Андрей Смирнов
Время чтения: ~14 мин.
Просмотров: 34

Параметры диодов шоттки. диоды шоттки

Пробой p-n перехода

Несмотря на то,
что в определённых пределах отсутствует
зависимость величины обратного тока
pn
перехода от величины приложенного
обратного напряжения, может наступить
момент, когда эта зависимость начнёт
проявляться.

Из уравнения Шокли
следует, что при увеличении обратного
напряжения на pn
переходе Iобр
стремится к I.
Использовать эту формулу при больших
значениях обратного напряжения
нецелесообразно, так как она перестаёт
соответствовать явлениям, происходящим
в реальных p-n
переходах. На практика Iобр
незначительно возрастает, пока напряжение
на переходе не достигнет некоторого
критического значения, называемого
напряжением
пробоя(Uпрб).
После этого
Iобр
возрастает скачкообразно, как это
показано на графике:

Таким образом,
под пробоемpn
перехода понимают явление значительного
уменьшения дифференциального сопротивления
Rдиф
( и Rст
– тоже) и увеличение Iобр
при увеличении обратного напряжения
Uобр.

Различают три
вида пробоя:

  1. – тепловой;

  2. – лавинный;

  3. – туннельный.

На практике
встречаются и смешанные случаи, т.к.
один вид пробоя может наступить как
следствие другого вида пробоя.

Тепловой пробой,
как явление, в основном носит необратимый
характер и приводит к разрушению pn
перехода.

Лавинный и туннельный
виды пробоя являются электрическим или
полевым видом пробоя, который обеспечивает
обратимость при ограничении мощности
на p-n
переходе (p-n
переход не разрушается).

Применение диодов

Не следует думать, что диоды применяются лишь как выпрямительные и детекторные приборы. Кроме этого можно выделить еще множество их профессий. ВАХ диодов позволяет использовать их там, где требуется нелинейная обработка аналоговых сигналов. Это преобразователи частоты, логарифмические усилители, детекторы и другие устройства. Диоды в таких устройствах используются либо непосредственно как преобразователь, либо формируют характеристики устройства, будучи включенными в цепь обратной связи. Широкое применение диоды находят в стабилизированных источниках питания, как источники опорного напряжения (стабилитроны), либо как коммутирующие элементы накопительной катушки индуктивности (импульсные стабилизаторы напряжения).

Выпрямительные диоды.

С помощью диодов очень просто создать ограничители сигнала: два диода включенные встречно – параллельно служат прекрасной защитой входа усилителя, например, микрофонного, от подачи повышенного уровня сигнала. Кроме перечисленных устройств диоды очень часто используются в коммутаторах сигналов, а также в логических устройствах. Достаточно вспомнить логические операции И, ИЛИ и их сочетания. Одной из разновидностей диодов являются светодиоды. Когда-то они применялись лишь как индикаторы в различных устройствах. Теперь они везде и повсюду от простейших фонариков до телевизоров с LED – подсветкой, не заметить их просто невозможно.

Параметры диодов

Параметров у диодов достаточно много и они определяются функцией, которую те выполняют в конкретном устройстве. Например, в диодах, генерирующих СВЧ колебания, очень важным параметром является рабочая частота, а также та граничная частота, на которой происходит срыв генерации. А вот для выпрямительных диодов этот параметр совершенно не важен. Основные параметры выпрямительных диодов приведены в таблице ниже.

Таблица основных параметров выпрямительных диодов.

В импульсных и переключающих диодах важна скорость переключения и время восстановления, то есть скорость полного открытия и полного закрытия. В мощных силовых диодах важна рассеиваемая мощность. Для этого их монтируют на специальные радиаторы. А вот диоды, работающие в слаботочных устройствах, ни в каких радиаторах не нуждаются. Но есть параметры, которые считаются важными для всех типов диодов, перечислим их:

  • U пр.– допустимое напряжение на диоде при протекании через него тока в прямом направлении. Превышать это напряжение не стоит, так как это приведёт к его порче.
  • U обр.– допустимое напряжение на диоде в закрытом состоянии. Его ещё называют напряжением пробоя. В закрытом состоянии, когда через p-n переход не протекает ток, на выводах образуется обратное напряжение. Если оно превысит допустимое значение, то это приведёт к физическому «пробою» p-n перехода. В результате диод превратиться в обычный проводник (сгорит).

Очень чувствительны к превышению обратного напряжения диоды Шоттки, которые очень часто выходят из строя по этой причине.

Обычные диоды, например, выпрямительные кремниевые более устойчивы к превышению обратного напряжения. При незначительном его превышении они переходят в режим обратимого пробоя. Если кристалл диода не успевает перегреться из-за чрезмерного выделения тепла, то изделие может работать ещё долгое время.

  • I пр.– прямой ток диода. Это очень важный параметр, который стоит учитывать при замене диодов аналогами или при конструировании самодельных устройств. Величина прямого тока для разных модификаций может достигать величин десятков и сотен ампер. Особо мощные диоды устанавливают на радиатор для отвода тепла, который образуется из-за теплового действия тока. P-N переход в прямом включении также обладает небольшим сопротивлением. На небольших рабочих токах его действие не заметно, но вот при токах в единицы-десятки ампер кристалл диода ощутимо нагревается. Так, например, выпрямительный диодный мост в сварочном инверторном аппарате обязательно устанавливают на радиатор.
  • I обр.– обратный ток диода. Обратный ток – это так называемый ток неосновных носителей. Он образуется, когда диод закрыт. Величина обратного тока очень мала и его в подавляющем числе случаев не учитывают.
  • U стаб.– напряжение стабилизации (для стабилитронов). Подробнее об этом параметре читайте в статье про стабилитрон.

Кроме того следует иметь в виду, что все эти параметры в технической литературе печатаются и со значком “max”. Здесь указывается предельно допустимое значение данного параметра. Поэтому подбирая тип диода для вашей конструкции необходимо рассчитывать именно на максимально допустимые величины.

Диоды высокого тока.

Как определить анод и катод диода

1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса

2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод.  Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

Возможные неисправности

Согласно статистике, Д или другие полупроводниковые элементы выходят из строя чаще, чем другие элементы схемы. Неисправный элемент можно вычислить и заменить, но иногда это приводит к потере функциональности. Например, при пробое p-n-перехода, Д превращается в обыкновенный резистор, а такая трансформация может привести к печальным последствиям, начиная от выхода из строя других элементов и заканчивая пожаром или поражением электрическим током. К основным неисправностям относятся:

  1. Пробой. Диод утрачивает способность пропускать ток в одном направлении и становится обычным резистором.
  2. Конструктивное повреждение.
  3. Утечка.

При пробое Д не пропускает ток в одном направлении. Причин может быть несколько и возникают они при резких ростах I и U, которые являются недопустимыми значениями для определенного Д. Основные виды пробоев p-n-перехода:

  1. Тепловой.
  2. Электрический.

При тепловом на физическом уровне происходит значительный рост колебания атомов, деформация кристаллической решетки, перегрев перехода и попадание электронов в проводимую зону. Процесс необратим и приводит к повреждению радиодетали.

Электрические пробои носят временный характер (кристалл не деформируется) и при возвращении к нормальному режиму работы его функции полупроводника возвращаются. Конструктивным повреждением являются физические повреждения ножек и корпуса. Утечка тока возникает при разгерметизации корпуса.

Для проверки Д достаточно выпаять одну ножку и прозвонить его мультиметром или омметром на наличияе пробоя перехода (должен звониться только в одном направлении). В результате появится значение R p-n-перехода в одном направлении, а в другом прибор покажет бесконечность. Если звониться в 2 направления, то радиодеталь неисправна.

Если отпала ножка, то ее нужно припаять. При повреждении корпуса — деталь необходимо заменить на исправную.

При разгерметизации корпуса понадобится построение графика ВАХ и сравнение его с теоретическим значением, взятым из справочной литературы.

Таким образом, ВАХ позволяет не только получить справочные данные о диоде или любом полупроводниковом элементе, но и выявить сложные неисправности, которые невозможно определить при проверке прибором.

Обозначение и расшифровка диодов

Обозначение выпрямительного диода на схеме согласно “ГОСТ 2.730-73 ЕСКД. Обозначения условные графические в схемах. Приборы полупроводниковые”.
В приложении данного ГОСТа указаны размеры в модульной сетке. Выглядит это следующим образом:

Существуют различные варианты обозначения диодов.

Согласно ОСТ 11366.919-81 следующее буквенно-цифровое обозначение:

  • 1) первая буква или цифра указывает на материал:
    • 1 (Г) — германий Ge
    • 2 (К) — кремний Si
    • 3 (А) — галлий Ga
    • 4 (И) — индий In
  • 2) Вторая буква — это подкласс полупроводникового прибора. Для нашего случая — это буква Д.
  • 3) Третья цифра — функционал элемента в зависимости от класса (диоды, варикапы, стабилитроны и др.).

Например, для выпрямительных диодов (Д):

101…199 — диоды малой мощности с постоянным или средним значением прямого тока менее 0,3А.

201…299 — диоды средней мощности с постоянным или средним значением прямого тока от 0,3 до 10А.

Также существуют диоды большой мощности с током более 10А. Отвод тепла у диодов малой мощности осуществляется через корпус, у диодов средней и большой мощности через теплоотводящие радиаторы.

До 1982 года была другая классификация:

  • первая Д — характеризовала весь класс диодов
  • далее шел цифровой код:
    • от 1 до 100 — для точечных германиевых диодов
    • от 101 до 200 — для точечных кремниевых диодов
    • от 201 до 300 — для плоскостных кремниевых диодов
    • от 301 до 400 — для плоскостных германиевых диодов
    • от 401 до 500 — для смесительных СВЧ детекторов
    • от 501 до 600 — для умножительных диодов
    • от 601 до 700 — для видеодетекторов
    • от 701 до 749 — для параметрических германиевых диодов
    • от 750 до 800 — для параметрических кремниевых диодов
    • от 801 до 900 — для стабилитронов
    • от 901 до 950 — для варикапов
    • от 951 до 1000 — для туннельных диодов
    • от 1001 до 1100 — для выпрямительных столбов
  • третья цифра — разновидность групп однотипных приборов

Система JEDEC (США)

  • первая цифра — число p-n переходов (1 — диод; 2 — транзистор; 3 — тиристор)
  • далее N (типа номер) и серийный номер
  • после может идти пару цифр про номиналы и отдельные характеристики диода

Система Pro Electron (Европа)

По данной системе приборы делятся на промышленные и бытовые. Бытовые кодируются двумя буквами и тремя цифрами от 100 до 999. У промышленных приборов будет идти три буквы и две цифры от 10 до 99. Для диодов:

  • 1) первая буква:
    • A — германий Ge
    • B — кремний Si
    • C — галлий Ga
    • R — другие полупроводники
  • 2) Вторая буква — это буква A, указывающая на маломощные импульсные и универсальные диоды.
  • 3) Третья буква отвечает за принадлежность элемента к сфере специального применения (промышленность, военная). “Z”, “Y”, “X” или “W”.
  • 4) Четвертая — это 2х, 3х или 4х-значный серийный номер прибора.
  • 5) Дополнительный код — в нем для выпрямительных диодов указывается максимальная амплитуда обратного напряжения.

Система JIS (Япония)

Применяется в странах Азии и тихоокеанского региона.

  • первая цифра — число переходов (0 — фототранзистор, фотодиод; 1 — диод; 2 — транзистор; 3 — тиристор)
  • затем буква S (semiconductors) — полупроводниковые
  • затем буква, отвечающая за тип прибора:
    • A — ВЧ транзисторы p-n-p
    • B — НЧ транзисторы p-n-p
    • С — ВЧ транзисторы n-p-n
    • D — НЧ транзисторы n-p-n
    • E — диоды
    • F — тиристоры
    • G — диоды Ганна
    • H — однопереходные транзисторы
    • J — полевые транзисторы с p-каналом
    • K — полевые транзисторы с n-каналом
    • M — симметричные тиристоры
    • Q — светоизлучающие диоды
    • R — выпрямительные диоды
    • S — малосигнальные диоды
    • T — лавинные диоды
    • V — варикапы, p-i-n диоды, диоды с накоплением заряда
    • Z — стабилитроны, стабисторы, ограничители

В нашем случае будет буква R.

Рег. номер прибора
Модификация прибора
Далее может идти индекс, описывающий специальные свойства

Существуют и специальные обозначения от фирм-изготовителей, которые отличаются от приведенных выше.

Уравнение Шокли для диода

(названо в честь изобретателя транзистора Уильяма Шокли) характеризует диод, обладающий идеальной вольт-амперной характеристикой для прямого и обратного тока. Уравнение Шокли для идеального диода:

I
=
I
S
(e
V
D
/
(n
V
T)

1)
,
{\displaystyle I=I_{\mathrm {S} }\left(e^{V_{\mathrm {D} }/(nV_{\mathrm {T} })}-1\right),}
I
I
V
V
n
коэффициент идеальности
коэффициент эмиссии

Коэффициент идеальности n

обычно лежит в пределах от 1 до 2 (хотя в некоторых случаях может быть выше) в зависимости от процесса изготовления и полупроводникового материала. Во многих случаях предполагается, что n

примерно равно 1 (таким образом, коэффициент n

в формуле опускается). Фактор идеальности не является частью уравнения диода Шокли
и был добавлен для учёта несовершенства реальных переходов. Поэтому в предположении n
= 1
уравнение сводится к уравнению Шокли для идеального диода.

Термическое напряжение V
T
приблизительно составляет 25,85 мВ
при 300 K
(температура, близкая к «комнатной температуре», обычно используемой в программах моделирования). Для конкретной температуры его можно найти по формуле:

V
T
=
k
T
q
,
{\displaystyle V_{\mathrm {T} }={\frac {kT}{q}}\,}

  • k

    — постоянная Больцмана ;
  • T

    — абсолютная температура p-n
    -перехода;
  • q

    — элементарный заряд электрона .

Ток насыщения I
S
не является постоянным для каждого диода, зависит от температуры значительно больше напряжения V
T
. Напряжение V
D
обычно уменьшается при увеличении T

.

Уравнение Шокли для идеального диода
(или закон диода
) получено с допущением, что единственными процессами, вызывающими ток в диоде, является дрейф (под действием электрического тока), диффузия и термическая рекомбинация. Также полагалось, что ток в p-n
-области, вызванный термической рекомбинацией, незначителен.

Вольт-амперная характеристика

ВАХ — это характеристика полупроводникового элемента, показывающая зависимость I, проходящего через p-n-переход, от величины и полярности U (рис. 1).

Рисунок 1 — Пример вольт-амперной характеристики полупроводникового диода.

ВАХ отличаются между собой и это зависит от типа полупроводникового прибора. Графиком ВАХ является кривая, по вертикали которой отмечены значения прямого I (вверху). Внизу отмечены значения I при обратном подключении. По горизонтали указаны показания U при прямом и обратном включении. Схема состоит из 2 частей:

  1. Верхняя и правая — Д функционирует в прямом подключении. Показывает пропускной I и линия идет вверх, что свидетельствует о росте прямого U (Uпр).
  2. Нижняя часть слева — Д находится в закрытом состоянии. Линия идет практически параллельно оси и свидетельствует о медленном нарастании Iобр (обратного тока).

Из графика можно сделать вывод: чем круче вертикальная часть графика (1 часть), тем ближе нижняя линия к горизонтальной оси. Это свидетельствует о высоких выпрямительных свойствах полупроводникового прибора. Необходимо учитывать, что ВАХ зависит от температуры окружающей среды, при понижении температуры происходит резкое понижение Iобр. Если температура повышается, то повышается и Iобр.

Построение графика

Построить ВАХ для конкретного типа полупроводникового прибора несложно. Для этого необходимы блок питания, мультиметр (вольтметр и амперметр) и диод (можно построить для любого полупроводникового прибора). Алгоритм построения ВАХ следующий:

  1. Подключить БП к диоду.
  2. Произвести измерения U и I.
  3. Внести данные в таблицу.
  4. На основании табличных данных построить график зависимости I от U (рис. 2).

Рисунок 2 — Пример нелинейной ВАХ диода.

Рисунок 3 — ВАХ Шоттки.

Исходя из графика, носящего асимметричный характер, видно, что для этого типа диода характерно малое падение U при прямом подключении. Присутствует экспоненциальное увеличение I и U. Ток в барьере обусловлен отрицательно заряженными частицами при обратном и прямом смещениях. Шоттки обладают высоким быстродействием, так как диффузные и рекомбинационные процессы отсутствуют. I зависит от U благодаря изменению количества носителей, принимающих участие в процессах переноса заряда.

Кремниевый полупроводник широко применяется практически во всех электрических схемах устройств. На рисунке 4 изображена его ВАХ.

Рисунок 4 — ВАХ кремниевого Д.

На рисунке 4 ВАХ начинается с 0,6-0,8 В. Кроме кремниевых Д существуют еще германиевые, которые при нормальной температуре будут нормально работать. Кремниевый имеет меньший Iпр и Iобр, поэтому тепловой необратимый пробой у германиевого Д наступает быстрее (при подаче высокого Uобр), чем у его конкурента.

Выпрямительный Д применяется для преобразования переменного U в постоянное и на рисунке 5 приведена его ВАХ.

Рисунок 5 — ВАХ выпрямительного Д.

На рисунке изображена теоретическая (пунктирная кривая) и практическая (экспериментальная) ВАХ. Они не совпадают из-за того, что в теории не учитывались некоторые аспекты:

  1. Наличие R (сопротивления) эмиттерной области кристалла, выводов и контактов.
  2. Токи утечки.
  3. Процессы генерации и рекомбинации.
  4. Пробои различных типов.

Кроме того, температура окружающей среды значительно влияет на измерения, и ВАХ не совпадают, так как теоретические значения получают при температуре +20 градусов. Существуют и другие важные характеристики полупроводников, которые можно понять по маркировке на корпусе.

Существуют и дополнительные характеристики. Они нужны для применения Д в определенной схеме с U и I. Если использовать маломощный Д в устройствах с U, превышающем максимально допустимое Uобр, то произойдет пробой и выход из строя элемента, а также это может повлечь за собой цепочку выхода других деталей из строя.

ВАХ помогает определить такие сложные неисправности Д: пробой перехода и разгерметизация корпуса. Сложные неисправности могут привести к выходу из строя дорогостоящих деталей, следовательно, перед монтажом Д на плату необходимо его проверить.

Бизнес и финансы

БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиУправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги — контрольЦенные бумаги — оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудитМеталлургияНефтьСельское хозяйствоЭнергетикаАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Применение

ПЛИС широко используется для построения различных по сложности и по возможностям цифровых устройств, например:

  • устройств с большим количеством портов ввода-вывода (бывают ПЛИС с более чем 1000 выводов («пинов»));
  • устройств, выполняющих цифровую обработку сигнала (ЦОС);
  • цифровой видеоаудиоаппаратуры;
  • устройств, выполняющих передачу данных на высокой скорости;
  • устройств, выполняющих криптографические операции, систем защиты информации;
  • устройств, предназначенных для проектирования и прототипирования интегральных схем специального назначения (ASIC);
  • устройств, выполняющих роль мостов (коммутаторов) между системами с различной логикой и напряжением питания;
  • реализаций нейрочипов;
  • устройств, выполняющих моделирование квантовых вычислений;
  • устройств, выполняющих обработку радиолокационной информации.

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сферев инвестиционной

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации