Андрей Смирнов
Время чтения: ~19 мин.
Просмотров: 0

Электровакуумный диод

Примечания

  1. Калашников А.М., Степук Я.В. Электровакуумные и полупроводниковые приборы. — М.: Воениздат, 1973. — С. 14—16. — 292 с.
  2. Батушев В. А. Электронные приборы: Учебник для вузов. — 2-е, перераб. и доп. — М.: Высшая школа, 1980. — С. 302—303. — 383 с.
  3. ↑ , с. 204.
  4. , с. 205.
  5. С. Матлин. Портативный передатчик.//«Радио» № 1, 1967, с. 18-20
  6. Г. Джунковский, Я. Лаповок. Передатчик третьей категории.//«Радио» № 10, 1967, с. 17-20
  7. , с. 333.
  8. Коленко Е. А. Технология лабораторного эксперимента: Справочник. — СПб.: Политехника, 1994. — С. 376. — 751 с. — ISBN 5-7325-0025-1.
  9.  (недоступная ссылка). Дата обращения 21 июля 2009.

Классификация по названию

Маркировки в других странах

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.Эта отметка установлена 23 февраля 2015 года.

В Европе в 1930-е годы ведущими производителями радиоламп была принята Единая европейская система буквенно-цифровой маркировки.

Первая буква характеризует напряжение накала или его ток:

  • А — напряжение накала 4 В;
  • В — ток накала 180 мА;
  • С — ток накала 200 мА;
  • D — напряжение накала до 1,4 В;
  • E — напряжение накала 6,3 В;
  • F — напряжение накала 12,6 В;
  • G — напряжение накала 5 В;
  • H — ток накала 150 мА;
  • К — напряжение накала 2 В;
  • P — ток накала 300 мА;
  • U — ток накала 100 мА;
  • V — ток накала 50 мА;
  • X — ток накала 600 мА.

Вторая и последующие буквы в обозначении определяют тип ламп:

  • A — диоды;
  • B — двойные диоды (с общим катодом);
  • C — триоды (кроме выходных);
  • D — выходные триоды;
  • E — тетроды (кроме выходных);
  • F — пентоды (кроме выходных);
  • L — выходные пентоды и тетроды;
  • H — гексоды или гептоды (гексодного типа);
  • K — октоды или гептоды (октодного типа);
  • M — электронно-световые индикаторы настройки;
  • P — усилительные лампы со вторичной эмиссией;
  • Y — однополупериодные кенотроны (простые);
  • Z — двухполупериодные кенотроны.

Двузначное или трёхзначное число обозначает внешнее оформление лампы и порядковый номер данного типа, причем первая цифра обычно характеризует тип цоколя или ножки, например:

  • 1-9 — стеклянные лампы с ламельным цоколем («красная серия»);
  • 1х — лампы с восьмиштырьковым цоколем («11-серия»);
  • 3х — лампы в стеклянном баллоне с октальным цоколем;
  • 5х — лампы с октальным цоколем;
  • 6х и 7х — стеклянные сверхминиатюрные лампы;
  • 8х и от 180 до 189 — стеклянные миниатюрные с девятиштырьковой ножкой;
  • 9х — стеклянные миниатюрные с семиштырьковой ножкой.

Конструкция

Вакуумные электронные приборы обычно представляют собой герметично запаянные стеклянные, металлические или керамические (нувисторы) сосуды с различными электродами внутри, соединёнными с контактами внешнего разъёма прибора через стеклянный или керамический вакуумно-плотный изолятор. Предварительно из них удаляют воздух. Откачивание сопровождается прогревом, как тепловым, так и высокочастотным (реже СВЧ полем), внутренностей прибора с целью удаления абсорбированных газов. Также для этого используется геттер — круг или кольцо из тонкой жести, покрытый металлическим барием[источник не указан 308 дней] или специальным химическим составом, хорошо поглощающим газы как во время распыления, так и после. Это, как правило, самые ядовитые вещества в вакуумных приборах.

Чем меньше внутри останется газов, тем более долговечен прибор. Минимальное остаточное давление в электронных приборах, работающих при напряжениях до 1 кВ, для долговременной работы считается 10-4Па. Для высоковольтных кинескопов (25 кВ) минимум составляет 10-7 Па (5-10 лет).
Для крупногабаритных устройств вроде ускорителей требования в тысячи раз выше.

В любом вакуумном приборе есть катод (прямого или косвенного нагрева, реже без подогрева — «холодный»), часто покрытый особым составом для высокой эмиссии электронов в вакуум рабочей зоны прибора; и анод — последний рабочий электрод, собирающий «отработанные» электроны.

Все вакуумные приборы имеют в качестве рабочего вещества электронный поток, летящий от катода к аноду и взаимодействующий по пути с простыми электродами (сетки и фокусирующие электроды) и сложными (СВЧ резонаторами, люминесцентными экранами, и тд.)

Устройство

Вакуумный диод – самая простая
электронная лампа в виде стеклянного или металлокерамического баллона без
воздуха. В емкость с вакуумом размещаются 2 электрода. У катода форма цилиндра,
он покрывается оксидом бария, стронция или кальция, увеличивающих количество
электродов, испускаемых при нагревании. Анод изготавливается овальной или
круглой формы, устанавливается на одну ось с катодом.

Выводы электродов выводятся сквозь стенки баллона. Если емкость металлокерамическая, в ней сверлятся отверстия, в которые впаиваются бусинки из стекла. В баллоне из стекла выводы впаиваются в основной материал. У анода один вывод. Если катодом служит нить какала, то выводов два (от каждого конца). При встраивании подогревного катода выводов три (2 от нити, один – от вещества, выделяющего электроны).

Электровакуумный диод тоже лампа электронного типа, по строению мало отличающаяся от вакуумного варианта. Основная особенность – строение катода. В электровакуумных моделях он прямой, W-образный или V-образный. При использовании двух последних вариантов удлиняется нить накала.

Форма анода вакуумного диода –
прямоугольник с круглыми углами. Основное преимущество – одинаковое расстояние
любой точки поверхности до минусового электрода. Для отвода избытка тепла анод
может быть оснащен «крылышками». Чтобы увеличить удобство использования, такие
лампочки оснащаются цоколем, изготовленным из диэлектрика, со штырьками,
обеспечивающими контакт с ламповой панелью.

Газоразрядные лампы

Тиратрон

В газоразрядных лампах обычно используется тлеющий или дуговой разряд в инертных газах или в парах ртути. Такие лампы чаще называют поэтому газоразрядными или ионными (по типу проводимости) приборами. Для очень больших параметров по току и напряжению прибор заполняется жидким диэлектриком (трансформаторным маслом), такие системы называются тригатронами, они способны выдерживать напряжения порядка мегавольт и коммутировать токи порядка сотен килоампер. Проведение в ионных приборах инициируется либо прямым током через прибор — в стабилитронах, либо подачей управляющего напряжения на сетку/сетки, либо воздействием на газ в приборе ультрафиолетовым или лазерным излучением.

Примеры газоразрядных электронных ламп:

  • Газоразрядные стабилитроны
  • Газоразрядники для защиты от высокого напряжения (например на воздушных линиях связи, приемниках мощных РЛС и т. п.)
  • Тиратроны (трёхэлектродные лампы — газоразрядные триоды, четырёхэлектродные — газоразрядные тетроды)
  • Крайтроны
  • Счётчики Гейгера — Мюллера
  • Ксеноновые, неоновые лампы и другие газоразрядные источники света.
  • Игнитрон
  • Тригатрон

История

Триод («аудион») Ли де Фореста, 1906 год

Первая советская радиолампа. Экспозиция Музея нижегородской радиолаборатории

В 1883 году Эдисон пытался увеличить срок службы осветительной лампы с угольной нитью накаливания в вакууммированной стеклянной колбе. С этой целью в одном из опытов он ввёл в вакуумное пространство лампы металлическую пластину с проводником, выведенным наружу. При экспериментах он заметил, что вакуум проводит ток, причём только в направлении от электрода к накалённой нити и только тогда, когда нить накалена. Это было неожиданно для того времени — считалось, что вакуум не может проводить ток, так как в нём нет носителей заряда. Изобретатель не понял тогда значение этого открытия, но на всякий случай запатентовал.

Благодаря этим экспериментам Эдисон стал автором фундаментального научного открытия, которое является основой работы всех электронных ламп и всей электроники до создания полупроводниковых приборов. Впоследствии это явление получило название термоэлектронная эмиссия.

В 1905 году этот «эффект Эдисона» стал основой британского патента Джона Флеминга на «прибор для преобразования переменного тока в постоянный» — первую электронную лампу, открывшую век электроники.

В 1906 году американский инженер Ли де Форест ввёл в лампу третий электрод — управляющую сетку (и, таким образом, создал триод). Такая лампа могла уже работать в качестве усилителя тока, а в 1913 году на её основе был создан автогенератор. В 1921 году А. А. Чернышёвым предложена конструкция цилиндрического подогревного катода (катода косвенного накала).

Миниатюрные стержневые пентоды производства СССР

Вакуумные электронные лампы стали элементной базой компьютеров первого поколения. Главным недостатком электронных ламп было то, что устройства на их основе были довольно громоздкими, а при большом количестве ламп, например, в первых ЭВМ, частые единичные выгорания приводили к значительному простою на ремонт. Причем в логических схемах не всегда можно было вовремя обнаружить поломку, машина могла продолжать работать выдавая ошибочные результаты. Для питания ламп необходимо было подводить дополнительную энергию для нагрева катода (именно он испускает электроны, необходимые для тока в лампе), а образованное ими тепло отводить. Например, в первых компьютерах использовались тысячи ламп, которые размещались в металлических шкафах и занимали много места. Весила такая машина десятки тонн. Для её работы требовалась электростанция. Для охлаждения машины использовали мощные вентиляторы в связи с выделением лампами огромного количества тепла.

Пик расцвета («золотая эра») ламповой схемотехники пришёлся на 1935—1950 годы.

Особенности радиоламп

Электровакуумный диод – основа радиотехники. В конструкции лампы есть два электрода (катод и анод), сетка. Катод обеспечивает эмиссию, для этого слой вольфрама покрывается барием или торием. Анод выполняется в виде пластины из никеля, молибдена, графита. Сетка является разделителем между электродами. При нагревании рабочего тела из движущихся частиц создается мощный электрический ток в вакууме. Электровакуумные приборы данного вида составляют основу радиотехники. Во второй половине прошлого века электровакуумные лампы использовались в разнообразных сферах технической, радиоэлектронной промышленности.

Без них невозможно было изготовить радиоприемники, телевизоры, специальное оборудование, вычислительные машины.

Принцип действия

Вакуумные электронные лампы с подогреваемым катодом

  • В результате термоэлектронной эмиссии электроны покидают поверхность катода.
  • Под воздействием разности потенциалов между анодом (+) и катодом (-) электроны достигают анода и образуют анодный ток во внешней цепи.
  • С помощью дополнительных электродов (сеток) осуществляется управление электронным потоком путём подачи на эти электроды электрического потенциала.

Электронная лампа RCA ‘808’

В вакуумных электронных лампах наличие газа ухудшает характеристики лампы.

Газоразрядные электронные лампы

Основным для этого класса устройств является поток ионов в газе, наполняющем лампу. Поток может быть создан, как и в вакуумных устройствах, термоэлектронной эмиссией, а может создаваться разрядом в разреженном газе за счёт напряжённости электрического поля. Как правило, такие лампы используются либо в низкочастотных генераторах (тиратроны), либо в схемах управляемых выпрямителей, часто с высокими выходными токами (игнитрон).

Типы газоразрядных электронных ламп:

  • неоновая лампа
  • стабилитрон
  • ионный разрядник
  • тиратрон
  • игнитрон

Неоновая лампа

Неоновая лампа — газосветный прибор тлеющего разряда, состоящая из стеклянного баллона, в котором располагаются два электрода (катод и анод). Баллон наполнен инертным газом (неоном) при небольшом давлении. Электроды изготавливаются из неактивированного металла, например никеля, и могут быть различной формы (два цилиндрических, два плоских и др.)

Неоновые лампы излучают оранжево-красное свечение небольшой интенсивности и используются в частности как сигнальные. Неоновую лампу необходимо включать с ограничительным сопротивлением, иначе разряд сразу переходит в дуговой и лампа выходит из строя.

Стабилитрон

Газоразрядный стабилитрон представляет собой стеклянный баллон, в котором находятся два электрода — катод и анод. Катод имеет форму цилиндра с большой поверхностью, анод — стержень, расположенный вдоль оси катода. Внутренняя поверхность катода активируется. Баллон наполняется аргоном, неоном или смесью газов при давлении в несколько десятков миллиметров ртутного столба. Благодаря большой поверхности катода, напряжение между электродами при значительных изменениях тока остается неизменным.

Параметрами стабилитрона являются: напряжение зажигания, напряжение горения, минимальный и максимальный ток. Величина напряжения стабилизации зависит от вида газа и материала катода, которым наполнен баллон.

Стабилитрон с коронным разрядом

Кроме стабилитронов с тлеющим разрядом, описанных выше, существуют стабилитроны с коронным разрядом. Устройство данных стабилитронов схоже со стабилитронами тлеющего разряда. Баллон наполняется водородом при низком давлении. Стабилитроны с коронным разрядом имеют в несколько раз более высокие значения напряжения горения, и позволяют стабилизировать напряжение порядка 300—1000 В и более. Однако ток, проходящий через такой стабилитрон в сотни раз меньше чем у стабилитронов с тлеющим разрядом.

Микроэлектронные приборы с автоэмиссионным катодом

Процесс миниатюризации электронных вакуумных ламп привел к отказу от подогреваемых катодов и переходу на автоэлектронную эмиссию с холодных катодов специальной формы из специально подобранных материалов. Это дает возможность довести размеры устройств до микронных размеров и использовать при их изготовлении стандартные техпроцессы полупроводниковой индустрии. В настоящее время такие конструкции активно исследуются.

Автоэмиссионный диод

Газоразрядные лампы

В газоразрядных лампах обычно используется тлеющий или дуговой разряд в инертных газах или в парах ртути. Такие лампы чаще называют поэтому газоразрядными или ионными (по типу проводимости) приборами. Для очень больших параметров по току и напряжению прибор заполняется жидким диэлектриком (трансформаторным маслом), такие системы называются тригатронами, они способны выдерживать напряжения порядка мегавольт и коммутировать токи порядка сотен килоампер. Проведение в ионных приборах инициируется либо прямым током через прибор — в стабилитронах, либо подачей управляющего напряжения на сетку/сетки, либо воздействием на газ в приборе ультрафиолетовым или лазерным излучением.

Примеры газоразрядных электронных ламп:

  • Газоразрядные стабилитроны
  • Газоразрядники для защиты от высокого напряжения (например на воздушных линиях связи, приемниках мощных РЛС и т. п.)
  • Тиратроны (трёхэлектродные лампы — газоразрядные триоды, четырёхэлектродные — газоразрядные тетроды)
  • Крайтроны
  • Счётчики Гейгера — Мюллера
  • Ксеноновые, неоновые лампы и другие газоразрядные источники света.
  • Игнитрон
  • Тригатрон

История создания лампы

В настоящее время с трудом верится, что электричество существовало далеко не во все исторические периоды. Первые лампочки накаливания появились только в конце девятнадцатого века. Эдисону удалось разработать модель лампочки, в которой располагались угольные, платиновые, бамбуковые нити. Именно этого ученого по праву называют «отцом» современной электрической лампы. Им была упрощена схема лампочки, существенно снижена стоимость продукции. В результате на улицах появилось не газовое, а электрическое освещение, а новые осветительные приборы стали именовать лампами Эдисона. Томас на протяжении длительного времени работал над усовершенствованием своего изобретения, в итоге применение свечей стало нерентабельным мероприятием.

Современные применения

Металлокерамический генераторный триод ГС-9Б с воздушным охлаждением (СССР)

Высокочастотная и высоковольтная мощная техника

  • В мощных радиовещательных передатчиках (от 100 Вт до единиц мегаватт) в выходных каскадах применяются мощные и сверхмощные лампы с воздушным или водяным охлаждением анода и высоким (более 100 А) током накала. Магнетроны, клистроны, лампы бегущей волны (ЛБВ) обеспечивают сочетание высоких частот, мощностей и приемлемой стоимости (а зачастую другая элементная база в принципе неосуществима).
  • Магнетрон можно встретить не только в радаре, но и в микроволновой печи.
  • При необходимости выпрямления или быстрой коммутации нескольких десятков киловольт, которую невозможно осуществлять механическими ключами, необходимо использовать радиолампы. Так, обеспечивает приемлемую динамику на напряжениях до миллиона вольт.

Военная промышленность

Из-за принципа действия электронные лампы являются устройствами, значительно более устойчивыми к таким поражающим факторам, как электромагнитный импульс. В единственном устройстве может быть несколько сотен ламп. В СССР для применения в бортовой военной аппаратуре в 1950-е годы были разработаны стержневые лампы, отличавшиеся малыми размерами и большой механической прочностью.

Миниатюрная лампа типа «жёлудь» (пентод 6Ж1Ж, СССР, 1955 г.).

Космическая техника

Радиационная деградация полупроводниковых материалов и наличие естественного вакуума межпланетной среды делает применение некоторых типов ламп средством повышения надёжности и долговечности космических аппаратов. Применение в АМС Луна-3 транзисторов было связано с большим риском.

Повышенная температура среды и радиация

Ламповое оборудование может быть рассчитано на больший температурный и радиационный диапазон условий, нежели полупроводниковое.

Звукотехническая аппаратура

Основная статья: Ламповый звук

Электронные лампы до сих пор находят применение в звукотехнике, как любительской, так и профессиональной. Конструирование ламповых звукотехнических устройств является одним из направлений современного радиолюбительского движения.

Благодаря специфическим особенностям искажения (т. н. «теплое ламповое звучание»), которые до настоящего времени не удалось полностью воспроизвести в широкой практике при использовании полупроводниковых аналогов или цифровой эмуляции, электронные лампы весьма популярны в усилении звучания электрогитары.

Принцип действия

Вакуумные электронные лампы с подогреваемым катодом

  • В результате термоэлектронной эмиссии электроны покидают поверхность катода.
  • Под воздействием разности потенциалов между анодом (+) и катодом (-) электроны достигают анода и образуют анодный ток во внешней цепи.
  • С помощью дополнительных электродов (сеток) осуществляется управление электронным потоком путём подачи на эти электроды электрического потенциала.

Электронная лампа RCA ‘808’

В вакуумных электронных лампах наличие газа ухудшает характеристики лампы.

Газоразрядные электронные лампы

Основным для этого класса устройств является поток ионов в газе, наполняющем лампу. Поток может быть создан, как и в вакуумных устройствах, термоэлектронной эмиссией, а может создаваться разрядом в разреженном газе за счёт напряжённости электрического поля. Как правило, такие лампы используются либо в низкочастотных генераторах (тиратроны), либо в схемах управляемых выпрямителей, часто с высокими выходными токами (игнитрон).

Типы газоразрядных электронных ламп:

  • неоновая лампа
  • стабилитрон
  • ионный разрядник
  • тиратрон
  • игнитрон

Неоновая лампа

Неоновая лампа — газосветный прибор тлеющего разряда, состоящая из стеклянного баллона, в котором располагаются два электрода (катод и анод). Баллон наполнен инертным газом (неоном) при небольшом давлении. Электроды изготавливаются из неактивированного металла, например никеля, и могут быть различной формы (два цилиндрических, два плоских и др.)

Неоновые лампы излучают оранжево-красное свечение небольшой интенсивности и используются в частности как сигнальные. Неоновую лампу необходимо включать с ограничительным сопротивлением, иначе разряд сразу переходит в дуговой и лампа выходит из строя.

Стабилитрон

Газоразрядный стабилитрон представляет собой стеклянный баллон, в котором находятся два электрода — катод и анод. Катод имеет форму цилиндра с большой поверхностью, анод — стержень, расположенный вдоль оси катода. Внутренняя поверхность катода активируется. Баллон наполняется аргоном, неоном или смесью газов при давлении в несколько десятков миллиметров ртутного столба. Благодаря большой поверхности катода, напряжение между электродами при значительных изменениях тока остается неизменным.

Параметрами стабилитрона являются: напряжение зажигания, напряжение горения, минимальный и максимальный ток. Величина напряжения стабилизации зависит от вида газа и материала катода, которым наполнен баллон.

Стабилитрон с коронным разрядом

Кроме стабилитронов с тлеющим разрядом, описанных выше, существуют стабилитроны с коронным разрядом. Устройство данных стабилитронов схоже со стабилитронами тлеющего разряда. Баллон наполняется водородом при низком давлении. Стабилитроны с коронным разрядом имеют в несколько раз более высокие значения напряжения горения, и позволяют стабилизировать напряжение порядка 300—1000 В и более. Однако ток, проходящий через такой стабилитрон в сотни раз меньше чем у стабилитронов с тлеющим разрядом.

Микроэлектронные приборы с автоэмиссионным катодом

Процесс миниатюризации электронных вакуумных ламп привел к отказу от подогреваемых катодов и переходу на автоэлектронную эмиссию с холодных катодов специальной формы из специально подобранных материалов. Это дает возможность довести размеры устройств до микронных размеров и использовать при их изготовлении стандартные техпроцессы полупроводниковой индустрии. В настоящее время такие конструкции активно исследуются.

Автоэмиссионный диод

Примечания

  1. Калашников А.М., Степук Я.В. Электровакуумные и полупроводниковые приборы. — М.: Воениздат, 1973. — С. 14—16. — 292 с.
  2. Батушев В. А. Электронные приборы: Учебник для вузов. — 2-е, перераб. и доп. — М.: Высшая школа, 1980. — С. 302—303. — 383 с.
  3. ↑ , с. 204.
  4. , с. 205.
  5. С. Матлин. Портативный передатчик.//«Радио» № 1, 1967, с. 18-20
  6. Г. Джунковский, Я. Лаповок. Передатчик третьей категории.//«Радио» № 10, 1967, с. 17-20
  7. , с. 333.
  8. Коленко Е. А. Технология лабораторного эксперимента: Справочник. — СПб.: Политехника, 1994. — С. 376. — 751 с. — ISBN 5-7325-0025-1.
  9.  (недоступная ссылка). Дата обращения 21 июля 2009.

Фотообои — достоинства и особенности выбора

Принцип работы

Работа
вакуумного диода
основана на отсутствии в баллоне воздуха. Вакуум способствует отделению
электронов от катода после подачи на него напряжения и достижения определенного
уровня нагрева.

Далее:

  1. Заряженные частицы образуют облако.
  2. Частицы, имеющие небольшую скоростью, возвращаются на поверхность минусового электрода.
  3. После подключения к напряжению плюсового электрода электроны, имеющие большую скорость, перемещаются к нему.
  4. в процессе формирования ускоряющего поля поток частиц от минуса к плюсу увеличивается.
  5. при объеме электронов, близком к предельному значению эмиссии, электроток стабилизируется (это явление называется насыщением).

Электронное облако стабилизируется при достижении
определенного уровня температуры. На минусовой электрод возвращается такое же
количество частиц, какое отделилось.

При подключении анода к отрицательному
выводу источника питания, а катода – к положительному, электроны, которые выделяет
катод, использовать невозможно. Их скорость небольшая, положительно заряженный минусовой
электрод их притягивает. Те отрицательные частицы, которые создают облако и
имеют большую скорость, отталкивает анод по причине отрицательного заряда.

Современные применения

Металлокерамический генераторный триод ГС-9Б с воздушным охлаждением (СССР)

Высокочастотная и высоковольтная мощная техника

  • В мощных радиовещательных передатчиках (от 100 Вт до единиц мегаватт) в выходных каскадах применяются мощные и сверхмощные лампы с воздушным или водяным охлаждением анода и высоким (более 100 А) током накала. Магнетроны, клистроны, лампы бегущей волны (ЛБВ) обеспечивают сочетание высоких частот, мощностей и приемлемой стоимости (а зачастую другая элементная база в принципе неосуществима).
  • Магнетрон можно встретить не только в радаре, но и в микроволновой печи.
  • При необходимости выпрямления или быстрой коммутации нескольких десятков киловольт, которую невозможно осуществлять механическими ключами, необходимо использовать радиолампы. Так, обеспечивает приемлемую динамику на напряжениях до миллиона вольт.

Военная промышленность

Из-за принципа действия электронные лампы являются устройствами, значительно более устойчивыми к таким поражающим факторам, как электромагнитный импульс. В единственном устройстве может быть несколько сотен ламп. В СССР для применения в бортовой военной аппаратуре в 1950-е годы были разработаны стержневые лампы, отличавшиеся малыми размерами и большой механической прочностью.

Миниатюрная лампа типа «жёлудь» (пентод 6Ж1Ж, СССР, 1955 г.).

Космическая техника

Радиационная деградация полупроводниковых материалов и наличие естественного вакуума межпланетной среды делает применение некоторых типов ламп средством повышения надёжности и долговечности космических аппаратов. Применение в АМС Луна-3 транзисторов было связано с большим риском.

Повышенная температура среды и радиация

Ламповое оборудование может быть рассчитано на больший температурный и радиационный диапазон условий, нежели полупроводниковое.

Звукотехническая аппаратура

Основная статья: Ламповый звук

Электронные лампы до сих пор находят применение в звукотехнике, как любительской, так и профессиональной. Конструирование ламповых звукотехнических устройств является одним из направлений современного радиолюбительского движения.

Благодаря специфическим особенностям искажения (т. н. «теплое ламповое звучание»), которые до настоящего времени не удалось полностью воспроизвести в широкой практике при использовании полупроводниковых аналогов или цифровой эмуляции, электронные лампы весьма популярны в усилении звучания электрогитары.

Современные применения

Металлокерамический генераторный триод ГС-9Б с воздушным охлаждением (СССР)

Высокочастотная и высоковольтная мощная техника

  • В мощных радиовещательных передатчиках (от 100 Вт до единиц мегаватт) в выходных каскадах применяются мощные и сверхмощные лампы с воздушным или водяным охлаждением анода и высоким (более 100 А) током накала. Магнетроны, клистроны, лампы бегущей волны (ЛБВ) обеспечивают сочетание высоких частот, мощностей и приемлемой стоимости (а зачастую другая элементная база в принципе неосуществима).
  • Магнетрон можно встретить не только в радаре, но и в микроволновой печи.
  • При необходимости выпрямления или быстрой коммутации нескольких десятков киловольт, которую невозможно осуществлять механическими ключами, необходимо использовать радиолампы. Так, обеспечивает приемлемую динамику на напряжениях до миллиона вольт.

Военная промышленность

Из-за принципа действия электронные лампы являются устройствами, значительно более устойчивыми к таким поражающим факторам, как электромагнитный импульс. В единственном устройстве может быть несколько сотен ламп. В СССР для применения в бортовой военной аппаратуре в 1950-е годы были разработаны стержневые лампы, отличавшиеся малыми размерами и большой механической прочностью.

Миниатюрная лампа типа «жёлудь» (пентод 6Ж1Ж, СССР, 1955 г.).

Космическая техника

Радиационная деградация полупроводниковых материалов и наличие естественного вакуума межпланетной среды делает применение некоторых типов ламп средством повышения надёжности и долговечности космических аппаратов. Применение в АМС Луна-3 транзисторов было связано с большим риском.

Повышенная температура среды и радиация

Ламповое оборудование может быть рассчитано на больший температурный и радиационный диапазон условий, нежели полупроводниковое.

Звукотехническая аппаратура

Основная статья: Ламповый звук

Электронные лампы до сих пор находят применение в звукотехнике, как любительской, так и профессиональной. Конструирование ламповых звукотехнических устройств является одним из направлений современного радиолюбительского движения.

Благодаря специфическим особенностям искажения (т. н. «теплое ламповое звучание»), которые до настоящего времени не удалось полностью воспроизвести в широкой практике при использовании полупроводниковых аналогов или цифровой эмуляции, электронные лампы весьма популярны в усилении звучания электрогитары.

Применение не по назначению

Поскольку ВЛИ являются электронными лампами, возможно применение их для усиления электрических сигналов. При этом, приходится мириться с возникновением микрофонного эффекта (поскольку ВЛИ изначально не предназначены для использования в качестве усилительных радиоламп, в них не приняты меры по устранению такого эффекта). Накал в таких усилительных каскадах, с целью предотвращения появления фона, питают постоянным током.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации