Андрей Смирнов
Время чтения: ~21 мин.
Просмотров: 1

Тепловизор для охоты своими руками

Сферы применения

Применение тепловизоров в военном деле

Область применения связана со способностью преобразовывать тепловое излучение в спектр, который воспринимает человеческий глаз, обнаруживать самые незначительные объекты, излучающие электромагнитные волны. Если определить интенсивность излучения, то можно рассчитать температуру исследуемого объекта и предположить, что это. При помощи аппарата определяется разница температур, при отсутствии контакта с объектами, они не реагируют на помехи, не могут быть обнаружены системами слежения, имеют большую дальность действия: от 100 м до 3 км. Эти принципы работы позволяют применять их в самых различных областях.

В военной технике

Новая современная техника поступает сегодня на вооружение, имея в своем арсенале встроенные тепловизорные камеры. Их использование позволяет вести боевые действия в условиях плохой видимости, обнаруживать противника и технику. Помимо этого, устройства устанавливаются на беспилотных самолетах и на технике, управляемой дистанционно.

Возможность «видеть» объекты в ночное время – основной показатель, имеющий значение приборов в военной сфере. Принцип успешной работы аппаратуры заключается в четком обнаружении теплового излучения. Для армии производятся специальные аппараты в виде биноклей, прицелов для оружия, ими оснащаются системы наведения. Они оснащены мощными оптическими механизмами, что увеличивает возможности военных тепловизоров многократно.

В морских приборах

Морской или речной порт является сложным транспортным узлом, и его безопасность может обеспечить только самая совершенная охранная аппаратура. Морские тепловизоры предназначены для обеспечения безопасности водных и прибрежных объектов: портов, причалов, складов, речных вокзалов.

Охота

Тепловизор для охоты – хорошее подспорье для тех, кто увлечен выслеживанием добычи

Использование прибора позволяет отслеживать самого осторожного зверя в любое время суток независимо от погоды и видимости

Обследование зданий

С помощью тепловизорных датчиков есть возможность обследовать любое сооружение, чтобы определить место утечки тепла. Результаты исследования станут весомым аргументом для того чтобы доказать плохое качество теплоизоляции стен. Для коммунальщиков применение тепловизора для обследования зданий – хорошее средство правильно определить проблемные зоны и направить силы на утепление конкретных мест.

Применение тепловизора в медицине

Медицина

Использование тепловизора в медицине производилось еще во времена СССР. Приборы позволяют распознать характер заболевания, а также увидеть инфицированного человека среди здоровых по температуре тела, характерной для той или иной болезни.

Обследование с помощью специальной аппаратуры, реагирующей на электромагнитные волны, помогает обнаружить воспалительный процесс с точностью до микрона и найти область патологии. Использование аппарата позволит определить, болен пациент или здоров, увидеть источник заболевания, поставить диагноз.

Чрезвычайные ситуации и АСР

Пожарные, вооруженные прибором, могут увидеть наиболее безопасный путь выхода из огня, минуя самые горячие участки. Спасатели, вооруженные аппаратом, в самых трудных ситуациях имеют возможность найти человека в зоне плохой видимости.

Помимо перечисленных сфер, где применение измерительной тепловой техники – необходимое условие успешной деятельности, данные приборы используются и в других областях промышленности и в повседневной жизни людей. Поэтому сегодня производится много их разновидностей, и выбор тепловизора зависит только от цели его использования.

Технические характеристики устройства свидетельствуют о том, можно ли использовать его как универсальный или его специализация более узкая. Границы температур, на которые ориентирован прибор – главный критерий при выборе. Чтобы не допустить ошибку при покупке, необходимо учитывать, что температурный диапазон устройства должен быть больше температуры исследуемого объекта как минимум на 25%.

Устройство и характеристики

Конструкция большинства тепловизоров ограничивается наличием следующих элементов:

• Корпус с элементами управления, например, кнопками.

• Объектив с защитной крышкой и органом фокусировки изображения.

Последний, в большинстве случаев, имеет вид поворотного кольца, как на фотоаппаратах.

• Датчик (матрица).

• Дисплей.

• Электронная система и программное обеспечение.

• Встроенная память.

• Система охлаждения матрицы (для моделей с высокой чувствительностью).

Основные характеристики прибора:

• Угол и дальность обзора.

• Параметры матрицы: разрешение, порог температуры, погрешность, четкость изображения.

• Функциональность: наличие подсветки, лазерный указатель, возможность цифрового масштабирования, наличие и объем встроенной памяти для хранения результатов измерений, возможность переноса данных на ПК.

К тепловизионному оборудованию применяются следующие государственные стандарты:

• ГОСТ Р 8.619–2006 – методика проверки приборов.

• ГОСТ 53466-2009 – технические требования к медицинским тепловизорам.

Материал

Корпус большинства моделей тепловизоров изготавливается из ударопрочного пластика с резиновыми накладками для удобства удержания, является либо влагозащищенным, либо полностью водонепроницаемым.

Дешевые модели, как правило, вовсе не имеют серьезной защиты от негативного воздействия окружающей среды.

Объективы в большинстве случаев изготавливают из германия с тонкопленочным покрытием, оптимизирующим пропускание света.

Линзы из этого материала работаю в диапазонах длин волн 3 – 5 и 8 – 14 микрон.

Оптическое стекло не используется по причине его неспособности пропускать инфракрасное излучение в требуемом диапазоне.

Однако, при работе с прибором следует учитывать, что повышение температуры влияет на прозрачность германия.

Если повысить температуру до 100°, этот показатель упадет вдвое от изначального.

Размеры и вес

Габариты и вес тепловизоров зависят от их типа, количества дополнительного функционала и оборудования, а также размеров матрицы и наличия системы охлаждения.

Так размеры простеньких переносных моделей сравнимы с фотоаппаратом, их вес начинается от 500 – 600 г до 2 кг.

Класс защиты тепловизоров

Практически все тепловизоры имеют защищенный от воздействия негативных факторов корпус, степень защиты которого определяется международным стандартом с буквами IP и двумя цифрами.

Первая цифра (от 0 до 6) указывает на защиту от посторонних предметов, а вторая (от 0 до 9) – на устойчивость к воздействию воды.

Например, тепловизор с классом IP67 полностью защищен от проникновения пыли и сохраняет работоспособность даже после кратковременного погружения в воду на глубину до 1 метра.

Разрешающая способность

Важность разрешающей способности инфракрасного датчика кроется в степени детализации изображения:

• Базового уровня: до 160х120 пикселов.

• Профессиональные: 160х120 – 640х480 пикселов.

• Экспертного класса – более 640х480 пикселов.

Калибровка, поверка и погрешность

Измерительный тепловизор, согласно стандартам, принятым в метрологии, проверяется на работоспособность не реже, чем раз в год.

Поверка подразумевает под собой следующие действия:

• Осмотр корпуса прибора, его опробование и проверка во всех режимах работы.

• Замер углового разрешения.

• Проверка диапазона измеряемых температур.

• Определение максимальной температурной чувствительности и неравномерности чувствительности по полю.

• Определение сходимости результатов.

Измерительные тепловизоры должны подвергаться периодической калибровке.

Современные модели оснащаются специальной шторкой, которая надвигается на матрицу.

По ее известной температуре и производится калибровка.

Современные матрицы выполняются в виде терморезисторов, имеют высокое разрешение (вплоть до сотых градуса).

В технических характеристиках измерительных моделей обязательно указывается погрешность (точность), которая, как правило, находится в пределах 2% или 2°.

Мобильный тепловизор для смартфона — на сколько реальны показания

Использовать специальный модуль тепловизора для смартфонов — просто гениальное решение. Это небольшой прибор, который вставляется в разъём и с помощью особого программного обеспечения позволяет превратить обычный смартфон в полноценный тепловизор. По сути, сам модуль содержит всего лишь детектор и аппаратно обеспечение, которое фиксирует тепловую картинку. А специальное программное обеспечение уже показывает эту картинку пользователю.

Тепловизор для смартфона на Android

Небольшой компактный модуль обладает неплохими характеристиками

Модуль тепловизора для смартфона на Андроид внешне выглядит как компактная веб-камера. Она имеет штекер стандарта micro-USB с помощью которого и соединяется с телефоном или планшетом. Наиболее популярным брендом в этой отрасли можно назвать Seek Thermal. Разбег цен на модули довольно большой. В разных регионах и магазинах можно встретить стоимость от 18000 до 22000 рублей. При этом модуль обладает весьма заманчивыми характеристиками, сравнимыми с полноценными тепловизорами. Диапазон температур составляет от -40ºС до 330ºС. Разрешение детектора — 320 на 240 точек. Гаджет позволяет использовать различные цветовые схемы, от градаций серого до полноцветного изображения.

Тепловизор для смартфона на Android

Тепловизор для смартфона на базе iOS

Так выглядит модуль от Flir для iPhone

Уже упомянутая нами компания Seek Thermal производит тепловизоры и для продукции Apple. Но для разнообразия мы посмотрим другую марку — Flir и их продукт — Flir One Gen 3. Стоимость прибора составляет примерно 20000 рублей. Внешне аппарат горазд крупней по своим габаритам, чем изделия от Seek Thermal. Внутри него имеется как детектор температуры, так и отдельная простая камера.

Измерять температуру тепловизор может в диапазоне -20ºС до 120ºС. Точность измерения довольно высокая — 0,1ºС. Разрешение теплового детектора составляет 80 на 60 точек, что несравненно мало. Зато разрешение, способное отобразится на экране имеет уже 1440 на 1080 точек. По заявлениям разработчиков на одном заряде батареи прибор может протянуть до 1 часа.

Тепловизор для смартфона на базе iOS

Как переделать фотоаппарат в тепловизор

Вообще-то, переделывать ничего особо и не придётся. Изначально матрица фотоаппарата воспринимает инфракрасное излучение. Другое дело, что заводы-изготовители ставят в них так называемые тепловые фильтры, которые отражают либо поглощают попадающее на их поверхность ИК-излучение.

По-другому этот фильтр называют тепловое зеркало, в буржуйском исполнении — «hot mirror». В результате воспринимаемый матрицей фотоаппарата спектр становится примерно идентичным тому, что видит человеческий глаз.

Если извлечь из фотоаппарата ИК-фильтр, он начнёт работать как тепловизор. Можно (но не обязательно) установить вместо него фильтр видимого спектра. Как показывает практика, особой роли он не играет и на работу прибора влияния практически не оказывает.

Помимо фотоаппарата, подопытными (или жертвами — как процесс пойдет) для изготовления чудо-девайса могут послужить:

  • смартфон;
  • видеокамера;
  • веб-камера;
  • ИК-датчик.

Описывать технологию их переделки не буду, поскольку это уже совсем другая история. Да и технология доработки сложнее, а затрат — на порядок больше.

Технологии

Все тела, температура которых превышает температуру абсолютного нуля излучают электромагнитное тепловое излучение в соответствии с законом Планка. Спектральная плотность мощности излучения (функция Планка) имеет максимум, длина волны которого на шкале длин волн зависит от температуры. Положение максимума в спектре излучения сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Тела, нагретые до температур окружающего нас мира (-50..+50 градусов Цельсия) имеют максимум излучения в среднем инфракрасном диапазоне (длина волны 7..14 мкм). Для технических целей интересен также диапазон температур до сотен градусов, излучающий в диапазоне 3..7 мкм. Температуры около тысячи градусов и выше не требуют тепловизоров для наблюдения, их тепловое свечение видно невооружённым глазом.

Датчик

Исторически первые тепловизионные датчики для получения изображений были электронно-вакуумными. Наибольшее развитие получила разновидность на основе видиконов с пироэлектрической мишенью. В этих устройствах электронный луч сканировал поверхность мишени. Ток луча зависел от внутреннего фотоэффекта материала мишени под действием инфракрасного излучения. Такие приборы назывались пирикон или пировидикон. Существовали также другие типы сканирующих электронно-вакуумных трубок, чувствительных к тепловому спектру инфракрасного излучения, например термикон и фильтерскан.

На смену электронновакуумным приборам пришли твердотельные. Первые твердотельные датчики были одноэлементными, поэтому для получения двумерного изображения их оснащали электромеханической оптической развёрткой. Такие тепловизоры называются сканирующими. В них система из движущихся зеркал последовательно проецирует на датчик излучение от каждой точки наблюдаемого пространства. Датчик может быть одноэлементным, линейкой чувствительных элементов или небольшой матрицей. Для увеличения чувствительности и снижения инерционности датчики сканирующих тепловизоров охлаждают до криогенных температур. Лучшие охлаждаемые датчики способны реагировать на единичные фотоны и имеют время реакции менее микросекунды.

Современные тепловизоры, как правило, строятся на основе специальных матричных датчиков температуры — болометров. Они представляют собой матрицу миниатюрных тонкопленочных терморезисторов. Инфракрасное излучение, собранное и сфокусированное на матрице объективом тепловизора, нагревает элементы матрицы в соответствии с распределением температуры наблюдаемого объекта. Пространственное разрешение коммерчески доступных болометрических матриц достигает 1280*720 точек. Коммерческие болометры обычно делают неохлаждаемыми для уменьшения цены и размеров оборудования.

Температурное разрешение современных тепловизоров достигает сотых долей градуса Цельсия.

Различают наблюдательные и измерительные тепловизоры. Наблюдательные тепловизоры показывают только градиенты температур объекта. Измерительные тепловизоры позволяют измерить значение температуры заданной точки объекта с точностью до коэффициента излучения (англ.)русск. материала объекта. Измерительные тепловизоры требуют периодической калибровки, для чего зачастую снабжены встроенным устройством для калибровки матрицы, обычно в виде шторки, температура которой точно измеряется. Шторка периодически надвигается на матрицу, давая возможность откалибровать матрицу по температуре шторки.

Оптика

Поскольку обычное оптическое стекло непрозрачно в среднем ИК диапазоне, оптику тепловизоров делают из специальных материалов. Чаще всего это германий, но он дорог, поэтому иногда используют халькогенидное стекло (англ.)русск., селенид цинка. В лабораторных целях оптику также можно делать из некоторых солей, например поваренной соли, также прозрачной в требуемом диапазоне длин волн.

Важные характеристики

Вывод информации в тепловизоре, как уже говорилось, производится на специальный дисплей

И потому очень важно, каков размер экрана, представляющего пользователю необходимые данные. Он должен подчиняться правилу разумного баланса: чтобы не приходилось как вглядываться с лупой в мелкие черточки, так и испытывать проблемы при ходьбе с тепловизором

Размер дисплея зависит, помимо прочего, и от форм-фактора самого сканирующего устройства.

Разрешение инфракрасного детектора

Основные параметры детектора определяются тем, какая болометрическая матрица была использована при его создании. Фактическое разрешение камер, снимающих в инфракрасных лучах, всегда меньше, чем у их «оптических» аналогов. При этом уровень разрешения прямо влияет как на детализацию ближних объектов, так и на возможность сделать точный замер на удаленном объекте. Но чем совершеннее элементная база, тем труднее уместить ее в ограниченное пространство и соблюсти иные требования. Поэтому нельзя рассчитывать, что технически совершенный тепловизор будет дешевым.

Разрешение тепловизора

При всей значимости детектора и оптической матрицы итоговое разрешение тепловизора зависит не только от них. Ведь полученный сигнал должна еще обработать электроника в соответствии с определенными предустановленными алгоритмами. Пространственным разрешением принято называть величину самого мелкого объекта, который способен зафиксировать прибор. Встречается еще и термин «поле зрения», показывающий угол обзора у тепловизионной техники. Чем больше этот показатель, тем более удаленные объекты получится сканировать.

Сменные объективы

Условия инфракрасной съемки в разных местах могут существенно различаться. Естественно, в этих случаях лучше использовать тот объектив, который наилучшим образом подходит под ту или иную ситуацию. Чем больше допускается вариантов сменного окуляра, тем лучше. Следует учитывать, что почти все объективы требуют калибровки под конкретную камеру в подготовленных и контролируемых условиях. Однако встречаются и изделия с установочными файлами; благодаря им подстройка выполняется самостоятельно.

Температурный диапазон

Совершенно очевидно, что на пожаре приходится иметь дело с совсем иными температурами, чем на металлургическом производстве или при сканировании качества теплоизоляции здания. Когда планируется обследовать объекты, чья температура обычно колеблется в районе 200 градусов, нет никакого смысла использовать прибор, рассчитанный на 500 градусов и более. Универсальная техника может контролировать температуры от -50 до +3000 градусов.

Чувствительность

У этого параметра есть и иное название – погрешность при замере в смежных точках. Чтобы было понятнее, скажем так: это наименьший разброс температуры между прилегающими областями, который будет зафиксирован тепловизором. Охотникам и другим людям хватает разницы в 0,02 градуса. Более точный замер требуется только узким специалистам. В производственных условиях высокая чувствительность помогает точнее представлять особенности контролируемого технологического процесса.

Погрешность

Этот показатель обратно пропорционален точности производимых измерений. Стоит понимать, что наряду с технической погрешностью (наблюдающейся только при идеальных условиях съемки), появляется и практическая погрешность. На точность полученных показателей влияет:

  • отражающая способность исследуемых объектов и поверхностей;
  • правильность ориентации прибора и наблюдателя по отношению к цели;
  • правильность изначально заданного коэффициента черноты;
  • шероховатость или гладкость поверхности;
  • пассивность или подвижность объекта;
  • расстояние;
  • оптическая и инфракрасная прозрачность среды;
  • наличие или отсутствие сквозняков (ветра);
  • геометрия обследуемых объектов (на углах показатели температуры завышаются по сравнению с плоскими поверхностями).

Спектральный диапазон

Тут подразумевается длина волн, которые способен обработать прибор. Коротковолновая (3-5 мкм) техника оснащается кремниевыми объективами линзового типа. Для охлаждения используется либо жидкий азот, либо термоэлектрический эффект. В длинноволновую категорию попадают модели, рассчитанные на обработку лучей от 8 до 14 мкм. Объективы делаются из германия, и именно такие приспособления используются в профессиональном сегменте.

Виды тепловизионных приборов

Проверка частного дома на теплопотери ИК-камерой дает возможность провести максимально точные измерения и качественный анализ всех температурных показателей. А после этого, на основе оперативно полученных данных, грамотно выполнить ремонтные работы и/или модернизацию жилого объекта.

Для тепловизионной диагностики задействуют два типа устройств:

  • стационарные тепловизоры;
  • портативные инфракрасные камеры.

Стационарные приборы используют в основном на производственных предприятиях. Они предназначены для регулярной проверки состояния электросетей и постоянного мониторинга сложного техоборудования. Стационарные системы тепловидения выполнены на полупроводниковых матрицах фотоприемников.

При помощи портативных тепловизоров проводят энергоаудит жилых многоквартирных зданий и частных построек. Эти устройства используют как для одноразовой локальной проверки, так и для комплексной диагностики домов.

Переносные тепловизоры разработаны на основе кремниевых неохлаждаемых микроболометров и отлично подходят для применения в труднодоступных местах.


Тепловизионная съемка – эффективный бесконтактный метод обследования, который целесообразно совмещать с применением аэродвери для измерения и контроля воздухопроницаемости зданий

В зависимости от функциональных возможностей различают три вида тепловизоров:

  1. Наблюдательные приборы — обеспечивают только визуализацию различных теплоконтрастных объектов, часто в монохромном виде.
  2. Измерительные устройства — создают графическое изображение в пределах инфракрасного излучения и присваивают каждой точке светового сигнала определенное значение температуры.
  3. Визуальные пирометры — предназначены для бесконтактных температурных измерений и визуализации теплового поля конкретных объектов с целью обнаружить зоны с отклонениями от нормальных показателей.

Цена на хорошие функциональные приемники теплового излучения стартует от 3000 долларов. Их покупка для одноразового обследования дома просто нерентабельна. Многие компании сегодня предлагают строительные тепловизоры в аренду на сутки. Это очень удобная услуга.

Также можно заказать полное профессиональное тепловизионное обследование коттеджа/дома. Средняя стоимость съемки тепловизором составляет 5 долларов за 1 метр квадратный площади частного жилого объекта.

Как правило, стоимость тепловизоров является показателем их функциональности. Но даже бюджетные модели эффективно выполняют инфракрасную диагностику. А потому при выборе стоит ориентироваться на базовые технические характеристики и умение решать конкретные задачи.


Функциональные возможности тепловизионных камер зависят от разрешения инфракрасного датчика, его чувствительности и рабочего диапазона температур

Значительно упростят тепловизионную диагностику дома и различные аксессуары – съемные оптические широкоугольные объективы для рассмотрения общего плана и телеобъективы для детализации критических участков, раскладные штативы, контейнеры для хранения аккумуляторов.

Устройство тепловизора

Тепловизор состоит из нескольких компонентов от качества исполнения которых зависит функциональные возможности прибора:

  • Объектив
  • Матрица
  • Блок электронной обработки сигнала
  • Дисплей
  • Корпус

Объектив

Объектив является важной частью тепловизора. Через линзы объектива инфракрасное тепловое излучение попадает на матрицу тепловизора

Линзы объектива тепловизора покрыты германиевым напылением, которое хорошо пропускает через себя ИК излучение. Оптика тепловизора имеет черный цвет и характерный блеск.

Важным параметром объектива тепловизора является его диаметр, от которого зависит угол обзора прибора. Чем больше диаметр объектива, тем больше угол обзора тепловизора, а чем больше угол обзора, тем удобнее им пользоваться на охоте.

Современные компактные тепловизоры имеют диаметр объектива от 20 мм, более дорогие и качественные приборы имеют диаметр объектива 50 мм и более.

Матрица тепловизора

Объектив тепловизора фокусирует тепловизоре излучение на болометрической матрице. Болометрическая матрица самая важная часть тепловизора и самая дорогая. Матрица состоит из терморезисторов, напыленных на кристаллическую решетку. Под воздействием ИК излучения терморезисторы матрицы меняют сопротивление, в результате на выходе матрицы образуется электрически сигнал, который передается на блок электронной обработки.

Болометрические матрицы, пригодные для использования в тепловизорах в России не производятся, только три страны в промышленном масштабе могут их производить: США, Франция и Китай. Более того, так как матрицы для тепловизоров являются продукцией двойного назначения, которая может применяться как в гражданских, так и военных целях, в этих странах существуют жесткие ограничения на экспорт таких матриц в другие страны.

Важнейшей характеристикой матрицы является ее разрешение. Чем больше разрешение матрицы, тем лучше. Матрица с высоким разрешением дает более высокое качество картинки и лучшую детализацию, а также позволяет различить животное на более далеком расстоянии.

В тепловизорах начального уровня разрешение матрицы обычно составляет 160х120 точек, что позволяет различит животное на расстоянии до 200 метров. Матрицы с разрешением 240х180 точек, позволяют различить животное на расстоянии до 800 метров. Более качественные тепловизоры имеют матрицу с разрешением 384х288 точек, с их помощью можно различить цель на дистанции до 1500 метров.

Блок электронной обработки сигнала

Блок получает электрический сигнал с болометрической матрицы, обрабатывает его и передает на дисплей для отображения. От характеристик блока зависит частота обновления картинки, чем выше частота обновления картинки, тем лучше.

Дисплей и окуляр из оптического стекла

Изображение от электронного блока обработки сигнала поступает на дисплей для отображения. Дисплей представляет собой жидкокристаллическую или светодиодную матрицу небольшого размера. В некоторых тепловизорах для удобства наблюдения имеется окуляр с резиновым наглазником.

В тепловизорах используются дисплеи двух типов: OLED-дисплеи и LCD–дисплеи. LCD-дисплеи имеют серьезный недостаток, они замерзают при температуре ниже -10С. OLED-дисплеи лишены этого недостатка, они дают картинку хорошего качества с высоким показателем яркости, что позволяет использовать их в любое время суток и при любой температуре окружающего воздуха.

Дисплеи тепловизоров различаются своим разрешением, чем разрешение больше, тем лучше.

Корпус

Корпус защищает внутренние компоненты тепловизора от внешних воздействий. Тепловизоры для охоты эксплуатируются в условиях далеких от идеальных, поэтому большинство из них изготавливается с защитой от ударов, пыли и влаги.

Надежная защита корпуса тепловизора защищает его во время охоты. Тепловизор для охоты должен обладать степенью защиты не ниже IP54, в противном случает такой прибор не заслуживает серьезного внимания.

Как правильно пользоваться тепловизором

Позволить себе стать владельцем такого устройства, как тепловизор, может не каждый строитель. Покупают такие устройства организации, занимающиеся оценкой качества выполненных работ по строительству зданий или сооружений. Проверка тепловых потерь тепловизором может быть выполнена как самостоятельно, так и при помощи соответствующих организаций.

Если обратиться в соответствующую организацию, то стоимость исследовательских мероприятий будет зависеть от объема работ и затраченного времени. Определение теплопотерь проводится снаружи зданий и внутри. Проводит определение опытный специалист, используя при этом аппарат определитель потерь тепла. Результаты исследования фиксируются в виде фотоснимков, что способно делать большинство современных приборов. На основании исследований делается заключение с последующим предоставлением отчета.

Важно знать! Для определения теплопотерь зданий подходит не каждый день, что указывается в руководстве к прибору. Для выполнения правильного исследования нужно работы проводить весной или зимой

Причем в день исследования не должно быть солнца, так как солнечный свет значительно искажает показания. Отличия температурных значений внутри и снаружи зданий должны отличаться на значения не менее 15-20 градусов. Если процедура проводится внутри помещения, то лишние предметы удаляются

Для выполнения правильного исследования нужно работы проводить весной или зимой. Причем в день исследования не должно быть солнца, так как солнечный свет значительно искажает показания. Отличия температурных значений внутри и снаружи зданий должны отличаться на значения не менее 15-20 градусов. Если процедура проводится внутри помещения, то лишние предметы удаляются.


Применение тепловизора: что видно на экране прибора

При проведении выявления тепловых потерь опытным специалистом, заказчику не зачем тревожиться о качестве проводимых мероприятий. На основании результатов исследования можно приступить к устранению обнаруженных тепловых потерь.

Необходимость на охоте

Тепловизор – прибор многофункциональный, но, помимо использования в качестве стационарного оборудования (для контроля различных промышленных техпроцессов), наиболее полезна его портативная и переносная версия. В полной мере относится сказанное и к применению прибора на охоте – причём желательным является конструкция аппарата в виде ударопрочного и лёгкого моноблока, обеспечивающая высокую дальность различимой видимости (на профессиональных моделях составляющая 1,5 км и имеющая уровень защиты свыше IP54). Если аппарат будет собран на цифровой, а не аналоговой оптике (с трудом позволяющей отличить горячий костёр от холодного снега на расстоянии уже 100 метров), охотник получит возможность найти зверя или птицу в самых неблагоприятных для обычного человеческого зрения условиях. К таковым можно отнести и тёмное время суток, и густой туман, и дождь, и даже заросли, маскирующие животных, застывших и не двигающихся с места.

Готовый тепловизор

Для тепловизора же излучение тела теплокровных млекопитающих или птиц на мониторе будет выглядеть ярким пятном, что просто не позволит добыче остаться незамеченной.

Примечания

  1. ↑ Криксунов Л. З., Падалко Г. А. Тепловизоры: справочник. — К., 1987.
  2.  (недоступная ссылка). Дата обращения 24 ноября 2015.
  3. Rogalski A. Infrared detectors. Singapore: Gordon and Breach Science Publishers, 2000. 681 c.
  4. Комсомольская правда. . kp.ru (13 августа 2009). Дата обращения 25 февраля 2010.
  5. СпецЛаб.  (недоступная ссылка). operlenta.ru (14 января 2010). Дата обращения 25 февраля 2010.
  6. ↑ Бураковский Т., Гизиньский Е., Саля А. Инфракрасные излучатели: Пер. с польского — Л.: Энергия, 1978.
  7. В. В. Коротаев, Г. С. и др. Основы тепловидения — СПб: НИУ ИТМО, 2012. — 122 с.
  8. A Unique Ultra High Resolution Thermal Imager / Mikron Infrared Inc. Thermal Imaging Division.

Область применения

Контроль утечки энергоресурсов

Поиск мест утечки тепла

Тепловизоры нашли широкое применение как на крупных промышленных предприятиях, где необходим тщательный контроль за тепловым состоянием объектов, так и в небольших организациях, занимающихся поиском неисправностей сетей различного назначения.

Особенно широкое применение тепловизоры получили в строительстве при оценке теплоизоляционных свойств конструкций. Так, к примеру, с помощью тепловизора можно определить области наибольших теплопотерь в доме.

Прибор ночного видения

Тепловизионный прицел для стрелкового оружия. Хорошо видна германиевая линза

Тепловизоры применяются вооружёнными силами в качестве приборов ночного видения для обнаружения теплоконтрастных целей (живой силы и техники) в любое время суток, несмотря на применяемые противником обычные средства оптической маскировки в видимом диапазоне (камуфляж). Тепловизор стал важным элементом прицельных комплексов ударной армейской авиации и бронетехники. Применяются и тепловизионные прицелы для ручного стрелкового оружия, хотя в силу высокой цены широкого распространения они пока не получили.

Спасательные службы

Пожарный с тепловизором

Тепловизоры применяют пожарные и спасательные службы для поиска пострадавших, выявления очагов горения, анализа обстановки и поиска путей эвакуации.

Медицина

Разработки тепловизоров для медицины были начаты в СССР в НПП «Исток» (г. Фрязино Московской обл.) в 1968 году. В 1980-е годы были разработаны методы применения тепловизоров для диагностики различных заболеваний. Выпускаемый в те годы отечественной промышленностью тепловизор ТВ-03 имел широкое применение в различных лечебно-профилактических учреждениях. ТВ-03 был первым тепловизором, нашедшим применение в нейрохирургии.
В современной медицине тепловизор используется для выявления патологий, плохо поддающихся диагностике другими способами, в том числе для обнаружения злокачественных опухолей.

С 2008—2009 гг. тепловизоры начали также активно использовать для выделения из толпы лиц инфицированных вирусом гриппа.

Металлургия и машиностроение

При контроле температуры сложных процессов, характеризующихся неравномерным нагревом, нестационарностью и неоднородностью коэффициента теплового излучения, тепловизоры эффективнее пирометров, поскольку анализ получаемой термограммы или температурного поля осуществляется мощной зрительной системой человека.

Для улучшения достоверности измерения температуры нагреваемых металлов необходимо правильно выбирать спектральный диапазон регистрации теплового излучения. Коэффициент теплового излучения ε металлов, нагреваемых свыше 400 °C, сильно изменяется за счёт окисления их поверхности атмосферным кислородом. Поэтому для регистрации их теплового излучения нужно выбирать участок спектра, в котором влияние неопределённости ε на получаемые показания температуры минимальное.

В тепловизионной технике используют разные участки спектра. При измерении невысоких температур регистрируют тепловое излучение в спектральном участке 8-14 мкм и иногда в области 3-5 мкм. Для измерения температур, превышающих 700 °C, применяют высокотемпературные тепловизоры, использующие матрицы на основе Si или InGaAs, которые чувствительны в ближней инфракрасной области спектра, где коэффициент теплового излучения металлов ε гораздо больше, чем в области 8-14 мкм. При необходимости измерения истинной температуры используют тепловизоры, регистрирующие тепловое излучение в трёх участках спектра.

Другие применения

Поиск перегрева электроцепей

  • Астрономические инфракрасные телескопы (англ.)русск..
  • Система ночного вождения для облегчения контроля дорожной обстановки водителем.
  • Контроль электроцепей на предмет перегрева проводников и плохого контакта.
  • Ветеринарный контроль.
Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации