Андрей Смирнов
Время чтения: ~15 мин.
Просмотров: 0

Вакуумный выключатель

Прайс-лист на выключатели нагрузки

НаименованиеЦена с НДС, руб.
ВНА-П(Л)-10/630-20 УХЛ2, без заземляющих ножей16 900
ВНА-П(Л)-10/630-I(II)-20з УХЛ2, заземляющие ножи с одной стороны19 200
ВНА-П(Л)-10/630-III-20з УХЛ2, заземляющие ножи с двух сторон22 000
ВНА-П(Л)-10/630-I(II)-20зп УХЛ2, заземляющие ножи с одной стороны, с контактами предохранителей23 200
ВНА-П(Л)-10/630-III-20зп УХЛ2, заземляющие ножи с двух сторон, с контактами предохранителей25 600
ВНР-10/(400)630 УХЛ2, без заземляющих ножей17 700
ВНРз-10/(400)630-I(II) УХЛ2, заземляющие ножи с одной стороны19 950
ВНРз-10/(400)630-III УХЛ2, заземляющие ножи с двух сторон22 400
ВНРП-10/(400)630 УХЛ2, без заземляющих ножей 
ВНРПз-10/(400)630-I(II) УХЛ2, заземляющие ножи с одной стороны, с контактами предохранителей22 800
ВНРПз-10/(400)630-III УХЛ2, заземляющие ножи с двух сторон, с контактами предохранителей24 500

Выключатель нагрузки автогазового типа ВНП-М1-10/630-20.

Выключатель нагрузки типа ВНП-М1-10/630-20

Выключатели нагрузки типа ВНП-М1-10/630-20 производит Нальчикский завод высоковольтной аппаратуры (г. Нальчик, Россия). Подвергнувшись модернизации, выключать нагрузки стал безопасным в эксплуатации. Предназначается для работы в шкафах комплектных распределительных устройств (КРУ), в комплектных трансформаторных подстанциях (КТП), а также в ячейках камер стационарных одностороннего и двустороннего обслуживания (КСО) напряжением 10 кВ трехфазного переменного тока частотой 50 и 60 Гц для сетей с заземленной или изолированной нейтралью. Выключатель оснащен встроенным пружинным приводом с ручным заводом, который предназначен как для местного, так и для дистанционного управления.

15929

Закладки

Последние публикации

Новые вертикальные балочные зажимы EKF

12 сентября в 15:19

38

Новые металлические (трубные) хомуты EKF

12 сентября в 15:17

40

Компания «Иокогава Электрик СНГ» автоматизировала работу Сервисного центра

11 сентября в 16:02

57

Акция «Води электромобиль»: Ответственность за будущее с электротранспортом

11 сентября в 14:48

57

Schneider Electric и Grundfos подписали меморандум о сотрудничестве на территории Российской Федерации

10 сентября в 22:43

60

Онлайн-слет партнеров EKF объединил более 500 участников из России и стран СНГ

10 сентября в 18:18

64

АО «Гидроремонт-ВКК» завершил третий этап реконструкции моста, проходящего по Нижегородской ГЭС

9 сентября в 18:26

66

Schneider Electric вступила в Ассоциацию малой энергетики

9 сентября в 17:00

79

Ко Всемирному дню электротранспорта АВВ открыла новую зарядную станцию в Москве

9 сентября в 14:11

70

Viessmann расширил линейку конденсационных котлов серии Vitodens 050-W

9 сентября в 13:14

56

Самые интересные публикации

Новая газотурбинная ТЭЦ в Касимове выдаст в энергосистему Рязанской области более 18 МВт мощности

4 июня 2012 в 11:00

127664

Выключатель элегазовый типа ВГБ-35, ВГБЭ-35, ВГБЭП-35

12 июля 2011 в 08:56

28546

Правильная утилизация батареек

14 ноября 2012 в 10:00

12884

Элегазовые баковые выключатели типа ВЭБ-110II

21 июля 2011 в 10:00

12755

Признаки неисправности работы силовых трансформаторов при эксплуатации

29 февраля 2012 в 10:00

11495

Проблемы в системе понятий. Отсутствие логики

25 декабря 2012 в 10:00

10791

Распределительные устройства 6(10) Кв с микропроцессорными терминалами БМРЗ-100

16 августа 2012 в 16:00

10699

Оформляем «Ведомость эксплуатационных документов»

24 мая 2017 в 10:00

10539

Расчет сетей по потерям напряжения

27 февраля 2013 в 10:00

8717

Порядок переключений в электроустановках 0,4 — 10 кВ распределительных сетей

31 января 2012 в 10:00

6008

Конструкция вдк

Корпус
ВДК (Рисунок
2) состоит из двух керамических
изоляторов 2 и 6 и медного экрана 4,
припаиваемого к изоляторам.

Рисунок 2- Разрез
вакуумной дугогасительной камеры

Конструктивными
особенностями ВДК являются чашеобраз­ная
форма керамических изоляторов и сварной
сильфон 7, значительно снизившие вес и
габариты ВДК.

Сильфон припаивается
к изолятору 6 и выводу 8, обеспечи­вая
возможность перемещения подвижного
контакта 5 без нарушения герметичности
ВДК.

На торцевые части
неподвижного 3 и подвижного 5 контак­тов
припаяны пластины из металлокерамики,
обеспечивающие им высокую износостойкость.

Выводы 1 и 8 служат
для соединения с выводами выключа­теля.
Аксиальное магнитное поле в межконтактном
промежутке создается путем выполнения
в контактах специальных разре­зов
(на рис.4.2 не показаны).

Но
можно посмотреть, как это выполнено в
ВДК, выпускаемых концерном «Сименс»
(Рисунок 3).

Рисунок
3 – Разрезы в контактах вакуумного
выключателя

концерна
« Сименс»

За
счет аксиального магнитного поля дуга
не концентрируется, а находится в
диффузионном состоянии на всей
поверхности контактов, что видно на
рисунке 4, где приведена фотография
дуги.

Рисунок
4- Фотографии дуги между контактами
вакуумного выключателя концерна «
Сименс»

Это значительно
снижает износ контактов, повышает
отключающую способ­ность и коммутационный
ресурс выключателя.

КРИТЕРИИ И ПРЕДЕЛЫ БЕЗОПАСНОГО СОСТОЯНИЯ

Климатическое исполнение и категория размещения У2 по ГОСТ1550, условия эксплуатации при этом:

  • наибольшая высота над уровнем моря до 3000 м;
  • верхнее рабочее значение температуры окружающего воздуха в КРУ (КСО) принимают равным плюс 55°С, эффективное значение температуры окружающего воздуха КРУ и КСО – плюс 40°С;
  • нижнее рабочее значение температуры окружающего воздуха – минус 40°С;
  • верхнее значение относительной влажности воздуха 100% при плюс 25°С;
  • окружающая среда невзрывоопасная, не содержащая газов и паров, вредных для изоляции, не насыщенная токопроводящей пылью в концентрациях, снижающих параметры электропрочности изоляции выключателя.

Рабочее положение в пространстве — любое. Для исполнений 59, 60, 70, 71 – основанием вниз либо вверх. Выключатели предназначены для работы в операциях «О» и «В» и в циклах О – 0,3 с – ВО – 15 с – ВО; О – 0,3 с – ВО – 180 с – ВО.
Параметры вспомогательных контактов выключателя приведены в таблице 3.1.
По стойкости к воздействию внешних механических факторов выключатель соответствует группе М 7 по ГОСТ 17516.1-90, при этом выключатель работоспособен при воздействии синусоидальной вибрации в диапазоне частот (0,5*100) Гц с максимальной амплитудой ускорения 10 м/с2 (1 q) и многократных ударов с ускорением 30 м/с2 (3 q).

Таблица 3.1 – Параметры вспомогательных контактов выключателя

№ п/п

Параметр

Номинальное значение

1

2

3

1

Максимальное рабочее напряжение, В (перем. и пост.)

400

2

Максимальная коммутируемая мощность в цепях постоянного тока при t=1 ms, Вт

40

3

Максимальная коммутируемая мощность в цепях переменного
тока при cos j= 0,8, ВА

40

4

Максимальный сквозной ток, А

4

5

Испытательное напряжение, В (пост.)

1000

6

Сопротивление контактов, мкОм, не более

80

7

Коммутационный ресурс при максимальном токе отключения, циклов В-О

106

8

Механический ресурс, циклов В-О

106


 

Рисунок 3.1

Выключатели отвечают требованиям ГОСТ687, МЭК-56 и технических условий ТУ У 25123867.002-2000 (а также ИТЕА 674152.002 ТУ; ТУ У 13795314.001-95).
Зависимость коммутационного ресурса выключателей от величины отключаемого тока представлена на рис. 3.1.

Выключатели отвечают требованиям ГОСТ 687, МЭК-56 и технических условий ТУ У 25123867.002-2000 (а также ИТЕА 674152.002 ТУ; ТУ У 13795314.001-95).
Зависимость коммутационного ресурса выключателей от величины отключаемого тока представлена на рис. 3.1.

Принцип действия

Внешние видеофайлы
Отключение выключателя
(видеофайлы размещены на сайте www.tavrida.ru)

Поскольку разрежённый газ (10−6 …10−8 Н/см²) обладает электрической прочностью, в десятки раз превышающей прочность газа при атмосферном давлении, то это свойство широко используется в высоковольтных выключателях: в них при размыкании контактов в вакууме сразу же после первого прохождения тока в дуге через ноль изоляция восстанавливается, и дуга вновь не загорается.
В момент размыкания контактов в вакуумном промежутке коммутируемый ток инициирует возникновение электрического разряда — вакуумной дуги, существование которой поддерживается за счет металла, испаряющегося с поверхности контактов в вакуумный промежуток. Плазма, образованная ионизированными парами металла, проводит электрический ток, поэтому ток протекает между контактами до момента его перехода через ноль. В момент перехода тока через ноль дуга гаснет, а оставшиеся пары металла мгновенно (за 7—10 микросекунд) конденсируются на поверхности контактов и на других деталях дугогасящей камеры, восстанавливая электрическую прочность вакуумного промежутка. В то же время на разведенных контактах восстанавливается приложенное к ним напряжение (см. иллюстрацию процесса отключения).

Испытания и проверки, какими приборами ведётся контроль

Эксплуатация высоковольтных выключателей предусматривает проведение следующих проверок:

  • визуального осмотра на предмет наличия внешних дефектов;
  • замеров сопротивления изолирующего покрытия;
  • проверок сопротивления обмоток и контактов, при сравнении полученного значения с нормируемыми показателями;
  • времени срабатывания;
  • температуры контактов и другие.

Инструментальные измерения выполняются мегомметром, термометром и секундомером. Также для проверки устройств могут использоваться специальные стенды, предназначенные для выполнения данных видов работ.

Как работает вакуумный выключатель

Номинальный ток выключения системы составляет 20-40 кА, при этом занимая 45 миллисекунд времени на отключение. Вся конструкция выключателя собирается на одном общем приводе, в то же время для каждой фазы существует отдельный изолятор. Соответственно входные проводники подсоединяются на шины подстанции, а выводные – на отходящие контакты.

Принцип работы вакуумного выключателя

Внутренность дугогасительной камеры состоит из работающих силовых контактов, имеющих минимальное сопротивление. Механизм создан таким образом, что верхняя его часть надежно закрепляется, а нижняя – перемещается в осевой направленности.

Стенки вакуумной камеры изготавливаются из специального вещества и различных сплавов, это создает условия для хорошей герметичности и сохранение ее на долгое время. Конструкция имеет сильфонное устройство, которое исключает попадание воздуха.

Также в нем установливается якорь электромагнита, который способен замыкать и размыкать соединения. Группа пружин создает условия для необходимых скоростей движения якоря при переключениях. В корпусе размещается две системы – электрическая и кинематическая, которые регулируют выключатель в любом положении.

Процесс включения и выключения данного устройства производится посредством специальных пружин. При этом на них воздействуют специальные электромагниты или кнопка отключения. Перед использованием необходимо пружину отключения взвести в рабочее положение. Это делается вручную при отсутствии тока или посредством подачи тока в электродвигатель привода. Так, через ключ управления подается ток на соленоид включения.

В процессе этого заводится пружина включения, которая приводит в рабочее состояние вакуумный выключатель. Кроме этого автоматически взводится пружина срабатывания, которая автоматически отключает прибор.

Включение выключателя

Командой
на включение от блока управления
подается постоянное напряжение на
катушку электромаг­нита 9 (смотри
рисунок 1).

Рисунок 1 – Полюс
вакуумного выключателя

Под
действием электромагнитных сил якорь
11 начинает двигаться вверх и через
пружину поджатия 6 заставляет двигаться
тяговый изоля­тор 5 и подвижный контакт
3, сжимая при этом пружину отключения
7. После замыкания контактов 1 и 3 якорь
продолжает двигаться еще 2 мм до упора,
сжимая пружину 6 и созда­вая необходимое
поджатие между контактами выключателя
в вакуумной дугогасительной камере
(ВДК). Общий ход якоря составляет 8 мм,
а ход подвижного контакта 6 мм. После
снятия напряжения якорь остается во
включенном положении благодаря
остаточной индукции в электромагните
10.

Принцип гашения электрической дуги

При разрыве контактов между поверхностями возникает ионизация пространства. В вакуумных выключателях применяется технология, отличная от воздушных и масляных. Основной принцип основан на том, что в идеальном вакууме отсутствует какое-либо вещество, способное выделять заряженные частицы. Поэтому в момент разделения контактов, из-за разности потенциалов, единственным источником ионизации являются пары раскаленного металла. Они продолжают движение между контактными поверхностями, но при переходе синусоиды электрического тока через ноль, заряженные частицы утрачивают энергию для ионизации и перемещения и их место занимает пустое пространство с высокой электрической плотностью и дуга рвется. Ионы металлов примыкают к ближайшей поверхности – контактам или стенкам камеры. Такой принцип действия позволяет сократить время на прекращение горения дуги и предоставляет ряд преимуществ, в сравнении с другими типами коммутационных аппаратов. Однако чрезмерные коммутационные перенапряжения могут привести к деформации поверхности, что будет препятствовать нормальному замыканию контактов, увеличит переходное сопротивление и вызовет перегрев внутри вакуумной камеры.

Техническое обслуживание выключателей

Выключатели должны регулярно осматриваться для определения наличия повреждений, которые можно выявить по внешнему виду устройства. При остановках оборудования в рамках технического обслуживания должна проводиться его очистка, настройка, удаление нагара с контактов, другие необходимые операции, предусмотренные технической документацией изготовителя.

Каждые 4 года устройства подвергаются регламентированному текущему, а 8 лет – капитальному ремонту. Необходимость проведения текущего ремонта может быть обусловлена:

  • нарушением целостности элементов;
  • шумом и треском в ходе срабатывания выключателя;
  • перегревом контактов;
  • повышенным расходом масла.

Работы обычно выполняются по месту эксплуатации устройств, к их выполнению привлекается обученный персонал в составе специализированной организации.

Высоковольтные выключатели – важные устройства, от исправности которых зависит правильность выполнения коммутационных операций.

Более подробно можете прочитать в учебнике(начиная со страницы 237, а про выбор выключателя со страницы 268):Открыть и читать книгу

Установка и подключение прибора

Прежде чем начинать устанавливать вакуумный выключатель, необходимо провести осмотр всех внешне доступных элементов, дабы убедиться в отсутствии повреждений и дефектов. Затем производится чистка изоляционных поверхностей полюсов с помощью сухой безворсовой ветоши.

Не допускается внедрение оборудования в систему, если на изоляционных поверхностях присутствуют сколы, трещины, деформированные участки. Обязательно подлежит проверке схема вторичных цепей, а также подключение корпусной шины.

Проверка установленного прибора

Здесь важно тщательно проверить каждую деталь, каждый элемент крепежа. Высоковольтные аппараты не прощают даже малейшей ошибки

Перед установкой работоспособность выключателя следует проверить методом ручного включения (вхолостую без питания) и убедиться в правильности положения индикаторов панели управления. Затем нужно проверить наличие крышек полюсов. Если применяется аппаратура под номинал 1600А и выше, крышки защиты перед монтажом требуется снять.

Подключение непосредственно в сеть

Клеммы контактных наконечников проводников силовых кабелей перед присоединением к выводам выключателя необходимо зачистить.

Процедура зачистки отличается в зависимости от применяемого материала клемм:

  • Для медных и алюминиевых клемм без дополнительного покрытия зачистка осуществляется наждачной бумагой зернистостью М20 или ниже, с последующим обезжириванием поверхности металла.
  • Если клеммы медные или алюминиевые покрыты слоем серебра, их достаточно очистить безворсовой тканью.

Недопустимо применять кабели, серебряное покрытие клемм которых повреждено на площади более 5%. В этом случае повреждённый элемент требуется заменить. Подробнее о клеммах для соединения проводов можно прочесть в этом материале.

Внешние проводники подводятся к выводам вакуумного выключателя с таким расчётом, чтобы не создавались механические усилия на выводы прибора со стороны внешних проводников. Соединения производятся посредством болтовой сцепки с применением плоских упругих металлических шайб.

Как производится заземление?

Приборы стационарного исполнения подключаются к «земляной» площадке посредством болтового соединения (М12) непосредственно в точке, обозначенной маркировкой «Заземление».


Элементы конструкции аппаратной тележки и шасси выключателя, через которые выполняется заземление устройства. Как правило, эти точки отмечаются соответствующим знаком, нанесённым рядом с элементом

Область контактной точки «Заземление» перед соединением требуется обезжирить. Заземляющим проводником следует выбирать шину достаточного сечения (Правила устройства электроустановок), гибкий провод или проводник сплетённый жгутом. До накладки проводника на контактную площадку поверхности контакта смазать специальной смазкой (ЦИАТИМ-203).

Конструкция выкатного типа заземляется при помощи элементов аппаратной тележки. Заземление вакуумного выключателя осуществляется через конструкцию аппаратной тележки, для чего также имеются элементы крепежа.

Ввод устройства в эксплуатацию

Запуск устройства в эксплуатацию производится после дополнительной проверки установленного и подготовленного оборудования. В частности, проверяется надёжность заземления, состояние крепежа сборочных компонентов, доступ охлаждающей среды к потенциально нагревающимся элементам.

Поверхности токоведущих стержней, контактирующих с ламелями розеточных контактных групп, необходимо обработать небольшим объёмом смазки ЦИАТИМ. В целом, необходимо выполнить все процедуры, предусмотренные ПЭУ на случай приёмо-сдаточных испытаний, и убедиться в соответствии величины оперативного напряжения допустимым пределам.


Установка вакуумного выключателя. Монтажные работы проводит только квалифицированный персонал. Те же требования предъявляются к персоналу, который подбирается на обслуживание высоковольтного оборудования

Управлять вакуумным выключателем допускается персонал, имеющий разрешение на обслуживание электроустановок, функционирующих под напряжением выше 1000 вольт. Утверждённая группа допуска для обслуживающих лиц должна быть не ниже третьей. Перед началом работы с оборудованием, персонал проходит техминимум с целью изучения тонкостей конкретной модели оборудования.

1.1. Общие принципы проведения электромонтажных работ

Конструктивные особенности

Каждая модификация низковольтного и высоковольтного вакуумного выключателя различается по своей компоновочной схеме. Это связано с работой при разном номинале значения тока и напряжения. Производители тоже не остаются в стороне. Каждый реализует свои инновационные идеи в железе, что сказывается на комплектности аппарата дополнительными элементами и компоновке. Мы же не будем разбираться в , а посмотрим на конструкцию аппарата в целом и разберемся, как он устроен и работает.

Выключатель состоит из общего корпуса с приводом коммутации, на котором закреплены 3 полюса силовых цепей. Внутри каждого установлена герметичная вакуумная камера, состоящая из контактной группы и специальных экранов, защищающих внутренние изолирующие поверхности от металлического налета, вследствие эрозии контактов.

Контактная система включает 2 элемента: неподвижный контакт, жестко закрепленный к нижнему фланцу, и подвижный, соединенный с верхним фланцем так, что герметичность вакуумной дугогасительной камеры не нарушается.

Конструкция вакуумного выключателя включает два элемента: подвижный и неподвижный контакты. Устройство оснащается тремя полюсами, на каждом из которых имеются пофазно установленные электромагнитные приводы. Эти приводы монтируются на одном основании.

Читать далее: Грунтовка бетоноконтакт кнауф технические характеристики

Размещенные внутри прибора фазные приводы соединяются друг с другом за счет вала, который осуществляет синхронизацию фаз и защищает от неполных фаз. Кроме того, вал предназначен для механической блокировки расположенных поблизости распределительных систем и управления индикацией расположения контактов.

В качестве примера рассмотрим особенности вакуумного выключателя от (серия BB/TEL).

Условные обозначения:

  1. Вакуумная камера с функцией дугогашения.
  2. Основание.
  3. Крышка.
  4. Вал синхронизации.
  5. Дополнительные контакты.
  6. Блокировочная тяга.
  7. Привод.
  8. Узел блокировочный торцевой.

На рисунке видно, что вакуумный выключатель нагрузки включает в себя три полюса, которые имеют пофазно встроенные приводы электромагнитного типа. Приводы установлены на общем основании. Все приводы соединяются друг с другом при помощи вала.

Особенности одного из полюсов с номинальным током 2 тысячи ампер показаны на рисунке ниже.

  1. Вывод в верхней части.
  2. Дугогасящая камера, вмонтированная в полые изоляторы. Подвижные контакты за счет изоляционных тяг скреплены жестким соединением с приводами.
  3. Дополнительные контакты.
  4. Кулак.
  5. Блокировочная тяга.
  6. Вал синхронизации.
  7. Электромагнитный вал, оснащенный защелкой на магните.
  8. Пружина для прижатия контактов.
  9. Пружина отключения контактов.
  10. Приводной якорь.
  11. Кольцевой магнит.
  12. Приводная катушка.
  13. Плоский привод.
  14. Тяговый изолятор.
  15. Опорное изолирующее устройство.
  16. Нижний вывод.

Магнитный привод может располагаться в одном из двух положений: «включено» или «выключено». Закрепление якоря в указанных положениях осуществляется без использования механических щеколд. Фиксация возможна благодаря упругой пружине в положении «выключено» и кольцевому магниту в положении «включено». Подключение и отключение производится за счет передачи управляющих импульсов разнополярных напряжений на обмоточную катушку привода.

Принцип действия вакуумного выключателя

Вакуумный выключатель призван обеспечивать:

  • надежность прохождения электрического тока номинальной мощности при долговременной работе;
  • возможность коммутаций электрооборудования при оперативных переключениях в автоматическом или ручном режиме;
  • оперативную ликвидацию аварийных ситуаций в автоматическом режиме.

Две контактные пластины работают в вакууме, который образован при откачке газа из дугоносительной камеры. Таким образом, возникает повышенная электрическая прочность с усиленными диэлектрическими параметрами.

Во время работы между контактами появляется вакуумный промежуток. В нем после нагревания испаряется металл. Ток нагрузки вызывает образование электроразрядов, которые и создают дугу внутри вакуума. Она продолжает развиваться за счет отрыва паров металла. Затем образованные ионы создают плазму.

Выводы и полезное видео по теме

Еще больше материала об устройстве, принципе работы и условиях монтажа вакуумного выключателя вы можете узнать из следующего видеоролика:

https://youtube.com/watch?v=G8fJ9Wnca8Q

Вакуумные выключатели от других видов устройств отличаются относительно простой и надёжной структурой. Поэтому этот вид оборудования служит длительное время без особых нареканий. Ресурс естественного износа определяется числом операций, равным не менее 20000. При условии своевременного производства технического обслуживания этот ресурс возрастает на 5-10%. Между тем, техническое обслуживание ВВ ограничивается небольшим количеством лёгких операций.

Если при ознакомлении с информацией появились вопросы по теме статьи или есть ценная информация, которой вы можете поделиться с нашими читателями, пожалуйста, оставляйте свои комментарии, делитесь опытом, задавайте вопросы в блоке под статьей.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации