Андрей Смирнов
Время чтения: ~23 мин.
Просмотров: 28

«триод и диод»

Двойные триоды[править | править код]

Двойной триод с объединённым катодом. Условное графическое обозначение. а1 — анод первого триода, а2 — анод второго триода, с1 — сетка первого триода, с2 — сетка второго триода, к — катод, п — подогреватель катода.

Российский двойной триод 6Н2П

Комбинированные лампы, конструктивно представляющие сборки двух и более индивидуальных триодов, заключенных в общую вакууммированную колбу, называют двойными триодами. Обычно оба триода имеют раздельные и изолированные друг от друга системы электродов — анодов, сеток и катодов. Существуют типы сдвоенных триодов с общим катодом. Практически всегда цепи накала обоих катодов электрически соединены внутри баллона и из баллона выведено только два вывода накала.

В основном, двойные триоды — приборы, предназначенные для работы в усилителях звуковых частот (УНЧ), схемах промышленной автоматики, переключательных схемах. Но существуют и высокочастотные сдвоенные триоды, например, 6Н3П.

На закате ламповой эры, с целью повысить интеграцию ламповых схем, выпускались строенные триоды (конструктив «компактрон» (англ. compactron), где в одном баллоне совмещались три триода, однако эти лампы, в отличие от двойных триодов, не получили массовое распространение. В то время в промышленности наиболее широко применялись маломощные двойные триоды 6Н2П, 6Н1П, 12AX7, 6SN7, 6SL7, другие.

Применение сдвоенных триодов улучшало массогабаритные характеристики электронной аппаратуры.

Отечественные двойные триодыправить | править код

Основная статья: Двойные электровакуумные триоды производства СССР

  • 1Н3С — двойной триод, малой мощности, с общим катодом прямого накала. Предназначен для использования в выходных каскадах УНЧ (до 1,5 Вт), работающих в классе В, что позволяет работать с батарейным питанием.
  • 6Н5С, 6Н13С — двойной низкочастотный мощный триод, с октальным цоколем, аналог 6AS7. Предназначен для работы в стабилизаторах напряжения. Может эффективно использоваться в высококачественных УНЧ; на базе современных 6Н13С российского производства строится большинство современных бестрансформаторных ламповых усилителей.
  • 6Н7С — двойной низкочастотный триод с общим катодом, с октальным цоколем, аналог 6N7. Предназначался для дифференциальных каскадов усилителей НЧ, а также для оконечных каскадов УНЧ, работающих в классе В.
  • 6Н8С — низкочастотный двойной триод, c октальным цоколем, аналог 6SN7 — наиболее распространённой лампой в современной аппаратуре. Предназначен для усиления сигналов низкой частоты.
  • 6Н9С — низкочастотный двойной триод c высоким коэффициентом усиления, с октальным цоколем, аналог 6SL7. После снятия с производства выпускался аналог в «пальчиковом» корпусе 6Н2П. Предназначен для усиления сигналов высокой[] частоты. Применяется в телевизионной и приёмно-передающей аппаратуре.
  • 6Н1П — двойной миниатюрный низкочастотный триод, функциональный аналог 6Н8С и 6DJ8. Отличается более высоким током накала. Производились импульсные версии 6Н1П-И с повышенной предельной эмиссией электронов на катоде.
  • 6Н2П — двойной миниатюрный низкочастотный триод с высоким коэффициентом усиления, функциональный аналог 6Н9С. Электрический аналог широко распространенной лампы 12AX7, но несовместим с ней по разводу электрических выводов.
  • 6Н3П — двойной миниатюрный высокочастотный триод. Широко применялся в отечественных гражданских радиоприёмниках — на 6Н3П строились блоки преобразования частоты УКВ диапазона.
  • 6Н23П — двойной миниатюрный триод, функциональный аналог ECC88. Предназначен для широкополосного усиления напряжения высокой частоты, схем промышленной автоматики.
  • 6Н6П, 6Н30П — двойные миниатюрные триоды средней мощности. Предназначены для усиления низкой частоты и работы в импульсных схемах, а также в двухтактных выходных каскадах УНЧ малой мощности. 6Н30П — вероятно, единственная из советских ламп, не имеющих зарубежных аналогов, которая используется в современных зарубежных промышленных изделиях.
  • 6Н17Б — двойной малогабаритный триод малой мощности.

Устройство

Вакуумный диод – самая простая
электронная лампа в виде стеклянного или металлокерамического баллона без
воздуха. В емкость с вакуумом размещаются 2 электрода. У катода форма цилиндра,
он покрывается оксидом бария, стронция или кальция, увеличивающих количество
электродов, испускаемых при нагревании. Анод изготавливается овальной или
круглой формы, устанавливается на одну ось с катодом.

Выводы электродов выводятся сквозь стенки баллона. Если емкость металлокерамическая, в ней сверлятся отверстия, в которые впаиваются бусинки из стекла. В баллоне из стекла выводы впаиваются в основной материал. У анода один вывод. Если катодом служит нить какала, то выводов два (от каждого конца). При встраивании подогревного катода выводов три (2 от нити, один – от вещества, выделяющего электроны).

Электровакуумный диод тоже лампа электронного типа, по строению мало отличающаяся от вакуумного варианта. Основная особенность – строение катода. В электровакуумных моделях он прямой, W-образный или V-образный. При использовании двух последних вариантов удлиняется нить накала.

Форма анода вакуумного диода –
прямоугольник с круглыми углами. Основное преимущество – одинаковое расстояние
любой точки поверхности до минусового электрода. Для отвода избытка тепла анод
может быть оснащен «крылышками». Чтобы увеличить удобство использования, такие
лампочки оснащаются цоколем, изготовленным из диэлектрика, со штырьками,
обеспечивающими контакт с ламповой панелью.

Принцип работы

Работа
вакуумного диода
основана на отсутствии в баллоне воздуха. Вакуум способствует отделению
электронов от катода после подачи на него напряжения и достижения определенного
уровня нагрева.

Далее:

  1. Заряженные частицы образуют облако.
  2. Частицы, имеющие небольшую скоростью, возвращаются на поверхность минусового электрода.
  3. После подключения к напряжению плюсового электрода электроны, имеющие большую скорость, перемещаются к нему.
  4. в процессе формирования ускоряющего поля поток частиц от минуса к плюсу увеличивается.
  5. при объеме электронов, близком к предельному значению эмиссии, электроток стабилизируется (это явление называется насыщением).

Электронное облако стабилизируется при достижении
определенного уровня температуры. На минусовой электрод возвращается такое же
количество частиц, какое отделилось.

При подключении анода к отрицательному
выводу источника питания, а катода – к положительному, электроны, которые выделяет
катод, использовать невозможно. Их скорость небольшая, положительно заряженный минусовой
электрод их притягивает. Те отрицательные частицы, которые создают облако и
имеют большую скорость, отталкивает анод по причине отрицательного заряда.

Статические характеристики триода

В триоде при
постоянной температуре катода анодный
ток зависит одновременно от напряжений
на сетке и на аноде лампы.

I
a

= f
(Ua
;
U
c)

При
наличии двух переменных величин нельзя
выявить влияние каждой из них в отдельности
на изменение анодного тока. Поэтому
рассматривают зависимость анодного
тока или только от изменения напряжения
на сетке при постоянном анодном напряжении
или только от изменения анодного
напряжения при неизменном напряжении
на сетке. Соответственно этому различают
два вида характеристик анодного тока:
анодно-сеточные и анодные.

Анодно-сеточными
характеристиками

называют графики зависимости анодного
тока от напряжения на сетке лампы при
постоянном анодном напряжении.

I
a

= f
(
U
c);

Ua
=const.

Для
изучения свойств лампы необходимо иметь
несколько характеристик – семейство
характеристик. Семейство анодно-сеточных
характеристик снимается при различных
анодных напряжениях, однако для каждой
данной характеристики анодное напряжение
остается неизменным. По анодно-сеточной
характеристике можно определить величину
анодного тока для любого значения
сеточного напряжения. На рис. 2 приведено
семейство из трех характеристик. При
увеличении анодного напряжения
характеристика сдвигается влево
параллельно самой себе, так как при
большем анодном напряжении величина
анодного тока для каждого значения
сеточного напряжения увеличится. При
уменьшении анодного напряжения
характеристика расположится правее,
так как при меньшем анодном напряжении
величина анодного тока при одинаковых
значениях напряжения сетки будет меньше.

Рис.
2.

Анодные
характеристики

дают представление об изменении анодного
тока в зависимости от анодного напряжения
при неизменном значении напряжения на
сетке:

I
a

= f
(Ua);
Uc
=
const.

Каждая анодная
характеристика строится при постоянном
напряжении на сетке. Несколько таких
характеристик образуют семейство
анодных характеристик (рис. 3).

Рис.
3.

Характеристики
при отрицательных сеточных напряжениях
располагаются правее начала координат,
так как для получения даже ничтожно
малого анодного тока к аноду необходимо
приложить положительное напряжение
определенной величины, компенсирующее
отрицательный потенциал сетки. При
положительных напряжениях на сетке
анодный ток уже имеется при нулевом
анодном напряжении и чем больше сеточное
напряжение, тем больше будет и анодный
ток. Объясняется это тем, что между
сеткой и катодом образуется ускоряющее
поле, увеличивающее скорость электронов,
и электроны, пролетая между витками
сетки, достигают анода. Когда сетка
соединена с катодом, то она имеет нулевой
потенциал, и в этом случае триод можно
считать диодом. Анодная характеристика
триода при нулевом потенциале на сетке
идет из начала координат.

История

Изобретён и запатентован в 1906 году американцем Ли де Форестом. Обычно используется для усиления, генерации и преобразования электрических сигналов.

Наименование триод в 1950—1970 годах, во времена становления полупроводниковой электроники, также употреблялось и для транзисторов — по числу выводов, часто с уточнением: полупроводниковый триод, или с указанием материала: (германиевый триод, кремниевый триод).

Триоды были первыми устройствами, которые использовались для усиления электрических сигналов в начале XX века.

Нелинейность вольт-амперной характеристики триода пропорциональна квадратному корню из третьей степени величины тока анода, то есть она имеет более высокую линейность, чем полупроводниковые транзисторы XX века. Благодаря этому вакуумные триоды вносят минимальные в усиливаемый сигнал.

В ходе дальнейшего совершенствования триода были разработаны многосеточные лампы: тетрод, лучевой тетрод, пентод и другие.

История

Триод («аудион») Ли де Фореста, 1906 год

Первая советская радиолампа. Экспозиция Музея нижегородской радиолаборатории

В 1883 году Эдисон пытался увеличить срок службы осветительной лампы с угольной нитью накаливания в вакууммированной стеклянной колбе. С этой целью в одном из опытов он ввёл в вакуумное пространство лампы металлическую пластину с проводником, выведенным наружу. При экспериментах он заметил, что вакуум проводит ток, причём только в направлении от электрода к накалённой нити и только тогда, когда нить накалена. Это было неожиданно для того времени — считалось, что вакуум не может проводить ток, так как в нём нет носителей заряда. Изобретатель не понял тогда значение этого открытия, но на всякий случай запатентовал.

Благодаря этим экспериментам Эдисон стал автором фундаментального научного открытия, которое является основой работы всех электронных ламп и всей электроники до создания полупроводниковых приборов. Впоследствии это явление получило название термоэлектронная эмиссия.

В 1905 году этот «эффект Эдисона» стал основой британского патента Джона Флеминга на «прибор для преобразования переменного тока в постоянный» — первую электронную лампу, открывшую век электроники.

В 1906 году американский инженер Ли де Форест ввёл в лампу третий электрод — управляющую сетку (и, таким образом, создал триод). Такая лампа могла уже работать в качестве усилителя тока, а в 1913 году на её основе был создан автогенератор. В 1921 году А. А. Чернышёвым предложена конструкция цилиндрического подогревного катода (катода косвенного накала).

Миниатюрные стержневые пентоды производства СССР

Вакуумные электронные лампы стали элементной базой компьютеров первого поколения. Главным недостатком электронных ламп было то, что устройства на их основе были довольно громоздкими, а при большом количестве ламп, например, в первых ЭВМ, частые единичные выгорания приводили к значительному простою на ремонт. Причем в логических схемах не всегда можно было вовремя обнаружить поломку, машина могла продолжать работать выдавая ошибочные результаты. Для питания ламп необходимо было подводить дополнительную энергию для нагрева катода (именно он испускает электроны, необходимые для тока в лампе), а образованное ими тепло отводить. Например, в первых компьютерах использовались тысячи ламп, которые размещались в металлических шкафах и занимали много места. Весила такая машина десятки тонн. Для её работы требовалась электростанция. Для охлаждения машины использовали мощные вентиляторы в связи с выделением лампами огромного количества тепла.

Пик расцвета («золотая эра») ламповой схемотехники пришёлся на 1935—1950 годы.

История

Изобретён и запатентован в 1906 году американцем Ли де Форестом. Обычно используется для усиления, генерации и преобразования электрических сигналов.

Наименование триод в 1950—1970 годах, во времена становления полупроводниковой электроники, также употреблялось и для транзисторов — по числу выводов, часто с уточнением: полупроводниковый триод, или с указанием материала: (германиевый триод, кремниевый триод).

Триоды были первыми устройствами, которые использовались для усиления электрических сигналов в начале XX века.

Нелинейность вольт-амперной характеристики триода пропорциональна квадратному корню из третьей степени величины тока анода, то есть она имеет более высокую линейность, чем полупроводниковые транзисторы XX века. Благодаря этому вакуумные триоды вносят минимальные в усиливаемый сигнал.

В ходе дальнейшего совершенствования триода были разработаны многосеточные лампы: тетрод, лучевой тетрод, пентод и другие.

Вакуумный триод

Вакуумные триоды до сих пор находят применение в различных радиосхемах. Однако они имеют ряд существенных недостатков. У них небольшой коэффициент усиления li ( обычно несколько десятков единиц), небольшое внутреннее сопротивление и сравнительно большая емкость между анодом и сеткой. Последние два недостатка заметно проявляются при работе на высоких частотах.

Пентод, лучевой тетрод и их вольт-амперная характеристика.| Основные схемы включения электронных ламп.

Вакуумный триод, а также и остальные типы ламп, рассматриваемые как элементы электрической цепи, являются активными трехполюсниками. Поэтому входные и выходные цепи их должны иметь общую точку, объединенную с каким-либо из электродов. На рис. 1 — 10 приведены три возможные схемы включения триодов.

Вакуумный триод, выполняющий функции замкнутого ключа может работать как в линейном режиме, без сеточных токов, так и в нелинейном, обусловленном использованием токов сетки. Преимуществом линейного режима является высокая стабильность анодного тока при значительном разбросе параметров ламп. Преимущество нелинейного режима заключается в стабилизирующем действии сеточного тока на величину анодного тока при колебаниях входного напряжения в известных пределах. Наиболее заметный недостаток триггера, работающего без сеточных токов, выявляется при осциллографировании перепадов напряжения на выходе триггера. Вершины прямоугольных импульсов, соответствующие отсечке тока, получаются на осциллограмме в виде чистых прямых линий, тогда как вершины, соответствующие открытому состоянию триода, могут быть искажены наложением следов срабатываний предшествующих каскадов счетной ( или делительной) цепи.

И вакуумный триод и транзистор служат для усиления электрических колебаний, но физические процессы в них различны.

Для вакуумных триодов статическая крутизна анодной характеристики 5 колеблется в зависимости от типа лампы в пределах от 1 до 5 ма на 1 в. Крутизна усилительного каскада уменьшается с увеличением внешнего анодного сопротивления.

Упрощенная принципиальная схема однокаскадного импульсного передатчика.| Схема транзисторного 3F в передатчике радиорелейной аппаратуры типа ДМ-400 / 6.

Помимо вакуумных триодов СВЧ в передатчиках все шире используются полупроводниковые приборы.

Аналогия между вакуумным триодом и канальным транзистором в принципе управления и статических характеристиках дает возможность считать электронно-дырочный переход, регулирующий движение электронов между электродами б4 и б2, аналогом сетки. Электрод б2 может рассматриваться как анод канального транзистора.

Однако между вакуумным триодом и транзистором имеются большие различия.

Триггеры на вакуумных триодах насчитывают более сорока лет существования.

При описании работы вакуумного триода в триггерной схеме удобно основываться на статических сеточных характеристиках анодного тока триода. Характеристики выражают зависимость анодного тока га от напряжения на сетке относительно катода иг при постоянных значениях напряжения анод-катод Уя. В усилительном режиме триод практически работает без амплитудных искажений в том случае, если рабочая точка ( соответствующая значениям анодного тока и напряжения на сетке при отсутствии сигнала) находится в области линейной зависимости ia / ( ис) и амплитуда сигнала достаточно мала, чтобы обеспечить работу в пределах этой области.

В отличие от вакуумных триодов в тиратроне сетка не может управлять аиодным током. Но, изменяя величину отрицательного потенциала на ней, можно управлять зажиганием тиратрона. Чем больше отрицательное напряжееие на сетке, тем при более высоком анодном напряжении зажигается тиратрон. После зажигания изменение потенциала сетки не влияет а анодный ток. Это объясняется тем, что после зажигания отрицательно заряженная сетка притягивает к себе положительные ионы. Они окружают сетку и нейтрализуют ее действие.

В отличие от вакуумных триодов в тиратроне сетка не управляет анодным током. Но, изменяя ее отрицательный потенциал, можно управлять зажиганием тиратрона. Чем больше отрицательное напряжение на сетке, тем при более высоком анодном напряжении зажигается тиратрон. После зажигания изменение потенциала сетки не влияет на анодный ток вследствие того, что отрицательно заряженная сетка притягивает положительные ионы, которые окружают сетку и нейтрализуют ее действие. А при положительном напряжении сетки ее окружают электроны.

И. Устройство тиратрона тлею-щего разряда.

Двойные триоды

Двойной триод с объединённым катодом. Условное графическое обозначение. а1 — анод первого триода, а2 — анод второго триода, с1 — сетка первого триода, с2 — сетка второго триода, к — катод, п — подогреватель катода.

Российский двойной триод 6Н2П

Комбинированные лампы, конструктивно представляющие сборки двух и более индивидуальных триодов, заключенных в общую вакууммированную колбу, называют двойными триодами. Обычно оба триода имеют раздельные и изолированные друг от друга системы электродов — анодов, сеток и катодов. Существуют типы сдвоенных триодов с общим катодом. Практически всегда цепи накала обоих катодов электрически соединены внутри баллона и из баллона выведено только два вывода накала.

В основном, двойные триоды — приборы, предназначенные для работы в усилителях звуковых частот (УНЧ), схемах промышленной автоматики, переключательных схемах. Но существуют и высокочастотные сдвоенные триоды, например, 6Н3П.

На закате ламповой эры, с целью повысить интеграцию ламповых схем, выпускались строенные триоды (конструктив «компактрон» (англ. compactron), где в одном баллоне совмещались три триода, однако эти лампы, в отличие от двойных триодов, не получили массовое распространение. В то время в промышленности наиболее широко применялись маломощные двойные триоды 6Н2П, 6Н1П, 12AX7, 6SN7, 6SL7, другие.

Применение сдвоенных триодов улучшало массогабаритные характеристики электронной аппаратуры.

Отечественные двойные триоды

  • 1Н3С — двойной триод, малой мощности, с общим катодом прямого накала. Предназначен для использования в выходных каскадах УНЧ (до 1,5 Вт), работающих в классе В, что позволяет работать с батарейным питанием.
  • 6Н5С, 6Н13С — двойной низкочастотный мощный триод, с октальным цоколем, аналог 6AS7. Предназначен для работы в стабилизаторах напряжения. Может эффективно использоваться в высококачественных УНЧ; на базе современных 6Н13С российского производства строится большинство современных бестрансформаторных ламповых усилителей.
  • 6Н7С — двойной низкочастотный триод с общим катодом, с октальным цоколем, аналог 6N7. Предназначался для дифференциальных каскадов усилителей НЧ, а также для оконечных каскадов УНЧ, работающих в классе В.
  • 6Н8С — низкочастотный двойной триод, c октальным цоколем, аналог 6SN7 — наиболее распространённой лампой в современной аппаратуре. Предназначен для усиления сигналов низкой частоты.
  • 6Н9С — низкочастотный двойной триод c высоким коэффициентом усиления, с октальным цоколем, аналог 6SL7. После снятия с производства выпускался аналог в «пальчиковом» корпусе 6Н2П. Предназначен для усиления сигналов высокой частоты. Применяется в телевизионной и приёмно-передающей аппаратуре.
  • 6Н1П — двойной миниатюрный низкочастотный триод, функциональный аналог 6Н8С и 6DJ8. Отличается более высоким током накала. Производились импульсные версии 6Н1П-И с повышенной предельной эмиссией электронов на катоде.
  • 6Н2П — двойной миниатюрный низкочастотный триод с высоким коэффициентом усиления, функциональный аналог 6Н9С. Электрический аналог широко распространенной лампы 12AX7, но несовместим с ней по разводу электрических выводов.
  • 6Н3П — двойной миниатюрный высокочастотный триод. Широко применялся в отечественных гражданских радиоприёмниках — на 6Н3П строились блоки преобразования частоты УКВ диапазона.
  • 6Н23П — двойной миниатюрный триод, функциональный аналог ECC88. Предназначен для широкополосного усиления напряжения высокой частоты, схем промышленной автоматики.
  • 6Н6П, 6Н30П — двойные миниатюрные триоды средней мощности. Предназначены для усиления низкой частоты и работы в импульсных схемах, а также в двухтактных выходных каскадах УНЧ малой мощности. 6Н30П — вероятно, единственная из советских ламп, не имеющих зарубежных аналогов, которая используется в современных зарубежных промышленных изделиях.
  • 6Н17Б — двойной малогабаритный триод малой мощности.

История команды

Команда «Триод и диод», состав которой первоначально включал в себя студентов смоленского филиала Московского энергетического института, образовалась в 2004 году. Первоначально это был студенческий театр эстрадных миниатюр.

Со временем коллектив стал посещать всероссийские и международные фестивали. К 2005 году побывал не менее чем на 20 подобных крупных форумах. Завоевал главный приз на фестивале «Курская аномалия», гран-при конкурса «Кофемолка» в Чебоксарах, кубок на юмористическом форуме «Орлиное гнездо» в Орле, победу на «Шумном балагане» в Брянске.

На этом не остановилась команда «Триод и диод». Состав заматерел, понял, что готов к выступлениям на самом высоком уровне. В 2004 году смоляне впервые отправились на фестиваль КВН в Сочи.

Двойные триоды

Двойной триод с объединённым катодом. Условное графическое обозначение. а1 — анод первого триода, а2 — анод второго триода, с1 — сетка первого триода, с2 — сетка второго триода, к — катод, п — подогреватель катода.

Российский двойной триод 6Н2П

Комбинированные лампы, конструктивно представляющие сборки двух и более индивидуальных триодов, заключенных в общую вакууммированную колбу, называют двойными триодами. Обычно оба триода имеют раздельные и изолированные друг от друга системы электродов — анодов, сеток и катодов. Существуют типы сдвоенных триодов с общим катодом. Практически всегда цепи накала обоих катодов электрически соединены внутри баллона и из баллона выведено только два вывода накала.

В основном, двойные триоды — приборы, предназначенные для работы в усилителях звуковых частот (УНЧ), схемах промышленной автоматики, переключательных схемах. Но существуют и высокочастотные сдвоенные триоды, например, 6Н3П.

На закате ламповой эры, с целью повысить интеграцию ламповых схем, выпускались строенные триоды (конструктив «компактрон» (англ. compactron), где в одном баллоне совмещались три триода, однако эти лампы, в отличие от двойных триодов, не получили массовое распространение. В то время в промышленности наиболее широко применялись маломощные двойные триоды 6Н2П, 6Н1П, 12AX7, 6SN7, 6SL7, другие.

Применение сдвоенных триодов улучшало массогабаритные характеристики электронной аппаратуры.

Отечественные двойные триоды

Основная статья: Двойные электровакуумные триоды производства СССР

  • 1Н3С — двойной триод, малой мощности, с общим катодом прямого накала. Предназначен для использования в выходных каскадах УНЧ (до 1,5 Вт), работающих в классе В, что позволяет работать с батарейным питанием.
  • 6Н5С, 6Н13С — двойной низкочастотный мощный триод, с октальным цоколем, аналог 6AS7. Предназначен для работы в стабилизаторах напряжения. Может эффективно использоваться в высококачественных УНЧ; на базе современных 6Н13С российского производства строится большинство современных бестрансформаторных ламповых усилителей.
  • 6Н7С — двойной низкочастотный триод с общим катодом, с октальным цоколем, аналог 6N7. Предназначался для дифференциальных каскадов усилителей НЧ, а также для оконечных каскадов УНЧ, работающих в классе В.
  • 6Н8С — низкочастотный двойной триод, c октальным цоколем, аналог 6SN7 — наиболее распространённой лампой в современной аппаратуре. Предназначен для усиления сигналов низкой частоты.
  • 6Н9С — низкочастотный двойной триод c высоким коэффициентом усиления, с октальным цоколем, аналог 6SL7. После снятия с производства выпускался аналог в «пальчиковом» корпусе 6Н2П. Предназначен для усиления сигналов высокой[] частоты. Применяется в телевизионной и приёмно-передающей аппаратуре.
  • 6Н1П — двойной миниатюрный низкочастотный триод, функциональный аналог 6Н8С и 6DJ8. Отличается более высоким током накала. Производились импульсные версии 6Н1П-И с повышенной предельной эмиссией электронов на катоде.
  • 6Н2П — двойной миниатюрный низкочастотный триод с высоким коэффициентом усиления, функциональный аналог 6Н9С. Электрический аналог широко распространенной лампы 12AX7, но несовместим с ней по разводу электрических выводов.
  • 6Н3П — двойной миниатюрный высокочастотный триод. Широко применялся в отечественных гражданских радиоприёмниках — на 6Н3П строились блоки преобразования частоты УКВ диапазона.
  • 6Н23П — двойной миниатюрный триод, функциональный аналог ECC88. Предназначен для широкополосного усиления напряжения высокой частоты, схем промышленной автоматики.
  • 6Н6П, 6Н30П — двойные миниатюрные триоды средней мощности. Предназначены для усиления низкой частоты и работы в импульсных схемах, а также в двухтактных выходных каскадах УНЧ малой мощности. 6Н30П — вероятно, единственная из советских ламп, не имеющих зарубежных аналогов, которая используется в современных зарубежных промышленных изделиях.
  • 6Н17Б — двойной малогабаритный триод малой мощности.

Устройство

Обозначение на схемах диода с катодом непрямого накала.

Электровакуумный диод представляет собой сосуд (баллон), в котором создан высокий вакуум. В баллоне размещены два электрода — катод и анод. Катод прямого накала представляет собой прямую или W-образную нить, разогреваемую током накала. Катод косвенного накала — длинный цилиндр или короб, внутри которых уложена электрически изолированная спираль подогревателя. Как правило, катод вложен внутрь цилиндрического или коробчатого анода, который в силовых диодах может иметь рёбра или «крылышки» для отвода тепла. Выводы катода, анода и подогревателя (в лампах косвенного накала) соединены с внешними выводами (ножками лампы).

Победа в Высшей лиге

В Высшей лиге КВН «Триод и диод» за несколько лет стал одной из самых смешных и узнаваемых команд. Сформировался крепкий состав — капитан Максим Киселев, Александр Марченков, Елизавета Кажанова, Максим Шишканов, Сергей Алексеев, Михаил Масленников. Но до решающей победы чего-то или кого-то постоянно не хватало.

Оказалось, этим кем-то был белорусский шоумен Андрей Скороход. У него уже был опыт выступления в белорусском «Камеди клаб» и малоизвестной команде «Потерянные мысли». Но к 2010 году и тот и другой проект распались. Скороход остался в Минске без работы и без денег.

Случай подвернулся неожиданно. Знакомый попросил помочь со сценарием смоленским КВНщикам. Буквально через неделю после совместного сотрудничества «Триод и диод» предложил Скороходу присоединиться к ним на постоянной основе.

В 2012 году он стал одной из главных звезд сезона Высшей лиги.

По турнирной дистанции смоляне победоносно шли до полуфинала, где уступили женскому коллективу «Раисы» из Иркутска. Но только за тем, чтобы в финале выдать свое лучшее выступление.

Набрав 17,7 балла, смоляне на полпункта обошли ближайших преследователей, став чемпионами Высшей лиги КВН. Правда, после этого, по правилам клуба, свою карьеру в этом шоу они вынуждены были прекратить.

Современное состояние

В настоящее время вакуумные триоды практически полностью вытеснены полупроводниковыми транзисторами. Исключение составляют области, где требуется преобразование сигналов с частотой порядка сотен МГц — ГГц большой мощности при небольшом числе активных компонентов, а габариты и масса не столь критичны, — например, в выходных каскадах радиопередатчиков. Мощные радиолампы имеют сравнимый с мощными транзисторами КПД; надёжность их также сравнима, но срок службы значительно меньше. Маломощные триоды имеют невысокий КПД, так как на накал тратится значительная часть потребляемой каскадом мощности, порой более половины от общего потребления лампы.

Также на базе ламп всё ещё делается некоторая часть высококачественной акустической усилительной аппаратуры классов Hi-Fi и Hi-End, несмотря на то, что фиксируемый приборами у почти любых современных транзисторных приборов во много раз меньше, чем у ламповых.[источник не указан 1800 дней] Несмотря на высокую стоимость, такая аппаратура весьма популярна у музыкантов и аудиофилов благодаря её так называемому более «тёплому», «ламповому» звучанию, которое якобы воспринимается человеком как более естественное и близкое к тому, что было при записи исходного звука. Триод — простая по конструкции лампа, имеющая при этом высокий коэффициент усиления, поэтому она хорошо вписывается в один из принципов построения альтернативной звукотехники — принцип минимализма, то есть предельной простоты аппаратуры.

Принцип действия триодного тиристора

Когда на катод триодного тиристора подается отрицательный потенциал, а на его анод положительный, то переходы J1 и J3 имеют прямое смещение, а переход J2 — обратное. Поскольку переход J2 имеет обратное смещение, то он ведет себя как разомкнутая цепь до тех пор, пока не появится достаточно большой подаваемый потенциал, способный преодолеть сопротивление его обедненной области.

Напряжение, подаваемое на триодный тиристор

Когда на триодный тиристор впервые подается какой-то потенциал, то очень малый ток протекает через этот прибор, так как J2 имеет обратное смещение и действует в основном как разомкнутая цепь.
Когда подаваемый потенциал вырастает до значения, при котором сопротивление обедненной области J2 оказывается преодоленным, то триодный тиристор становится очень хорошим проводником и ток, идущий через него, начинает очень быстро нарастать. Потенциал, при котором триодный тиристор становится очень хорошим проводником, называется напряжением включения тиристора. Эффект подобного напряжения включения тиристоров четко виден на графике на рисунке ниже, отражающем характерную кривую триодного тиристора. Вертикальная линия отображает значения тока, протекающего через прибор, а горизонтальная линия — значения подаваемого напряжения.

Характерная кривая триодного тиристора

Как видно из графика, линия тока, протекающая через прибор, направлена почти вертикально вверх, когда достигается напряжение включения тиристора. Для того, чтобы предотвратить повреждение триодного тиристора в результате появления столь большого тока, этот прибор должен иметь либо какую-то нагрузку, либо подаваемый потенциал должен быть уменьшен.

Потенциал, который необходим для того, чтобы триодный тиристор стал хорошим проводником, может быть очень небольшим по сравнению с напряжением включения тиристора. Величина тока, протекающего через триодный тиристор в то время, когда подаваемый потенциал минимален, называется удерживающим током триодного тиристора. Триодный тиристор будет оставаться хорошим проводником до тех пор, пока ток, протекающий через него, не сравняется или не станет выше необходимого удерживающего тока.
Величина напряжения, при котором происходит включение тиристора при прямом смещении, а триодный тиристор становится хорошим проводником, если контролировать, подавая положительный потенциал на материал p-типа обратно смещенного перехода (J2).

Этот материал P-типа называется затвором. Потенциал, подаваемый на затвор, называется потенциалом затвора. Когда на затвор подается положительный потенциал, то обратное смещение p-n перехода будет преодолено. А так как значение напряжения включения триодного тиристора в этом случае уменьшится, то сам прибор станет хорошим проводником при более низком напряжении, подаваемом с источника питания.

Маркировка приборов

Электровакуумные диоды маркируются по такому принципу, как и остальные лампы:

  1. Первое число обозначает напряжение накала, округлённое до целого.
  2. Второй символ обозначает тип электровакуумного прибора. Для диодов:
    • Д — одинарный диод.
    • Ц — кенотрон (выпрямительный диод)
    • X — двойной диод, то есть содержащий два диода в одном корпусе с общим накалом.
      • МХ — механотрон-двойной диод
      • МУХ — механотрон-двойной диод для измерения углов
  3. Следующее число — это порядковый номер разработки прибора.
  4. И последний символ — конструктивное выполнение прибора:
    • С — стеклянный баллон диаметром более 24 мм без цоколя либо с октальным (восьмиштырьковым) пластмассовым цоколем с ключом.
    • П — пальчиковые лампы (стеклянный баллон диаметром 19 или 22,5 мм с жёсткими штыревыми выводами без цоколя).
    • Б — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 10 мм.
    • А — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 6 мм.
    • К — серия ламп в керамическом корпусе.

Если четвертый элемент отсутствует, то это говорит о присутствии металлического
корпуса!

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации