Андрей Смирнов
Время чтения: ~13 мин.
Просмотров: 34

Время-токовые характеристики автоматических выключателей (в, с, d)

Как правильно выбирать автоматические выключатели

При выборе устройств стоит обратить на внимание на три критерия

Количество

Чтобы разобраться с количеством выключателей, нужно знать число силовых цепей в квартире.

Номиналы автоматов

Силовая цепь — это провод, идущий от электрощитка в квартиру вместе с подключенными к нему приборами-потребителями электроэнергии. Как правило, в квартирах в одну цепь объединены осветительные приборы, в другую — розетки.

Обратите внимание! Каждый из бытовых приборов, например, посудомойка, водонагреватель, кондиционер, получает электричество по отдельному проводу, а значит включен в свою электрическую цепь

Полюсность и рабочее напряжение

Электрическое подключение в доме может быть однофазным или трехфазным. С точки зрения выбора автомата эти подключения отличаются количеством жил в проводе, которые выключатель должен обесточить, когда будет срабатывать. На каждую жилу нужна своя секция выключателя. Полюсность — это фактически количество секций в автомате, их может быть от одной до четырех.

Щиток с предохранителем

Безопасный для проводки номинальный показатель

Номинальный ток — это самая важная характеристика автоматов.

Она говорит о том, какую энергию автомат пропускает через себя в течение длительного времени и не размыкает цепь. От правильного выбора номинального тока зависит, сможет ли автомат защитить проводку.

К сведению! Распространенные классы номинального показателя бытовых автоматов: 6, 10, 16, 25, 32, 50 А.

Сечение кабеля для автомата abb s201 c16

Сечение кабеля для автомата abb s201 c16 обусловлено времятоковыми характеристиками его теплового расцепителя. С одной стороны, через автомат abb s201 c16 более, чем час времени может протекать ток 18,08 Ампер. Значит, сечение проводника, подключаемого после автомата, должно быть не менее 2,5 мм² меди. Кабель с медными жилами сечением 2,5 мм², в не лучших для себя условиях, может длительно выдерживать протекание тока силой около 25 Ампер. Понятное дело, что это зависит от количества жил, материала изоляции и условий прокладки кабеля.

С другой стороны, через автомат abb s201 c16, примерно, в течении часа может протекать ток 23,2 Ампер. Бесспорно, что такой ток при неблагоприятных обстоятельствах уже приближается к опасному для медного проводника сечением 2,5 мм² максимуму. Очевидно, это не полезно для кабеля. Однако, кратковременно такой ток проводник выдержать сможет. Само собой разумеется, что такое повышение тока не должно быть частым явлением. Следовательно, не надо перегружать автомат и кабель подключением слишком большой нагрузки. Иначе, от постоянного перегрева кабель быстро выйдет из строя.

Несомненно, при применении алюминиевого проводника сечение жил должно быть увеличено. До и после автомата abb s201 c16 сечение его должно составлять 4 мм². Но применять в быту кабели с алюминиевыми жилами не нужно. Алюминий обладает большой текучестью. Поэтому требует частого осмотра и обслуживания.  Единственное исключение провод СИП от опоры до ввода в дом.

Номинальное напряжение автоматического выключателя abb s201 C16

Номинальное напряжение автомата abb s201 C16 обозначено маркировкой на корпусе. Так, для однополюсных автоматов оно обычно составляет 230 – 400 вольт. При этом напряжении через автомат может длительно проходить номинальный ток 16 ампер.

Маркировка на автомате в виде волнистой линии ∼ или ≈ означает, что он предназначен для использования в цепи переменного тока. Нанесена маркировка обычно перед обозначением номинального напряжения. С другой стороны, для цепей постоянного тока применяются автоматы с другим устройством и маркировкой в виде прямой линии -.

Мощность нагрузки (На сколько киловатт автомат abb s201 C16)

Итак, мощность нагрузки автоматического выключателя c16 зависит от количества фаз сети. Очевидно, что в трехфазной сети к автомату можно подключить нагрузку большей мощности чем в однофазной.

Как полагается, однополюсный автомат abb s201 c16 предназначен для однофазной сети. Напряжение в бытовой однофазной сети составляет 220-230 вольт. Соответственно, пользуясь простой формулой P=U×I, можно определить мощность нагрузки, которую можно подключить к автомату. P=220×16=3520 Ватт. P=230×16=3680 Ватт.

Мощность нагрузки для однополюсного автомата abb s201 c16 равна 3520-3680 Ватт. Безусловно, лучше ограничить мощность подключенного электроприбора до 3,5 КилоВатт. Это позволит не перегревать кабель и не вызывать частое отключение автомата. Тем более что, скорее всего, напряжение в сети будет понижено. А чем ниже напряжение, тем меньше мощность нагрузки можно подключить в сеть.

По новому госту напряжение однофазной сети должно быть 230 вольт ± 10%. Соответственно, в трехфазной сети 400 вольт ± 10%. Но обычно оно минус  10% или ниже и  намного реже плюс.

Характеристики срабатывания защитных автоматических выключателей

Класс АВ, определяющийся этим параметром, обозначается латинским литером и проставляется на корпусной части автомата перед цифрой, соответствующей номинальному току.

В соответствии с классификацией, установленной ПУЭ, защитные автоматы подразделяются на несколько категорий.

Автоматы типа МА

Отличительная черта таких устройств – отсутствие в них теплового расцепителя. Аппараты этого класса устанавливают в цепях подключения электрических моторов и других мощных агрегатов.

Приборы класса А

Автоматы типа А, как было сказано, обладают самой высокой чувствительностью. Тепловой расцепитель в устройствах с времятоковой характеристикой А чаще всего срабатывает при превышении силой тока номинала АВ на 30%.

Катушка электромагнитного расцепления обесточивает сеть в течение примерно 0,05 сек, если электроток в цепи превышает номинальный на 100%. Если по какой-либо причине после увеличения силы потока электронов в два раза электромагнитный соленоид не сработал, биметаллический расцепитель отключает питание в течение 20 – 30 сек.

Автоматы, имеющие времятоковую характеристику А, включаются в линии, при работе которых недопустимы даже кратковременные перегрузки. К таковым относятся цепи с включенными в них полупроводниковыми элементами.

Защитные устройства класса B

Аппараты категории B обладают меньшей чувствительностью, чем относящиеся к типу A. Электромагнитный расцепитель в них срабатывает при превышении номинального тока на 200%, а время на срабатывание составляет 0,015 сек. Срабатывание биметаллической пластины в размыкателе с характеристикой B при аналогичном превышении номинала АВ занимает 4-5 сек.

Оборудование этого типа предназначено для установки в линиях, в которые включены розетки, приборы освещения и в других цепях, где пусковое повышение электротока отсутствует либо имеет минимальное значение.

Автоматы категории C

Устройства типа C наиболее распространены в бытовых сетях. Их перегрузочная способность еще выше, чем у ранее описанных. Для того, чтобы произошло срабатывание соленоида электромагнитного расцепления, установленного в таком приборе, нужно, чтобы проходящий через него поток электронов превысил номинальную величину в 5 раз. Срабатывание теплового расцепителя при пятикратном превышении номинала аппарата защиты происходит через 1,5 сек.

Установка автоматических выключателей с времятоковой характеристикой C, как мы и говорили, обычно производится в бытовых сетях. Они отлично справляются с ролью вводных устройств для защиты общей сети, в то время как для отдельных веток, к которым подключены группы розеток и осветительные приборы, хорошо подходят аппараты категории B.

Автоматические выключатели категории Д

Эти устройства имеют наиболее высокую перегрузочную способность. Для срабатывания электромагнитной катушки, установленной в аппарате такого типа, нужно, чтобы номинал по электротоку защитного автомата был превышен как минимум в 10 раз.

Срабатывание теплового расцепителя в этом случае происходит через 0,4 сек.

Устройства с характеристикой D наиболее часто используются в общих сетях зданий и сооружений, где они играют подстраховочную роль. Их срабатывание происходит в том случае, если не произошло своевременного отключения электроэнергии автоматами защиты цепи в отдельных помещениях. Также их устанавливают в цепях с большой величиной пусковых токов, к которым подключены, например, электромоторы.

Защитные устройства категории K и Z

Автоматы этих типов распространены гораздо меньше, чем те, о которых было рассказано выше. Приборы типа K имеют большой разброс в величинах тока, необходимых для электромагнитного расцепления. Так, для цепи переменного тока этот показатель должен превышать номинальный в 12 раз, а для постоянного – в 18. Срабатывание электромагнитного соленоида происходит не более чем через 0,02 сек. Срабатывание теплового расцепителя в таком оборудовании может произойти при превышении величины номинального тока всего на 5%.

Этими особенностями обусловлено применение устройств типа K в цепях с исключительно индуктивной нагрузкой.

Приборы типа Z тоже имеют разные токи срабатывания соленоида электромагнитного расцепления, но разброс при этом не столь велик, как в АВ категории K. В цепях переменного тока для их отключения превышение токового номинала должно быть трехкратным, а в сетях постоянного – величина электротока должна быть в 4,5 раза больше номинальной.

Аппараты с характеристикой Z используются только в линиях, к которым подключены электронные устройства.

Наглядно про категории автоматов на видео:

Почему время-токовые характеристики неудобны на практике

Статьи подробные, но всё это – общая теория, без привязки к конкретным моделям автоматических выключателей. Ведь даже зная теорию, которая изложена в статьях и ГОСТ  Р 50345-2010, невозможно слёту сказать, какой ток расцепления и нерасцепления будет у автомата, у которого на лицевой стороне написано “В10”. Нужно листать ГОСТ, гуглить, вспоминать, умножать, и так далее.

Вот как я об этом рассуждаю в статье про характеристики автоматов (ссылка в начале статьи):

Когда сработает автоматический выключатель? Рассуждения у время-токовой характеристики…

И мне, и моим читателям это неудобно.

Поэтому я решил создать удобные на практике таблицы, приведенные ниже. В таблицах приведены данные, заранее посчитанные на основе номинального тока и типа тока мгновенного расцепления (В, С, D).

Фактически, таблицы токов, приведенные в статье, заменяют собой графики время-токовых характеристик. Они переводят теорию по расцепителям защитных автоматов из текстовой и графической форм в табличную. Думаю (уверен), что на практике моими таблицами для выбора автоматов и расчета токов в цепи будет пользоваться гораздо удобнее, чем графиками, на которых приведены данные безотносительно к конкретным номиналам.

Автомат c10 – cечение кабеля

Сечение кабеля для автомата c10 обусловлено времятоковыми характеристиками его теплового расцепителя. С одной стороны, через автомат c10 более, чем час времени может протекать ток 11,3 Ампер. Значит, сечение проводника, подключаемого после автомата, должно быть не менее 1,5 мм² меди. Кабель с медными жилами сечением 1,5 мм², в не лучших для себя условиях, может длительно выдерживать протекание тока силой около 19 Ампер. Понятное дело, что это зависит от количества жил, материала изоляции и условий прокладки кабеля.

С другой стороны, через автомат c10, примерно, в течении часа может протекать ток 14,5 Ампер. Бесспорно, что такой ток при неблагоприятных обстоятельствах уже приближается к опасному для медного проводника сечением 1,5 мм² максимуму. Очевидно, это не полезно для кабеля. Однако, кратковременно такой ток проводник выдержать сможет. Само собой разумеется, что такое повышение тока не должно быть частым явлением. Следовательно, не надо перегружать автомат и кабель подключением слишком большой нагрузки. Иначе, от постоянного перегрева кабель быстро выйдет из строя.

Несомненно, при применении алюминиевого проводника сечение жил должно быть увеличено. До и после автомата c10 сечение его должно составлять 2,5 мм². Но применять в быту кабели с алюминиевыми жилами не нужно. Алюминий обладает большой текучестью. Поэтому требует частого осмотра и обслуживания.  Единственное исключение провод СИП от опоры до ввода в дом.

Особенности работы автоматов защиты сети

К какому бы классу ни относился автоматический выключатель, его главная задача всегда одна – быстро определить появление чрезмерного тока, и обесточить сеть раньше, чем будет поврежден кабель и подключенные к линии устройства.

Токи, которые могут представлять опасность для сети, подразделяются на два вида:

  • Токи перегрузки. Их появление чаще всего происходит из-за включения в сеть приборов, суммарная мощность которых превышает ту, что линия способна выдержать. Другая причина перегрузки – неисправность одного или нескольких устройств.
  • Сверхтоки, вызванные КЗ. Короткое замыкание происходит при соединении между собой фазного и нейтрального проводников. В нормальном состоянии они подключены к нагрузке по отдельности.

Устройство и принцип работы автоматического выключателя – на видео:

https://youtube.com/watch?v=9bTw3wtgOWY

Токи перегрузки

Величина их чаще всего незначительно превышает номинал автомата, поэтому прохождение такого электротока по цепи, если оно не затянулось слишком надолго, не вызывает повреждения линии. В связи с этим мгновенного обесточивания в таком случае не требуется, к тому же нередко величина потока электронов быстро приходит в норму. Каждый АВ рассчитан на определенное превышение силы электротока, при котором он срабатывает.

За отключение питания под воздействием мощной нагрузки отвечает тепловой расцепитель, основой которого является биметаллическая пластина.

Этот элемент нагревается под воздействием мощного тока, становится пластичным, изгибается и вызывает срабатывание автомата.

Токи короткого замыкания

Поток электронов, вызванный КЗ, значительно превосходит номинал устройства защиты, в результате чего последнее немедленно срабатывает, отключая питание. За обнаружение КЗ и немедленную реакцию аппарата отвечает электромагнитный расцепитель, представляющий собой соленоид с сердечником. Последний под воздействием сверхтока мгновенно воздействует на отключатель, вызывая его срабатывание. Этот процесс занимает доли секунды.

Однако существует один нюанс. Иногда ток перегрузки может также быть очень большим, но при этом не вызванным КЗ. Как же аппарат должен определить различие между ними?

На видео про селективность автоматических выключателей:

Здесь мы плавно переходим к основному вопросу, которому посвящен наш материал. Существует, как мы уже говорили, несколько классов АВ, различающихся по времятоковой характеристике. Наиболее распространенными из них, которые применяются в бытовых электросетях, являются устройства классов B, C и D. Автоматические выключатели, относящиеся к категории A, встречаются значительно реже. Они наиболее чувствительны и используются для защиты высокоточных аппаратов.

Между собой эти устройства различаются по току мгновенного расцепления. Его величина определяется кратностью тока, проходящего по цепи, к номиналу автомата.

Различие между зависимыми и независимой характеристикой защит

Важно понимать преимущества и недостатки зависимых кривых перед независимыми. Для этого отобразим эти характеристики при одинаковых расчетных условиях

Такой график приведен на Рис. 6 (кривая LONG удалена)

Рис. 8. Зависимые и независимая характеристики при одинаковых уставках

У всех защит на Рис. 8 одинаковый ток срабатывания Iс.з. = 100 А. Стоит отметить, что независимая защита будет пускаться при таком токе, а зависимые нет потому, что 100 А — это асимптота для этих кривых (время отключения равно бесконечности). Обычно значение пуска таких защиты лежит в пределах (1,1,..1,3)*Iс.з. и определяется изготовителем реле.

Как видно при токе согласования (300 А) все защиты имеют одинаковое время срабатывания (5 с). При токах менее 300 А независимая характеристика имеет меньшие времена отключения, а при токе более 300 А – большие, чем у зависимых. Таким образом, зависимые кривые медленнее отключают малые токи КЗ.

Это означает, что зависимые характеристики защит следует применять с осторожностью и всегда оценивать допустимость их использования на том или ином присоединении. Для примера рассмотрим защиту силового трансформатора ТМГ-1000/10/0,4 кВ в нескольких вариантах:

Для примера рассмотрим защиту силового трансформатора ТМГ-1000/10/0,4 кВ в нескольких вариантах:

1. Независимая характеристика — красная линия

2. Нормально инверсная (INV) — фиолетовая

3. Экстремально инверсная (EXT) — голубая

Рис. 9. Применение зависимых кривых для защиты трансформатора

На токе согласования защит (960 А) все характеристики дают одинаковый результат, а правее этой точки зависимые характеристики отключают КЗ быстрее (как и описано в учебниках), но посмотрите на картину в целом:

  • При минимальном дуговом токе на низшей стороне трансформатора (280 А приведенных) время отключения кривой INV составляет примерно 4 с, что достаточно много, а кривой EXT —  20 с, что вообще недопустимо
  • Применяя токовую отсечку (см. вторую ступень красной кривой) совместно с независимой характеристикой МТЗ можно получить результат даже лучше, чем с зависимыми кривыми в части отключения больших токов КЗ. При этом токовая отсечка трансформаторов оказывается практически всегда эффективна, что позволяет применять ее по умолчанию

Очевидно, что в данном случае зависимые кривые лучше не использовать. Даже, если вы обеспечите селективность, например, с нижестоящими предохранителями 0,4 кВ, то оставите без защиты сам трансформатор.

Это, кстати, на заметку тем, кто любит защищать трансформаторы предохранителями 6-10 кВ (они также имеют зависимую характеристику, близкую к кривой EXT). Такая защита — по большей части фикция и может спасти только от КЗ в начале зоны (обмотка ВН трансформатора). Подробнее об этой проблеме написано здесь

Обычно зависимые характеристики могут давать преимущества в сети с большим количеством уровней распределения, особенно, если вышестоящая защита также выполнена с применением зависимой кривой (например, реле РТ-80), и в большей части для защит линий, где разница в минимальном и максимальном токах КЗ невелика. Примеры рассмотрим позднее.

В следующей статье мы разберемся с тем, как построить любую зависимую кривую, причем сделаем это двумя разными способами.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации