Андрей Смирнов
Время чтения: ~21 мин.
Просмотров: 0

Сверхпроводимость

Свойства сверхпроводников. Эффекты сверхпроводимости:

1. Нулевое электрическое сопротивление.

Строго говоря, сопротивление сверхпроводников равно нулю только для постоянного электрического тока. Сопротивление у сверхпроводников при прохождении через них переменного тока отлично от ноля и возрастает с повышением температуры.

2. Критическая температура сверхпроводников.

3. Критическое магнитное поле сверхпроводников.

Это значение магнитного поля, выше которого сверхпроводник теряет свойство сверхпроводимости и переходит в обычном состояние, характерное для обычного проводника.

Значение критического магнитного поля различается в зависимости от материала сверхпроводника и может составлять от нескольких десятков гаусс до нескольких сотен тысяч гаусс. В таблице значений сверхпроводимости материалов указывается критическое магнитное поле при температуре абсолютного нуля  (0 К).

Критическое магнитное и критическая температура взаимосвязаны между собой. При повышении температуры сверхпроводника критическое магнитное поле уменьшается. При температуре перехода из сверхпроводящего состояния в нормальное состояние критическое магнитное поле равно нулю, а при абсолютном нуле оно максимально.

Зависимость величины критического поля от температуры с хорошей точностью описывается выражением:

Нс(Т) = Нсо · (1 – T2 / Tc2)

где  Нс(Т) – критическое магнитное поле при заданной температуре, Нсо – критическое поле при нулевой температуре, Т – заданная температура, Тс – критическая температура.

Для сверхпроводников II рода указываются два значения магнитного поля.  Также нетрудно заметить, какие гигантские поля способны выдерживать сверхпроводники второго рода  без разрушения сверхпроводимости.

4. Критический ток в сверхпроводниках.

Это значение максимального постоянного тока, который может выдерживать сверхпроводник без потери сверхпроводящего состояния. При превышении этого значения сверхпроводник теряет свойство сверхпроводимости.

Как и критическое магнитное поле, критический ток обратно пропорционально зависит от температуры, уменьшаясь при ее увеличении.

5. Выталкивание магнитного поля сверхпроводником из своего объёма.

Это явление было названо эффектом Мейснера по имени первооткрывателя.

Эффект Мейснера означает полное вытеснение магнитного поля из объёма проводника при его переходе в сверхпроводящее состояние.  Внутри сверхпроводника  намагниченность равна нулю. Впервые явление наблюдалось в 1933 году немецкими физиками В. Мейснером и Р. Оксенфельдом.

Однако не у всех сверхпроводников наблюдается полный эффект Мейснера. Вещества, проявляющие полный эффект Мейснера, называются сверхпроводниками первого рода, а частичный – сверхпроводниками второго рода. Для сверхпроводников второго рода магнитное поле в интервале значений Hc1 –  Hc2 проникает и действует в виде вихрей Абрикосова. Однако стоит отметить, что в низких магнитных полях (ниже значения Hc и Hc1 ) полным эффектом Мейснера обладают все типы сверхпроводников.

Отсутствие магнитного поля в объеме сверхпроводника означает, что электрический ток протекает только в поверхностном слое сверхпроводника.

6. Глубина проникновения.

Это расстояние, на которое магнитный поток проникает в сверхпроводник. Обычно данную величину называют лондоновской глубиной проникновения (в честь братьев Лондон).

Глубина проникновения оказывается функцией температуры, прямо пропорционально ей и различна в разных материалах.

Исходя из действия эффекта Мейснера магнитное поле выталкивается из сверхпроводника токами, циркулирующими в его поверхностном слое, толщина которого приблизительно равна глубине проникновения. Эти токи создают магнитное поле, которым компенсируется поле, приложенное извне, не позволяя ему проникнуть внутрь.

При  достижении магнитным полем критического значения оно полностью проникает через глубину проникновения и захватывает весь сверхпроводник.

7. Длина когерентности.

Это расстояние, на котором электроны взаимодействуют друг с другом, создавая сверхпроводящее состояние. Электроны в пределах длины когерентности движутся согласованно – когерентно (как бы «в ногу»).

8. Удельная теплоемкость.

Данная величина показывает количество теплоты, необходимое для того, чтобы повысить температуру 1 грамма вещества на 1 К.

Удельная теплоемкость сверхпроводника резко (скачкообразно) возрастает вблизи температуры перехода в сверхпроводящее состояние, и довольно быстро (скачкообразно)  уменьшается с понижением температуры. Иными словами, в области перехода для повышения температуры вещества в сверхпроводящем состоянии требуется больше теплоты, чем в нормальном состоянии, а при очень низких температурах – наоборот.

Другое

Ограниченность практического применения керамических ВТСП обусловлена тем, что магнитное поле, создаваемое протекающим по ВТСП током, при большой величине приводит к разрушению собственной слоистой структуры проводника и, следовательно, необратимой утрате сверхпроводящих свойств. При этом для сверхпроводящих изделий (как ВТСП, так и классических) достаточно такого нарушения в одной единственной точке, т.к. возникший дефект мгновенно становится участком с большим сопротивлением, на котором выделяется тепло, что вызывает последовательный нагрев соседних участков, т.е. лавинообразный выход из сверхпроводящего состояния всего проводника.

Нормальное (и сверхпроводящие) состояния показывают много общих особенностей между различными составами купратов; многие из этих свойств не могут быть объяснены в рамках теории БКШ. Четко сформированной теории сверхпроводимости в оксидных ВТСП в настоящее время не существует; однако, проблема привела ко множеству интересных экспериментальных и теоретических результатов.

Главной целью исследований в области являются ВТСП — материалы, работающие как минимум при температурах, широко распространенных на Земле (порядка -30°C), как максимум — при комнатной температуре. Их создание привело бы к революции в энергетике и электронике, где значительной проблемой являются потери на сопротивление проводника. Однако в настоящее время (2017) нет уверенности, что такие материалы вообще могут быть получены, т.к. накопленные теоретические знания позволяют оценить верхнюю границу температуры перехода для стабильных материалов при нормальном давлении на уровне -100°C.

Любопытно, что сероводород является самым высокотемпературным сверхпроводником из известных на данный момент, с переходом при температуре 203 К (-70 °C) и давлении 150 ГПа (более 1,4 миллиона атмосфер), обнаруженное исследователями из института имени Макса Планка в 2015 г

Большая величина требуемого давления обуславливает то, что практического применения сероводороду как ВТСП нет и это открытие рассматривается как важное, но экзотическое, стоящее особняком.. Двойниковая структура и обратимая пластичность высокотемпературных сверхпроводников существенно влияет на их сверхпроводящие характеристики.

Двойниковая структура и обратимая пластичность высокотемпературных сверхпроводников существенно влияет на их сверхпроводящие характеристики.

ТЕОРИИ СВЕРХПРОВОДИМОСТИ

До 1957 большинство попыток объяснить экспериментальные данные носило феноменологический характер: они базировались на искусственных предположениях или нестрогих модификациях существующих теорий и имели целью достижение согласия с экспериментом. Примером попыток первого типа может служить двухжидкостная модель, в которой постулируется, что при температуре перехода некоторая часть электронов проводимости приобретает способность двигаться, не испытывая сопротивления. Эта модель объясняет температурную зависимость критического поля, критический ток и глубину проникновения, но ничего не дает для физического понимания самого явления, т.к. не объясняет такой частичной сверхпроводимости.

Прогресс был достигнут в 1935, когда физики-теоретики, братья Ф. и Г.Лондоны предложили рассматривать сверхпроводимость как макроскопический квантовый эффект. (Ранее были известны только квантовые эффекты, наблюдающиеся в атомных масштабах – порядка 10–8 см.) Лондоны таким образом модифицировали классические уравнения электромагнетизма, что из них следовали эффект Мейсснера, бесконечная проводимость и ограниченная глубина проникновения. В начале 1950-х годов А.Пиппард из Кембриджского университета показал, что такое квантовое состояние в действительности является макроскопическим, охватывая расстояния до 10–4 см, т.е. в 10 000 раз превышающие атомный радиус.

Хотя эти попытки и были важны, они не затрагивали сути основного взаимодействия, которым обусловлена сверхпроводимость. Некоторые указания на природу этого взаимодействия появились в начале 1950-х годов, когда было открыто, что температура сверхпроводящего перехода металлов, построенных из разных изотопов одного и того же элемента, неодинакова. Оказалось, что чем больше атомная масса, тем ниже температура перехода. (Изотопы одного и того же элемента имеют одно и то же число электронов, но разные массы ядер.) Изотопический эффект указывал на то, что температура перехода зависит от массы атомов кристаллической решетки и, следовательно, сверхпроводимость не является чисто электронным эффектом.

Сверхпроводимость при комнатной температуре:

Сверхпроводимость – это физическое явление, заключающееся в скачкообразном падении до нуля электрического сопротивления вещества при достижении температуры ниже критической.

Явление сверхпроводимости открыл в 1911 г. голландский физик Хейке Камерлинг-Оннес, исследуя зависимость электрического сопротивления металлов от температуры. Сверхнизкими температурами он начал интересоваться ещё в 1893 г. В 1908 г. ему удалось получить жидкий гелий. Охлаждая с его помощью металлическую ртуть, он с удивлением обнаружил, что при температуре, близкой к абсолютному нулю (4,15 К), электрическое сопротивление ртути скачком падает до нуля.

Впоследствии было открыто, что сверхпроводимостью обладают не только другие чистые металлы (свинец, ниобий, вольфрам, олово и пр.), но и сплавы как этих металлов, так и металлов не являющихся сверхпроводниками. Большинство из них имели критическую температуру, близкую к абсолютному нулю.

Выше этой критической температуры металлы и сплавы находятся в нормальном состоянии, а ниже ее – в сверхпроводящем.

В восьмидесятые годы были созданы новые сверхпроводники. Это сверхпроводящие керамики, сверхпроводники на основе железа и др. Сверхпроводимость в них наступала при температурах, значительно превышающих температуру абсолютного нуля.

В 1993 г. было открыто вещество, критическая температура которого равна 135 К при нормальном давлении, – HgBa2Ca2Cu3O8+x. Данное вещество относится к классу купратов (слоистых соединений на основе оксида меди).

В 2017 г. открыто новое вещество, которое является сверхпроводимым при комнатной температуре. Ученые синтезировали наночастицы вещества, состоящего из одного атома меди и двух атомов кислорода (CuO2), не существующие в природе, с использованием метода вакуумного плазменно-дугового испарения. В определенном диапазоне магнитных полей (более 3 кЭ) и при комнатной температуре такие частицы в виде нанопорошков демонстрируют свойства сверхпроводников.

Явление сверхпроводимости при комнатной температуре открывает путь к электротехническому оборудованию нового поколения.

Явление высокотемпературной сверхпроводимости

В течение 75 лет после открытия явления сверхпроводимости все известные сверхпроводники работали только при температурах близких к абсолютному нулю, ограничивая способ их использования.
Это изменилось в 1986 году, когда ученые обнаружили, что сверхпроводники на основе меди, или купраты переносят электричество без потерь при относительно высоких температурах, но все еще довольно низких температурах.

На самом деле, некоторые соединения меди являются сверхпроводящими при температурах выше 100 Кельвинов, или минус 173 градуса Цельсия, что позволяет развивать сверхпроводящие технологии, которые можно охлаждать жидким азотом.

Были разработаны инновационные теоретические инструменты для понимания поразительных свойств купратов, которые в течение трех десятилетий оставались «голубоглазым мальчиком» для исследователей в области физики сверхпроводников.
Поскольку такое охлаждение является дорогостоящим, оно ограничивает их применение в мире в целом.

Ссылки на источники:

https://nauka.tass.ru/nauka/4797401 ; http://www.sib-science.info/ru/institutes/pri-komnatnoy-08122017 ; https://rusplt.ru/news/novosti/rossiyskie-uchenyie-sozdali-31815.html ; https://scientificrussia.ru/news/uchenye-sfu-i-knts-so-ran-sozdali-chastitsy-so-sverhprovodimostyu-pri-komnatnoj-temperature ; https://news2.ru/story/535808/ ; http://news.sfu-kras.ru/node/19265  ; http://www.nanonewsnet.ru/news/2017/sibirskie-uchenye-sozdali-chastitsy-sverkhprovodyashchie-pri-komnatnoi-temperature.

Примечание: Фото https://www.pexels.com, https://pixabay.com

карта сайта

история природа использование условие температура сверхтекучесть открытие применение эффект явление теория сверхпроводимости было открыто металлов еще в началекомнатная высокотемпературная сверхпроводимость температура металлов проводников презентация суть явления реферат материалов кратко сообщение свойства открыл гинзбургчто такое реферат на тему динамическая сверхпроводимость скачать доклад магнитная полупроводников видео книги определение в физике формула 5314сверхпроводимость кратко это металлов физика презентация материалов явление применение высокотемпературная проводников 10 класс теория открытие наблюдается реферат условия электрическое сопротивление скачать свойство эффект доклад в чем заключается использование магнитная формула видео конспект проблемы кто открыл интересные факты определение

Коэффициент востребованности
968

Лента второго поколения

Что же из этих многообещающих идей уже удалось воплотить на практике, и чьими усилиями? В первую очередь нужно отметить, что на сегодняшний день на рынке представлены высокотемпературные сверхпроводники первого и второго поколения (ВТСП-1 и ВТСП-2). По объему выпущенной на сегодняшний день продукции пока выигрывают ВТСП-1, но для экспертов очевидно, что будущее за сверхпроводниками второго поколения. Это связано с тем, что в конструкции сверхпроводников ВТСП-2 более 70% составляет матрица, изготовленная из серебра.

Одна из ключевых российских компаний, работающих над темой сверхпроводников второго поколения, — ЗАО «СуперОкс». Зародилась она в стенах МГУ имени Ломоносова, где научная группа химического факультета работала над технологией осаждения тонких пленок сверхпроводников. В 2006 г. на базе накопленных знаний был запущен коммерческий проект по созданию отечественного производства ВТСП-проводов 2-го поколения.

В 2011 г. сфера интересов «СуперОкс» была расширена за счет тесного взаимодействия с вновь созданной компанией SuperOx Japan LLC. Была создана пилотная производственная линия, позволяющая производить ВТСП-провод с критическим током до 500 А/см ширины. С 2011 г. компания «СуперОкс-Инновации» также является резидентом «Сколково», где ведет прикладные исследования, направленные на оптимизацию технических характеристик ВТСП лент второго поколения, разрабатывает различные технологии производства этих материалов. В 2013 г. было запущено производство ленты ВТСП-2 в московском технопарке «Слава».

«СуперОкс» обладает полным циклом производства ленты ВТСП-2. В 2012 г. стартовали продажи этого инновационного продукта, и сейчас материал поставляется не только в Россию, но и экспортируется в девять стран, в том числе Евросоюз, Японию, Тайвань и Новую Зеландию.

Открытие сверхпроводимости

Итак, общая теория сверхпроводимости появилась. Основная ее идея такова. Частицы одного знака должны — по закону Кулона — отталкиваться друг от друга. Этот закон, конечно, соблюдается и в сверхпроводниках. Но кроме такого взаимодействия, оказывается, в металле может быть и другое — слабое притяжение, возникающее между электронами через промежуточную среду. Эта среда — сама решетка металла, или, говоря точнее, ее колебания. И вот, если появляются условия, когда это притяжение становится больше сил отталкивания, наступает сверхпроводимость.

Сейчас уже никто не сомневается, что теория, в основном, правильно объясняет природу сверхпроводимости. Но значит ли это, что решены все проблемы? Спросите у теоретиков: «Почему у олова критическая температура равна 3,7 градуса, а у ниобия 9,2?». Увы перед такими важными вопросами теория пока пасует…

Обычный путь в физике: явление открыли — объяснили — научились использовать. Чаще всего развитие теории и разработка способов применения идут параллельно. Разумеется, в такой непривычной, далекой от повседневного быта области, как сверхпроводимость, слово «применение» надо понимать несколько иначе, чем обычно – это не тракторы и не стиральные машины. Применять — значит использовать уникальные эффекты, заставить их «работать». Пусть сначала только в лаборатории, пусть без шумных успехов и сенсаций.

А что, если попробовать изготовить сверхпроводящий магнит? — такой вопрос возник еще в двадцатые годы прошлого века. Известно ведь, наиболее сильные магнитные поля создают с помощью электромагнитов. Поля напряженностью до 20 тысяч эрстед удается получать таким методом довольно успешно, на сравнительно недорогих установках. А если нужны более сильные поля — сто и более тысяч эрстед? Мощность магнитов возрастает до миллионов ватт. Питать их нужно через специальные подстанции, а водяное охлаждение магнита требует расхода тысяч литров воды в минуту.

Магнитное поле — электрический ток — сопротивление связаны в единую цепочку. Как заманчиво было бы вместо этих громоздких, сложных и дорогих устройств изготовить миниатюрную катушку из сверхпроводящей проволоки, поместить в жидкий гелий и, питая ее от простого аккумулятора, получать сверхсильные магнитные поля. Реализовать эту идею удалось значительно позже — только тогда, когда были открыты новые материалы с высокими критическими полями и токами: сначала ниобий, потом сплав ниобия с цирконием, титайом. И, наконец, ниобий — олово. Во многих лабораториях мира уже «трудятся» портативные сверхпроводящие магниты, дающие поля около 100 тысяч эрстед. И несмотря на дороговизну жидкого гелия, такие магниты значительно выгоднее обычных.

Физический детектив

Пол Чу предполагал, что сжатие увеличивает критическую температуру благодаря уменьшению дистанции между кислородными октаэдрами. Вернувшись из Бостона, он решил проверить эту идею и синтезировал структурно сходное соединение, в котором барий заменен химически близким, но более легким стронцием. Гипотеза оправдалась: новое вещество без всякого сжатия превращалось в сверхпроводник при 39 К (этот же результат был независимо получен и в Цюрихе). Тогда хьюстонские физики, к которым присоединились коллеги из Алабамского университета, решили поиграть с химическими аналогами лантана, в частности с иттрием. К концу января 1987 года они синтезировали соединение иттрия, бария, меди и кислорода с критической температурой 93 К. Это был первый материал, теряющий электрическое сопротивление при температуре, превышающей точку кипения жидкого азота (77 К).

А затем случилась почти детективная история. Чу, подобно Беднорцу и Мюллеру, опасался, что в процессе анонимного рецензирования кто-то воспроизведет его результаты и обнародует их первым под своим именем. Материал было не трудно синтезировать спеканием исходных компонентов в электропечи, если знать их концентрацию, а эту информацию необходимо было включить в статью. Чу попросил редактора Physical Review Letters в виде исключения подписать ее в печать без представления рецензентам, но получил отказ. Тогда он пошел на хитрость: в отправленной в редакцию рукописи заменил иттрий (химический символ Y) на иттербий (Yb), а также слегка подправил весовые соотношения ингредиентов. Корректируя уже принятую к публикации статью, Чу исправил эти «опечатки», и она появилась уже без ошибок.

Как вскоре выяснилось, предосторожность оказалась не лишней. Почти сразу после публикации работы Чу и его коллег несколько научных коллективов сообщили об экспериментах с соединениями иттербия, которые тоже становятся сверхпроводниками, хотя и при более низкой температуре

Судя по всему, имела место та самая утечка информации, которой опасался руководитель авторского коллектива, но виновники ее остались неизвестными. Когда эта история получила огласку, Чу обвиняли в сознательной дезинформации и нарушении научной этики, пусть даже с благими намерениями. Но постепенно эмоции улеглись, и большинство ученых согласились, что Чу поступил правильно.

Структуру нового сверхпроводника выяснили довольно скоро, причем сразу в нескольких лабораториях. Эти данные впервые были доложены 18 марта 1987 года на конференции Американского физического общества, состоявшейся в нью-йоркском отеле «Хилтон». Ввиду огромного количества докладов и страшного возбуждения почти 4000 участников эта встреча сохранилась в научном фольклоре как «физический Вудсток», Woodstock of physics (по ассоциации с легендарным фестивалем в штате Нью-Йорк, куда в августе 1969 года съехалось полмиллиона поклонников рок-музыки). После этого высокотемпературные сверхпроводники обрели всемирную известность, а в США и еще ряде стран также и щедрое финансирование.

Сверхпроводники 1-го и 2-го рода.

По своему поведению в магнитных полях сверхпроводники разделяются на сверхпроводники 1-го и 2-го рода. Сверхпроводники 1-го рода обнаруживают те идеальные свойства, о которых уже говорилось. В присутствии магнитного поля в поверхностном слое сверхпроводника возникают токи, которые полностью компенсируют внешнее поле в толще образца. Если сверхпроводник имеет форму длинного цилиндра и находится в поле, параллельном его оси, то глубина проникновения может быть порядка 3Ч10–6 см. При достижении критического поля сверхпроводимость исчезает и поле полностью проникает внутрь материала. Критические поля для сверхпроводников 1-го рода лежат обычно в пределах от 100 до 800 Гс. Хотя у сверхпроводников 1-го рода малая глубина проникновения, они имеют большую длину когерентности – порядка 10–4 см.

Сверхпроводники 2-го рода характеризуются большой глубиной проникновения (около 2Ч10–5 см) и малой длиной когерентности (5Ч10–7 см). В присутствии слабого магнитного поля (меньше 500 Гс) весь магнитный поток выталкивается из сверхпроводника 2-го рода. Но выше Нс1 – первого критического поля – магнитный поток проникает в образец, хотя и в меньшей степени, чем в нормальном состоянии. Это частичное проникновение сохраняется до второго критического поля – Нс2, которое может превышать 100 кГс. При полях, больших Нс2, поток проникает полностью, и вещество становится нормальным. Характеристики различных сверхпроводников представлены в таблице.

Таблица: Критические температуры и поля
КРИТИЧЕСКИЕ ТЕМПЕРАТУРЫ И ПОЛЯ
Материалы Критическая температура, К Критические поля (при 0 К), Гс
Сверхпроводники 1-го рода    
Родий 0,000325 0,049
Титан 0,39 60
Кадмий 0,52 28
Цинк 0,85 55
Галлий 1,08 59
Таллий 2,37 180
Индий 3,41 280
Олово 3,72 305
Ртуть 4,15 411
Свинец 7,19 803
Сверхпроводники2-го рода   Hc1 Hc2
Ниобий 9,25 1735 4040
Nb3Sn 18,1 220 000
Nb3Ge 23,2 400 000
Pb1Mo5,1S6 14,4 600 000
Yba2Cu3O7 90–100 1000* 1 000 000*
* Экстраполировано к абсолютному нулю.

Типы материалов проявляющих явление сверхпроводимости

Сверхпроводящие материалы классифицируются на два вида: типа I и типа II.

I тип

Сверхпроводящие материалы типа I состоят из основных проводящих элементов, которые используются во всем, от электропроводки до компьютерных микросхем. В настоящее время явление сверхпроводимости у этих материалов проявляется при температуре от 0,000325 °K и 7,8 °K при стандартном давлении.

Некоторые сверхпроводящие материалы типа I требуют невероятного давления, чтобы достичь сверхпроводящего состояния. Одним из таких материалов является сера, которая требует давления 9,3 миллиона атмосфер (9,4 х 1011 Н / м2) и температуры 17 °К для достижения сверхпроводимости.
Некоторые другие примеры типов сверхпроводников содержат ртуть – 4.15 °, свинец – 7.2 °к, алюминий – 1.175 °K и цинк – 0.85 °К.
Примерно половина элементов в периодической таблице являются сверхпроводящими. Сверхпроводники типа 1, в основном, состоят из металлов и металлоидов, которые имеют сопротивление току при комнатной температуре. Они требуют невероятного холода, чтобы замедлить молекулярные вибрации в достаточной степени, чтобы облегчить свободный поток электронов.
Сверхпроводимость металлов требует холодных температур, чтобы проявилось явление. Они обладают очень резким переходом в сверхпроводящее состояние и “идеальное” диамагнетизм – возможность полностью отразить магнитного поля.

Удивительно: медь, серебро и золото, три лучших металлических проводников не попали в число сверхпроводящих материалов, как и драгоценные металлы. Почему бы это?

  • Свинец (PB) 7,196 К
  • Лантан (La) 4,88 К
  • Тантал (Та) 4,47 К
  • Ртуть (HG) 4,15 К
  • Олово (SN) 3,72 К
  • Индий (В) 3,41 К

Тип 2

Сверхпроводящие материалы типа II состоят из металлических соединений. Они достигают сверхпроводящего состояния при гораздо более высоких температурах по сравнению с материалами I типа. Причина такого резкого повышения температуры до конца не выяснена.

Самая высокая температура сверхпроводимости при нормальном давлении на сегодняшний день составляет 135 °K или -138 °C соединением (HgBa2Ca2Cu3O8), которое попадает в группу, известных как купратные перовскиты. Эта группа материалов обычно имеет соотношение 2 атома меди к 3 атомам кислорода и считается керамической.

Сверхпроводники типа II также могут быть пронизаны магнитным полем, тогда как сверхпроводники типа I – нет.
За исключением элементов ванадия, технеция и ниобия, категория сверхпроводников типа 2 состоит из металлических соединений и сплавов.

Недавно открытые сверхпроводящие перовскиты (металлоксидная керамика), относятся к этой группе типа 2. Они достигают более высоких температур, чем материалы типа 1, с помощью механизма, который до сих пор полностью не изучен. Общепринятая точка зрения гласит, что он относится к слоям внутри кристаллической структуры.

Сверхпроводящие купраты (оксиды меди) достигли поразительно высоких Tc, если учесть, что к 1985 году известные Tc достигли только 23 Кельвина. На сегодняшний день максимальная температура, достигаемая при атмосферном давлении для материала, который образуется стехиометрически (путем прямого смешивания), составляет 147 Кельвинов. И самый высокая температура в целом составляет 216 градусов Цельсия для материала, который не образуется стехиометрически. Почти наверняка среди высокотемпературных сверхпроводников еще ждут открытия другие, более синергетические соединения.

Сверхпроводники типа 2 – также известные как “жесткие” сверхпроводники отличаются от сверхпроводников типа 1 тем, что их переход из нормального состояния в сверхпроводящее происходит постепенно в области “смешанного состояния”. Поскольку Тип 2 допускает некоторое проникновение внешнего магнитного поля в его поверхность, это создает некоторые довольно новые мезоскопические явления, такие как сверхпроводящие “полосы” и “вихри решетки потока”.

(Sn – олово, Sb – сурьма, Te – теллур, Ba – барий, V -ванадий, Mg – магний, O – кислород)

  • Sn12SbTe11Ba2V2Mg24O50         216 K
  • Sn 11 SbTe10Ba2V2Mg22O46   209 K
  • Sn11SbTe10Ba2VMg23O46       202 K
  • Sn10SbTe9Ba2MnCu21O42      187 K
  • Sn9SbTe8Ba2MnCu19O38       178 K
  • Sn8SbTe7Ba2MnCu17O34       167 K

Литература

  • Боголюбов Н. Н., Толмачев В. В., Ширков Д. В. Новый метод в теории сверхпроводимости. — М.: Изд-во АН СССР, 1958.
  • Боголюбов Н. Н. Собрание научных трудов. Т. 8: Теория сверхтекучести бозе- и ферми-систем, 1946—1992. // Ред. Н. М. Плакида, А. Д. Суханов. — М.: Наука, 2007. ISBN 978-5-02-035723-5.
  • Мендельсон К. Физика низких температур. — М.: ИЛ, 1963. — 230 с.
  • Кресин В. З. Сверхпроводимость и сверхтекучесть. — М.: Наука, 1978. — 187 с.
  • Бондарев Б.В. Метод матриц плотности в квантовой теории сверхпроводимости. — М.: Спутник, 2014. — 88 с.
  • Тилли Д. Р., Тилли Дж. Сверхтекучесть и сверхпроводимость. — М.: Мир, 1977. — 304 с.

Глебов И. А. Турбогенераторы с использованием сверхпроводимости. — Л.: Наука : Ленингр. отд-ние, 1981. — 231 с.

Примечания

  1.  (недоступная ссылка)
  2. Алексей Левин. . Элементы.ру (8 апреля 2011). Дата обращения 8 апреля 2011.
  3. , с. 129.
  4. Сивухин Д. В. § 80. Сверхпроводники и их магнитные свойства // Общий курс физики. — М.: Наука, 1977. — Т. III. Электричество. — С. 333. — 688 с.
  5. Успехи химии. — 2000. — Т.69, № 1. стр. 3-40
  6. W. A. Little and R. D. Parks, Physical Review Letters, Vol.9, page 9, (1962).
  7. M.Tinkham, Phys.Rev. 1963,129, p.2413
  8. М.Тинкхам, Введение в сверхпроводимость. Атомиздат М.1980
  9. , с. 20.
  10. ↑ . www.membrana.ru. Дата обращения 7 июня 2017.
  11. , с. 151.
  12.  (недоступная ссылка). Дата обращения 12 сентября 2009.
  13. Число срабатываний детектора при отсутствии излучения
  14. NEP (noise-equivalent power) — эквивалентная мощность шума. Под эквивалентной мощностью шума понимают среднеквадратическое значение мощности флуктуаций светового потока, падающего на фотоприемник, при котором в фотоприемнике при отсутствии собственных шумов возникали бы флуктуации тока, соответствующие наблюдаемым флуктуациям, обусловленным собственным шумом.
  15. Monica Heger. . IEEE Spectrum. Дата обращения 19 января 2012.
  16. Joseph Milton. . Nature — News. Дата обращения 19 января 2012.
  17. Гинзбург В. Л., Андрюшин Е. А. Применение слабой сверхпроводимости — сквиды // Сверхпроводимость. — М.: Педагогика, 1990. — С. 92—95. — 112 с. — (Учёные — школьнику). — ISBN 5715503051.
  18. .

Нестандартная сверхпроводимость

Сейчас природа «нестандартной» сверхпроводимости постепенно проясняется. «Загадка диборида магния разрешилась довольно просто, — рассказал «ПМ» профессор Висконсинского университета Андрей Чубуков, который много лет занимается теорией высокотемпературной сверхпроводимости. — Куперовские пары там образуются исключительно за счет электрон-фононного взаимодействия. В силу специфики кристаллической структуры и электронных спектров оно особо сильное, отсюда и повышенная критическая температура. Так что здесь мы видим торжество классической теории БКШ, которая, как оказалось, вовсе не ограничена потолком в 30 К. Диборид магния интересен и в других отношениях (так, у него не одна, а две энергетические щели), но по части механизма возникновения сверхпроводимости он ничего особенного собой не представляет. Его даже не следует относить к числу «настоящих» высокотемпературных сверхпроводников, поскольку у них пары возникают вовсе не за счет обмена фононами.

Другое дело купраты и железосодержащие сверхпроводники. Судя по всему, куперовские пары там образуются благодаря прямым взаимодействиям между электронами проводимости. Как это может быть, коль скоро электроны отталкиваются по закону Кулона? Дело в том, что если кулоновское взаимодействие экранируется, то на больших дистанциях оно начинает осциллировать. За счет таких осцилляций оно даже может в каких-то участках пространства временно поменять знак, то есть перейти от отталкивания к притяжению. Из-за этого электроны с определенными значениями орбитального момента обретают способность притягиваться друг к другу и объединяться в куперовские пары. В купратах так себя ведут электроны с орбитальным моментом, равным двум, — так называемые d-волны, а в железосодержащих (как и в обычных сверхпроводниках) — электроны с нулевым орбитальным моментом.

Но это еще не все. Для возникновения сверхпроводимости нужно иметь такие электроны (сырье для куперовских пар) в достаточных количествах. Есть все основания считать, что их появлению способствуют спиновые флуктуации небольшой протяженности. Этот эффект работает лишь в определенном интервале концентрации примесей. Поэтому оксиды меди становятся сверхпроводниками только при легировании нужными добавками и в нужных количествах. В чистом виде, без примесей, это изоляторы».

Статья опубликована в журнале «Популярная механика»
(№4, Апрель 2012).

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации