрона, в результате эффективный электрический заряд электрона является убывающей функцией расстояния . Эффективный потенциал, создаваемый электроном с электрическим зарядом , можно описать зависимостью вида . Эффективный заряд зависит от расстояния по логарифмическому закону:

где,

— т. н. постоянная тонкой структуры ≈7.3·10−3;

 — т. н. классический радиус электрона ≈2.8·10−13 см.

Эффект Юлинга

Явление отклонения электростатического потенциала точечных зарядов в вакууме от значения закона Кулона известно как эффект Юлинга, который впервые вычислил отклонения от закона Кулона для атома водорода. Эффект Юлинга даёт поправку к лэмбовскому сдвигу 27 мггц.

В сильном электромагнитном поле вблизи сверхтяжелых ядер с зарядом осуществляется перестройка вакуума, аналогичная обычному фазовому переходу. Это приводит к поправкам к закону Кулона.

Применение на практике

Работы Кулона очень важны в электростатике, на практике они применяется в целом ряде изобретений и устройств. Ярким примером можно выделить молниеотвод. С его помощью защищают здания и электроустановки от грозы, предотвращая тем самым пожар и выход из строя оборудования. Когда идёт дождь с грозой на земле появляется индуцированный заряд большой величины, они притягиваются в сторону облака. Получается так, что на поверхности земли появляется большое электрическое поле. Возле острия молниеотвода оно имеет большую величину, в результате этого от острия зажигается коронный разряд (от земли, через молниеотвод к облаку). Заряд от земли притягивается к противоположному заряду облака, согласно закону Кулона. Воздух ионизируется, а напряженность электрического поля уменьшается вблизи конца молниеотвода. Таким образом, заряды не накапливаются на здании, в таком случае вероятность удара молнии мала. Если же удар в здание и произойдет, то через молниеотвод вся энергия уйдет в землю.

В серьезных научных исследованиях применяют величайшее сооружение 21 века – ускоритель частиц. В нём электрическое поле выполняет работу по увеличению энергии частицы. Рассматривая эти процессы с точки зрения воздействия на точечный заряд группой зарядов, тогда все соотношения закона оказываются справедливыми.

Напоследок рекомендуем просмотреть видео, на котором предоставлено подробное объяснение Закона Кулона:

Полезное по теме:

  • Закон Джоуля-Ленца
  • Зависимость сопротивления проводника от температуры
  • Правила буравчика
  • Закон Ома простыми словами

Как направлены силы

Заряды взаимодействуют друг с другом в зависимости от их полярности — одинаковые отталкиваются, а разноименные (противоположные) притягиваются.

Кстати это главное отличие от подобного закона гравитационного взаимодействия, где тела всегда притягиваются. Силы направлены вдоль линии, проведенной между ними, называют радиус-вектором. В физике обозначают как r12 и как радиус-вектор от первого ко второму заряду и наоборот. Силы направлены от центра заряда к противоположному заряду вдоль этой линии, если заряды противоположны, и в обратную сторону, если они одноименные (два положительных или два отрицательных). В векторном виде:

Сила, приложенная к первому заряду со стороны второго обозначается как F12. Тогда в векторной форме закон Кулона выглядит следующим образом:

Для определения силы приложенной ко второму заряду используются обозначения F21 и R21.

Если тело имеет сложную форму и оно достаточно большое, что при заданном расстоянии не может считаться точечным, тогда его разбивают на маленькие участки и считают каждый участок как точечный заряд. После геометрического сложения всех получившихся векторов получают результирующую силу. Атомы и молекулы взаимодействуют друг с другом по этому же закону.

Принцип воздействия

Свойства ЭП чаще всего постоянны и однообразны. Для планеты свойственен свой защитный фон, который на живые организмы практически никак не влияет. Незначительные проявления становятся заметными для человека только во время сильной грозы. В такой ситуации может даже казаться, что воздух дрожит от напряжения. Но для большинства людей это не представляет никакой угрозы.

Индустрия технологий не стоит на месте, благодаря чему специалисты изготавливают всё больше различных агрегатов, каждый из которых способен генерировать собственное ЭП. Показатель существенно превышает естественный фон, который составляет 0.5 кВ/м. Конечно, такая особенность не осталась незамеченной со стороны экспертов. В результате многочисленных проб они вывели максимально допустимое напряжение, которое не создаёт ограничений для человека. Его размер составляет 27 кВ/м.

Даже если включить сразу все бытовые устройства, максимальный показатель не будет превышен. Взрослый человек может получить небольшой процент негативного воздействия только при длительном нахождении возле высоковольтных проводов. В такой среде напряжение очень большое, из-за чего долго стоять или же работать на таком участке категорически запрещено. Специалисты, которые вынуждены по служебным обстоятельствам находиться в окружении таких ЭП, должны успевать выполнить все работы максимум за полтора часа.

Границы применимости закона Кулона

Для того чтобы объяснить грамотно и максимально приближенно к истине поведение зарядов, находящихся в вакууме и являющихся точечными, используют закон Кулона. Тем не менее для реальных тел следует учесть следующие параметры:

  • объем и размеры рассматриваемых тел;
  • характеристики среды, в которой рассматривают заряженные тела;

Некоторые испытатели в экспериментах наблюдали, что если тело, которое несет небольшой заряд, поместить в электрическое поле другого тела с зарядом большим по значению, оно начинает притягиваться к последнему. В таком случае можно говорить о том, что кулоновское правило неприменимо, так как одноименные заряды должны отталкиваться, а не наоборот. То есть можно сказать, что в вышеописанном эксперименте не работают законы Кулона и сохранения электрического заряда. Скорее всего, физикам еще предстоит узнать, как именно и с помощью чего можно объяснить это явление.

Границы применимости закона Кулона

Также на очень маленьких расстояниях, порядка 10–18 м, появляются электрослабые эффекты. Кулоновские силы взаимодействия не работают. Но если внести небольшие поправки, то можно использовать закон Кулона. В сильных электромагнитных полях, к примеру около магнетронов, он также нарушается.

От чего зависит емкость

Емкость это свойство накопления и удержания электрозаряда. Чем она больше, тем больше заряд, увеличивающий вместимость сосуда с газовым баллоном. Она зависит от того, какова форма и размер электродов. Также зависит от того, какое расположение и свойство имеет диэлектрик, разделяющий электрод. Есть плоский конденсаторный источник с параллельной и цилиндрической пластиной.

Имеет не только специально предусмотренное устройство, но и несколько проводников, которые разделены при помощи диэлектрика. Емкость существенно влияет на электротехнические установки переменного тока. К примеру, источник с определенной емкостью имеется электрический провод с живым электрическим кабелем, жилой и металлической кабельной оболочкой.

От чего зависит емкость

Расстояние между зарядами R

Исходя из закона Кулона расстояние между зарядами, можно выразить как корень квадратный из частного, где числителем
выступает Коэффициент пропорциональности k = 8.9875517873681764 × 109 умноженный на произведение первого и второго зарядов, а знаменатель равен силе F взаимодействия двух зарядов.

Первый заряд q1 = Кулон (Кл)Декакулон даКл (daC) Гектокулон гКл (hC) Килокулон кКл (kC) Мегакулон МКл (MC) Гигакулон ГКл (GC) Теракулон ТКл (TC) Петакулон ПКл (PC) Эксакулон ЭКл (EC) Зеттакулон ЗКл (ZC) Иоттакулон ИКл (YC) Децикулон дКл (dC) Сантикулон сКл (cC) Милликулон мКл (mC) Микрокулон мкКл (µC) Нанокулон нКл (nC) Пикокулон пКл (pC) Фемтокулон фКл (fC) Аттокулон аКл (aC) Зептокулон зКл (zC) Иоктокулон иКл (yC) Второй заряд q2 = Кулон (Кл)Декакулон даКл (daC) Гектокулон гКл (hC) Килокулон кКл (kC) Мегакулон МКл (MC) Гигакулон ГКл (GC) Теракулон ТКл (TC) Петакулон ПКл (PC) Эксакулон ЭКл (EC) Зеттакулон ЗКл (ZC) Иоттакулон ИКл (YC) Децикулон дКл (dC) Сантикулон сКл (cC) Милликулон мКл (mC) Микрокулон мкКл (µC) Нанокулон нКл (nC) Пикокулон пКл (pC) Фемтокулон фКл (fC) Аттокулон аКл (aC) Зептокулон зКл (zC) Иоктокулон иКл (yC) Сила F = Ньютон (Н)Деканьютон даН (daN) Гектоньютон гН (hN) Килоньютон кН (kN) Меганьютон МН (MN) Гиганьютон ГН (GN) Тераньютон ТН (TN) Петаньютон ПН (PN) Эксаньютон ЭН (EN) Зеттаньютон ЗН (ZN) Иоттаньютон ИН (YN) Дециньютон дН (dN) Сантиньютон сН (cN) Миллиньютон мН (mN) Микроньютон мкН (µN) Наноньютон нН (nN) Пиконьютон пН (pN) Фемтоньютон фН (fN) Аттоньютон аН (aN) Зептоньютон зН (zN) Иоктоньютон иН (yN) Единица измерения расстояния r Метр (м)Декаметр дам (dam) Гектометр гм (hm) Километр км (km) Мегаметр Мм (Mm) Гигаметр Гм (Gm) Тераметр Тм (Tm) Петаметр Пм (Pm) Эксаметр Эм (Em) Зеттаметр Зм (Zm) Иоттаметр Им (Ym) Дециметр дм (dm) Сантиметр см (cm) Миллиметр мм (mm) Микрометр мкм (µm) Нанометр нм (nm) Пикометр пм (pm) Фемтометр фм (fm) Аттометр ам (am) Зептометр зм (zm) Иоктометр им (ym)

Измерение

Напряжённость относят к векторным величинам, оказывающим силовое воздействие на заряженные частицы.

Существуют не только теоретические, но и практические способы для измерения напряжённости.

Если речь о произвольных – сначала берут тело, содержащее заряд. Это правило распространяется на любые электронные устройства.

Размеры тела должны быть меньше размеров другого тела, генерирующего заряд. Достаточно небольшого металлического шарика, у которого есть свой заряд. Заряд шарика измеряют электрометром, потом приспособление помещают внутрь. Динамометр уравновешивает силу, воздействующую на предмет. После этого можно снять показания с единицей измерения – Ньютонами.

В бытовых условиях

Значение напряжённости получают, разделив значение силы на величину заряда.

Измерить расстояние – первый шаг, когда определяют напряжённость в конкретной точке, удалённой от тела на какую-либо величину.

Полученную величину разделяют на расстояние, возведённое в квадрат. К полученному результату применяют специальный коэффициент. Его выражение такое: 9*10^9.

Отдельного изучения заслуживает ситуация с конденсаторами.

В данном случае первый этап – измерение напряжения между пластинами. Предполагается использование вольтметра. Потом определяются с расстоянием между этими пластинами. Единица измерения – метры. Получают результат, который и будет напряжённостью. Направлять её можно по-разному.

Закон Кулона в квантовой механике

В квантовой механике закон Кулона формулируется не при помощи понятия силы, как в классической механике, а при помощи понятия потенциальной энергии кулоновского взаимодействия. В случае, когда рассматриваемая в квантовой механике система содержит электрически заряженные частицы, к оператору Гамильтона системы добавляются слагаемые, выражающие потенциальную энергию кулоновского взаимодействия, так, как она вычисляется в классической механике. Это утверждение не следует из остальных аксиом квантовой механики, а получено путём обобщения опытных данных.

Так, оператор Гамильтона атома с зарядом ядра Z имеет вид:

H=−ℏ22m∑j∇j2−Ze2∑j1rj+∑i>je2rij.{\displaystyle H=-{\frac {\hbar ^{2}}{2m}}\sum _{j}\nabla _{j}^{2}-Ze^{2}\sum _{j}{\frac {1}{r_{j}}}+\sum _{i>j}{\frac {e^{2}}{r_{ij}}}.}

Здесь m — масса электрона, е — его заряд, rj{\displaystyle r_{j}} — абсолютная величина радиус-вектора j-го электрона r→j{\displaystyle {\vec {r}}_{j}}, а rij=|r→i−r→j|{\displaystyle r_{ij}=|{\vec {r}}_{i}-{\vec {r}}_{j}|}. Первое слагаемое выражает кинетическую энергию электронов, второе слагаемое — потенциальную энергию кулоновского взаимодействия электронов с ядром и третье слагаемое — потенциальную кулоновскую энергию взаимного отталкивания электронов. Суммирование в первом и втором слагаемом ведется по всем Z электронам. В третьем слагаемом суммирование идёт по всем парам электронов, причём каждая пара встречается однократно.

Потенциал электрического поля. Разность потенциалов

Потенциал – скалярная физическая величина, равная отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда.

Обозначение – ​\( \varphi \)​, единица измерения в СИ – вольт (В).

Потенциал \( \varphi \) является энергетической характеристикой электростатического поля.

Разность потенциалов численно равна работе, которую совершает электрическая сила при перемещении единичного положительного заряда между двумя точками поля:

Обозначение – ​\( \Delta\varphi \)​, единица измерения в СИ – вольт (В).

Иногда разность потенциалов обозначают буквой ​\( U \)​ и называют напряжением.

Важно!
Разность потенциалов \( \Delta\varphi=\varphi_1-\varphi_2 \), а не изменение потенциала \( \Delta\varphi=\varphi_2-\varphi_1 \). Тогда работа электростатического поля равна:

Важно!
Эта формула позволяет вычислить работу электростатических сил в любом поле. В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки

В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность

В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки. В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

Потенциал поля точечного заряда ​\( q \)​ в точке, удаленной от него на расстояние ​\( r \)​, вычисляется по формуле:

Для наглядного представления электрического поля используют эквипотенциальные поверхности.

Важно!
Внутри проводящего шара потенциал всех точек внутри шара равен потенциалу поверхности шара и вычисляется по формуле потенциала точечного заряда (​\( r =R \)​, где ​\( R \)​ – радиус шара). Напряженность поля внутри шара равна нулю

Эквипотенциальной поверхностью, или поверхностью равного потенциала, называется поверхность, во всех точках которой потенциал имеет одинаковое значение.

Свойства эквипотенциальных поверхностей

  • Вектор напряженности перпендикулярен эквипотенциальным поверхностям и направлен в сторону убывания потенциала.
  • Работа по перемещению заряда по эквипотенциальной поверхности равна нулю.

В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей. Для точечного заряда эквипотенциальные поверхности представляют собой концентрические окружности.

Разность потенциалов и напряженность связаны формулой:

Из принципа суперпозиции полей следует принцип суперпозиции потенциалов:

Потенциал результирующего поля равен сумме потенциалов полей отдельных зарядов.

Важно!
Потенциалы складываются алгебраически, а напряженности – по правилу сложения векторов. Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил

Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил.

Алгоритм решения таких задач:

  • установить характер и особенности электростатических взаимодействий объектов системы;
  • ввести характеристики (силовые и энергетические) этих взаимодействий, сделать рисунок;
  • записать законы сохранения и движения для объектов;
  • выразить энергию электростатического взаимодействия через заряды, потенциалы, напряженности;
  • составить систему уравнений и решить ее относительно искомой величины;
  • проверить решение.

История накопителей заряда

Самое раннее письменное свидетельство получения зарядов с помощью трения принадлежит учёному Фалесу из Милета (635—543 гг. до н. э.), который описал трибоэлектрический эффект от взаимодействия янтаря и сухой шерсти. Для приблизительно 2300 последующих лет любое получение электричества заключалось в трении двух различных материалов друг о друга.

Качественный рывок в знаниях о зарядах произошёл в эпоху Просвещения — период революционного развития научной мысли в образованных кругах. В это время электричество становится популярной темой, а энтузиастами было произведено немало опытов и экспериментов с генераторами на основе трения.

Открытие явления произошло во время опытов у обоих экспериментаторов, но с той разницей, что Мюссенбрук, во-первых, сделал немало усовершенствований первоначально созданного оборудования, а во-вторых, письменно сообщил коллегам о своих достижениях. Прошло совсем немного времени и учёные мира стали создавать накопители зарядов собственных конструкций. Это были первые шаги в эволюции конденсаторов, продолжающейся и в наши дни. Основные даты хронологии появления устройств для хранения зарядов:

  • 1746 г. — изобретение лейденской банки в результате экспериментов по доработке устройства Клейста;
  • 1750 г. — опыты Бенджамина Франклина с батареями конденсаторов;
  • 1837 г. — публикация Майклом Фарадеем теории диэлектрической поляризации — научной основы работы накопителей;
  • конец XIX в. — начало практического применения лейденских банок вместе с первыми устройствами постоянного тока;
  • начало XX в. — изобретение слюдяных и керамических конденсаторов.

Формулировка

Определение закона Кулона гласит: В вакууме F взаимодействие двух заряженных тел прямо пропорционально произведению их модулей и обратно пропорционально квадрату расстояния между ними.

Звучит кратко, но может быть не всем понятно. Простыми словами: Чем больший заряд имеют тела и чем ближе они находятся друг к другу, тем больше сила.

И наоборот: Если увеличить расстояние межу зарядами — сила станет меньше.

Формула правила Кулона выглядит так:

Обозначение букв: q — величина заряда, r — расстояние межу ними, k — коэффициент, зависит от выбранной системы единиц.

Величина заряда q может быть условно-положительной или условно-отрицательной. Это деление весьма условно. При соприкосновении тел она может передаваться от одного к другому. Отсюда следует, что одно и то же тело может иметь разный по величине и знаку заряд. Точечным называется такой заряд или тело, размеры которого много меньше, чем расстояние возможного взаимодействия.

Стоит учитывать что среда, в которой расположены заряды, влияет на F взаимодействия. Так как в воздухе и в вакууме она почти равна, открытие Кулона применимо только для этих сред, это одно из условий применения этого вида формулы. Как уже было сказано, в системе СИ единица измерения заряда — Кулон, сокращено Кл. Она характеризует количество электричества в единицу времени. Является производной от основных единиц СИ.

1 Кл = 1 А*1 с

Стоит отметить, что размерность 1 Кл избыточна. Из-за того что носители отталкиваются друг от друга их сложно удержать в небольшом теле, хотя сам по себе ток в 1А небольшой, если он протекает в проводнике. Например в той же лампе накаливания на 100 Вт течет ток в 0,5 А, а в электрообогревателе и больше 10 А. Такая сила (1 Кл) примерно равна действующей на тело массой 1 т со стороны земного шара.

Вы могли заметить, что формула практически такая же, как и в гравитационном взаимодействии, только если в ньютоновской механике фигурируют массы, то в электростатике — заряды.

ЕГЭ Закон Кулона. ЗАДАЧИ с решениями

Формулы, используемые на уроках «Задачи на взаимодействие зарядов и закон Кулона».

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача № 1.
 Два шарика, расположенных на расстоянии г = 20 см друг от друга, имеют одинаковые по модулю заряды и взаимодействуют в воздухе с силой F = 0,3 мН. Найти число нескомпенсированных электронов N на каждом шарике.

Задача № 2.
 С какой силой взаимодействовали бы в воздухе две капли воды массами по m = 1 г, расположенные на расстоянии г = 50 см друг от друга, если бы одной из них передали 10% всех электронов, содержащихся в другой капле?

Задача № 3.
 Два одинаковых шарика зарядили так, что заряд одного из них оказался по модулю в п раз больше другого. Шарики привели в соприкосновение и развели на вдвое большее, чем прежде, расстояние. Во сколько раз изменилась сила их кулоновского взаимодействия, если их заряды до соприкосновения были разноименными?

Задача № 4.
 Два маленьких заряженных шарика взаимодействуют в вакууме с некоторой силой, находясь на расстоянии r1 друг от друга. На каком расстоянии r2 друг от друга они будут взаимодействовать в среде с диэлектрической проницаемостью ε2, если сила их взаимодействия останется прежней?

Задача № 5.
 Маленьким шариком с зарядом q коснулись внутренней поверхности очень большого незаряженного металлического шара, в результате чего на большом шаре поверхностная плотность зарядов стала равна σ. Найти объем V большого шара. Среда — воздух.

Задача № 6.
 Два металлических шарика имеют массу m = 10 г каждый. Какое число электронов N надо удалить с каждого шарика, чтобы сила их кулоновского отталкивания стала равна силе их гравитационного тяготения друг к другу?

Задача № 7.
 Между двумя одноименными точечными зарядами q1 = 1 • 10–8 Кл и q2 = 4 • 10–8 Кл, расстояние между которыми r = 9 см, помещают третий заряд q так, что все три заряда оказываются в равновесии. Чему равен этот третий заряд q и каков его знак? На каком расстоянии r1 от заряда q1 он располагается?

Задача № 8.
 Заряды q1 = 20 нКл и q2 = –30 нКл расположены на некотором расстоянии друг от друга (рис. 1-10). Заряд q помещают сначала в точку 1, расположенную слева от заряда q1 на расстоянии r/2 от него, а затем в точку 2, расположенную между зарядами q1 и q2. Найти отношение силы F1, с которой заряды q1 и q2 действуют на заряд q в точке 1, к силе F2, с которой они действуют на него в точке 2.

Задача № 9.
 В вершинах равностороннего треугольника находятся одинаковые заряды q = 2 нКл (рис. 1-11). Какой заряд q надо поместить в центр треугольника С, чтобы система всех этих зарядов оказалась в равновесии? Будет ли равновесие устойчивым? 

Задача № 10.
 В вершинах квадрата расположены заряды q (рис. 1-12). Какой заряд q и где надо поместить, чтобы вся система зарядов оказалась в равновесии? Будет ли равновесие устойчивым? 

Задача № 11.
 В трех соседних вершинах правильного шестиугольника со стороной а расположены положительные заряды q, а в трех других — равные им по модулю, но отрицательные заряды. С какой силой F эти шесть зарядов будут действовать на заряд q, помещенный в центр шестиугольника (рис. 1-13)? 

Задача № 12.
 Два одинаковых маленьких шарика массами по m = 10 г каждый заряжены одинаково и подвешены на непроводящих и невесомых нитях так, как показано на рис. 1-14. Какой заряд q должен быть на каждом шарике, чтобы нити испытывали одинаковое натяжение? Среда — воздух, длина каждой нити l = 30 см. 

Задача № 13.
 На изолирующей нити подвешен маленький шарик массой m = 1 г, имеющий заряд q1 = 1 нКл. К нему снизу подносят на расстояние г = 2 см другой заряженный маленький шарик, и при этом сила натяжения нити уменьшается вдвое. Чему равен заряд q2 другого шарика? Среда — воздух.

Задача № 14.
 Два одинаковых маленьких шарика подвешены на невесомых нитях длиной I каждая в одной точке. Когда им сообщили одинаковые заряды q, шарики разошлись на угол а (рис 1-16). Найти силу натяжения Fн каждой нити. Среда — воздух. 

Задача № 15.
 Два одинаково заряженных шарика, подвешенных на нитях равной длины, разошлись на некоторый угол (рис. 1-17, а). Чему равна плотность материала шариков р, если после погружения их в керосин угол между нитями не изменился (рис. 1-17, б)? Относительная диэлектрическая проницаемость воздуха ε1 = 1, относительная диэлектрическая проницаемость керосина ε2 = 2. Плотность керосина р = 800 кг/м3. 

(с) В учебных целях использованы цитаты из учебного пособия «Новый репетитор по физике для подготовки к ЕГЭ : задачи и методы их решения / И.Л. Касаткина; под ред. Т.В. Шкиль. — Ростов н /Д : Феникс».

Это конспект по теме «ЕГЭ Закон Кулона. ЗАДАЧИ с решениями». Выберите дальнейшие действия:

  • Вернуться к списку конспектов по Физике.
  • Проверить свои знания по Физике.
Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации