Андрей Смирнов
Время чтения: ~20 мин.
Просмотров: 70

Журнал практической электроники datagor.ru

Содержание

Датчики тока

Allegro MicroSystemsACS71XACS75X

Кроме обычного измерения уровня тока микроконтроллером, разумно создать схему аппаратной защиты от превышения критического уровня тока. Для измерения уровня тока микроконтроллер тратит некоторое время. Кроме того, ток измеряют периодически через некоторое время. Такие задержки, а также возможные программные ошибки могут создать ситуацию, когда критический ток успевает вывести из строя устройство еще до того, как придет момент следующего измерения. Схема должна отключать силовые ключи когда ток превышает критическое значение, независимо от работы микроконтроллера. Для реализации такой схемы обычно используют компаратор, на вход которого подают сигнал с датчика тока и опорный сигнал. При превышении допустимого тока компаратор срабатывает. Выход компаратора используют как дискретный сигнал в логических схемах, аварийно отключают ключи. Такая реализация имеет наименьшую задержку.

Некоторые драйверы имеют дополнительный вход для аварийного отключения ключей, что значительно упрощает создание безопасной схемы регулятора (ESC) безколесторного двигателя (BLDC).

Успехов!

P.S. Этой публикацией я завершаю цикла статей о трехфазные бесколлекторных двигателях, которого начал год назад. Это не означает, что больше не будет ни слова о бесколлекторных двигателях. Статьи об электродвигателях еще будут, но это будут отдельные материалы, конкретные реализации и т.д. Надеюсь, что моя работа не была напрасной.

Статьи по бесколлекторным моторам:

  • Что такое Бесколлекторный мотор?
  • Устройство бесколлекторного мотора
  • Как управлять бесколлекторным мотором с датчиками Холла (Sensored brushless motors)
  • Как управлять бесколекторным мотором без датчиков (Sensorless BLDC)
  • Запуск бездатчикового бесколекторного мотора (Sensorless BLDC)
  • Определение положения ротора бесколлекторника в остановленном состоянии
  • Контроллер бесколлекторного мотора. Структура ESC
  • Схема контроллера бесколлекторного мотора (ESC)
  • Силовая часть контроллера бесколлекторного мотора
  • Литература по бесколлекторнм моторам
  • Примеры на С для управления бесколлекторными моторами
  • Схема контроллера бесколлекторного мотора BLDC, PMSM на микроконтроллере STM32
  • STM32. Управление бесколлекторным мотором (BLDC)
  • STM32. Пример регулятора для бесколлекторного PMSM
  • Видео о бесколлекторных моторах. BLDC, PMSM, векторное управление

Управление по напряжению (Voltage Mode)

В этом режиме скважность ШИМ сигнала, управляющего силовыми ключами, определяется непосредственно выходным напряжением. При гистерезисном управлении, если напряжение на выходе ниже нормы – идет «накачка» источника

Если напряжение на выходе больше порога – компаратор блокирует управление силовым ключом, идет разряд выходной накопительной емкости. В англоязычной литературе такой режим называют «hiccup-mode» – «режим с икотой»

При гистерезисном управлении, если напряжение на выходе ниже нормы – идет «накачка» источника. Если напряжение на выходе больше порога – компаратор блокирует управление силовым ключом, идет разряд выходной накопительной емкости. В англоязычной литературе такой режим называют «hiccup-mode» – «режим с икотой».

Данный режим используется сравнительно редко, так как сопровождается большими пульсациями выходного напряжения и требует накопительного конденсатора сравнительно высокой емкости.
Рисунок 5 демонстрирует принцип работы режима управления по напряжению с гистерезисным управлением. Здесь и далее не показана выходная часть источника, так как определяется топологией, выходной мощностью и др. Для иллюстрации принципа работы ШИМ-контроллера иногда будет показан пример с выходной частью.

Рис. 5а. Первая схема – с фиксированным выходным напряжением, вторая – с регулировкой выходного напряжения.

Рис. 5б. Диаграммы выхода ШИМ и выхода компаратора.

Рис. 6. Пример выходного каскада повышающего импульсного источника питания, подключенного к ШИМ контроллеру (см.рис.5).

Конфигурируемые логические ячейки (CLC) на рис .5 можно включить как элемент И. Для предотвращения высокочастотной генерации от компаратора его выход целесообразно пропустить через еще одну CLC – D-триггер с синхронизацией от сигнала ШИМ

В этом случае получим два «бонуса» — отсутствие возникновения высокочастотной генерации и неизменность скважности управляющего ШИМ (см. пояснения на рис

7). Подробнее о конфигурируемых логических ячейках см. в статье «Конфигурируемые логические ячейки в PIC микроконтроллерах» .

Рис.7.а. Укорочение управляющих ШИМ импульсов, возможность появления высокочастотной генерации

Рис. 7.б. Синхронизация сигналов позволяет предотвратить укорочение ШИМ импульсов

Рис. 8. Синхронизация сигналов для предотвращения генерации и укорочения ШИМ.

Контроллеры заряда и схемы защиты — в чем разница?

Важно понимать, что модуль защиты и контроллеры заряда — это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой

Сейчас поясню в чем разница.

Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV — постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество «заливаемой» в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.

По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.

Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу — при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.

Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (~4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.

Микроконтроллер и его предназначение

Микроконтроллер − это чип, целью которого является управление электрическими приборами. Классический контроллер совмещает в одном кристалле, как работу процессора, так и удаленных приборов, и включает в себя оперативное запоминающее устройство. В целом, это монокристальный персональный компьютер, который может осуществлять сравнительно обыкновенные задания.

Разница между микропроцессором и микроконтроллером заключается в наличии встроенных в микросхему процессора приборов «пуск-завершение», таймеров и иных удаленных конструкций. Применение в нынешнем контроллере довольно сильного вычисляющего аппарата с обширными способностями, выстроенного на моносхеме, взамен единого комплекта, существенно уменьшает масштабы, потребление и цену созданных на его основе приборов.

Из этого следует, что применить такое устройство можно в технике для вычисления, такой, как калькулятор, материнка, контроллеры компакт-дисков. Используют их также в электробытовых аппаратах – это и микроволновки, и стиральные машины, и множество других. Также микроконроллеры широко применяются в индустриальной механике, начиная от микрореле и заканчивая методиками регулирования станков.

Микроконроллеры AVR

Ознакомимся с более распространенным и основательно устоявшимся в современном мире техники контроллером, таким как AVR. В его состав входят высокоскоростной RISC-микропроцессор, 2 вида затратной по энергии памяти (Flash-кэш проектов и кэш сведений EEPROM), эксплуатационная кэш по типу RAM, порты ввода/вывода и разнообразные удаленные сопряженные структуры.

Важно:

  • рабочая температура составляет от -55 до +125 градусов Цельсия;
  • температура хранения составляет от -60 до +150 градусов;
  • наибольшая напряженность на выводе RESET, в соответствии GND: максимально 13 В;
  • максимальное напряжение питания: 6.0 В;
  • наибольший электроток линии ввода/вывода: 40 мА;
  • максимальный ток по линии питания VCC и GND: 200 мА.

Возможности микроконтроллера AVR

Абсолютно все без исключения микроконтроллеры рода Mega обладают свойством самостоятельного кодирования, способностью менять составляющие своей памяти драйвера без посторонней помощи. Данная отличительная черта дает возможность формировать с их помощью весьма пластичные концепции, и их метод деятельности меняется лично микроконтроллером в связи с той либо иной картиной, обусловленной мероприятиями извне или изнутри.

Обещанное количество оборотов переписи кэша у микроконтроллеров AVR второго поколения равен 11 тысячам оборотов, когда стандартное количество оборотов равно 100 тысячам.

Конфигурация черт строения вводных и выводных портов у AVR заключается в следующем: целью физиологического выхода имеется три бита регулирования, а никак не два, как у известных разрядных контроллеров (Intel, Microchip, Motorola и т. д.). Это свойство позволяет исключить потребность обладать дубликатом компонентов порта в памяти с целью защиты, а также ускоряет энергоэффективность микроконтроллера в комплексе с наружными приборами, а именно, при сопутствующих электрических неполадках снаружи.

Всем микроконтроллерам AVR свойственна многоярусная техника пресечения. Она как бы обрывает стандартное течение русификатора для достижения цели, находящейся в приоритете и обусловленной определенными событиями. Существует подпрограмма преобразования запрашивания на приостановление для определенного случая, и расположена она в памяти проекта.

Когда возникает проблема, запускающая остановку, микроконтроллер производит сохранение составных счетчика регулировок, останавливает осуществление генеральным процессором данной программы и приступает к совершению подпрограммы обрабатывания остановки. По окончании совершения, под шефствующей программы приостановления, происходит возобновление заранее сохраненного счетчика команд, и процессор продолжает совершать незаконченный проект.

Не стартует материнка от кнопки питания. Лечим очень нетривиальным методом

Приветствую читателей журнала Датагор! Есть у меня пожилой компьютер, которому уже исполнилось лет десять. Параметры у него соответствующие: «пенёк» 3,0 ГГц, пара Гб ОЗУ и древняя материнская плата EliteGroup 915-й серии.

И задумал я куда-нибудь старичка пристроить (подарить, продать), т. к. выбрасывать жалко. Но мешала задуманному одна неприятность: у материнки не срабатывало включение от кнопки питания, и что бы я ни делал, начиная от проверки проводов и заканчивая прозвонкой транзисторов на плате, проблему найти так и не смог. Отдавать в ремонт спецам — ремонт окажется дороже всего компа.Думал я, думал и нашёл способ запустить моего бедолагу. Выдернул батарею BIOS-а, от чего комп испугался и сразу стартанул при следующем появлении питания! А дальше — почти в каждом BIOS-е есть запуск ПК от любой кнопки клавиатуры или кнопки POWER на клавиатуре. Казалось бы, проблема решена. Ан нет, есть нюансы. С USB-клавиатур запуск не срабатывал. Плюс не хотелось пугать нового хозяина, компьютер должен стартовать от привычной кнопки питания на корпусе. Пришлось решать проблему по-своему, а наработками спешу поделиться с вами.

Частотомер-тестер кварцев на atmega8

Опубликовано чт, 01/18/2018 — 19:49 пользователем trol

Частотомер — полезный прибор в лаборатории радиолюбителя (особенно, при отсутствии осциллографа).
Кроме частотомера лично мне часто недоставало тестера кварцевых резонаторов — слишком много стало приходить брака из Китая. Не раз случалось такое,
что собираешь устройство, программируешь микроконтроллер, записываешь фьюзы, чтобы он тактировался от внешнего кварца и всё — после записи фьюзов
программатор перестаёт видеть МК. Причина — «битый» кварц, реже — «глючный» микроконтроллер (или заботливо перемаркированый китайцами с добавлением,
например, буквы “А» на конце). И таких неисправных кварцев мне попадалось до 5% из партии.
Кстати, достаточно известный китайский набор частотомера с тестером кварцев на PIC-микроконтроллере и светодиодном дисплее с Алиэкспресса мне
категорически не понравился, т.к. часто вместо частоты показывал то ли погоду в Зимбабве, то ли частоты «неинтересных» гармоник
(ну или это мне не повезло).

Микросауна в квартире

Рейтинг:  5 / 5

Подробности
Категория: схемы на PIC
Опубликовано: 29.06.2018 11:31
Просмотров: 1139

У вас плохой иммунитет, часто простываете? Можно обратиться к услугам врача, который, как правило назначает лекарства, они имеют много побочных действий и могут ощутимо подорвать бюджет вашей семьи. К тому же известно, что бесконтрольное и частое применение антибиотиков сильно подрывает иммунитет. Автор на себе опробовал чудное действие сауны и убедился в повышении иммунитета организма. Ходить в сауну желательно один раз в неделю, а как известно цены на данный вид услуг так же высоки. Выходом из данной ситуации может быть построение микросауны в обычной квартире. Во многих квартирах многоэтажных домов существуют небольшие кладовки размером 1,7×0,8 метра. Автор соорудил сауну в такой кладовке.

Автоматическое зарядно-тренирующее устройство и измеритель ёмкости для 12V герметичных аккумуляторов (ATMEGA8)

Приветствую всех читателей Датагор.ру и любителей электроники! Сегодня я хочу продемонстрировать вам устройство, которое зародилось благодаря статье Александра (koan51) о способе проверки ёмкости 12-вольтовых аккумуляторных батарей. Прочитав всё вдоль и поперёк, я решил устройство немного «допилить» и «отполировать» под себя.

Меняю PIC контролера на любимый AVR, 7-сегментные индикаторы на знаковый LCD, ну и дорабатываю программный код в плане расширения функционала касаемо калибровок и прочих мелочей.Ну-с, товарищи паятели, берём статью, железяки, паяльник и поехали! :bye:

Доработка питания 3D-принтера

Опубликовано вс, 08/27/2017 — 13:50 пользователем trol

3D-принтеры бывают разные, но электроника подавляющего большинства любительских аппаратов делается на основе связки плат Arduino + RAMPS,
либо одной платы MKS Gen. В качестве блока питания обычно служит БП для светодиодных лент. Он служит источником для питания электроники, шаговых
двигателей, нагревателя(лей) экструдеров и термостола. И тут возникает ряд проблем, связанных с тем, что импульсные помехи от БП + помехи, создаваемые
ШИМ-контроллером нагревателя экструдера прилетают на управляющий микроконтроллер. В результате возможны сбои и перезагрузка программы, появление
мусора на экране, а также большие ошибки при измерении температуры экструдера (что может приводить к тому, что управляющая программа
не может стабилизировать температуру нагревателя экструдера).

Для решения этой проблемы схема питания принтера была доработана: питание цифровой части отделено от питания нагревателей и подаётся через
двойные LC-фильтры, эфективно снижающие уровень шума ИБП. Для питания нагревателей была добавлена плата управления на мощных полевых транзисторах.

Доработка позволила полностью избавится от проблем с питанием — после исправлений температура экструдера стала нормально устанавливаться, исчезли
перезагрузки и мусор с экрана.

Beginning 8051 Microcontroller projects Handson

Edge Avoiding Robot Using 8051: An edge avoider robot is very like my past undertaking «Line Follower Robot». This 8051 microcontroller based robot recognizes an edge and dodges it by turning or halting. Let us perceive how might we plan an edge avoider robot without any problem. Idea of Edge Avoider robot is same as line supporter. In these sorts of robots, we for the most part use conduct of light at high contrast surface. At the point when light fall on a white surface it will practically full reflects and if there should be an occurrence of dark surface light is consumed by dark surface. This conduct of light is utilized in a line devotee robot just as edge avoider robot.

Термометр с функцией таймера или управления термостатом

Рейтинг:   / 5

Подробности
Категория: схемы на PIC
Опубликовано: 05.03.2019 11:45
Просмотров: 1011

С. Коряков, г. Шахты Ростовской обл.
Описания различных электронных цифровых термометров неоднократно публиковались на страницах журнала «Радио». Как правило, они содержали преобразователь температура—частота и измерительную часть на дискретных цифровых элементах, преобразующих измеренную частоту а показания температуры. Построенный на дискретных элементах преобразователь температура—частота требует калибровки и позволяет достичь приемлемой точности в довольно ограниченном интервале (из-за нелинейности температурных характеристик элементов). Применение современной элементной базы — микроконтроллеров и специальных датчиков — значительно упрощает схемотехнику устройства с одновременным повышением функциональности и точности измерений. Принципиальная схема предлагаемого термометра изображена на рис. 1.

Индикатор напряжения в электросети на микроконтроллере PIC16F676

Рейтинг:   / 5

Подробности
Категория: схемы на PIC
Опубликовано: 17.03.2018 08:24
Просмотров: 1805

Горчу к Н. В.
Индикатор предназначен для непрерывного измерения и индикации напряжения в электросети. Индикатор состоит из цифрового трехразрядного измерителя напряжения, источника питания и датчика напряжения электросети. По сути, датчик напряжения электросети и источник питания это единое целое. Прибор питается от электросети через источник питания, состоящий из понижающего трансформатора, выпрямителя и стабилизатора на микросхеме 7805. Напряжение питания измерителя 5V берется с выхода этого стабилизатора, а напряжение до стабилизатора служит как раз и датчиком напряжения электросети. Суть в том, что при изменении напряжения в сети меняется и напряжение на выходе выпрямителя. Измеритель напряжения построен на микроконтроллере D1 типа PIC16F676, у данного контроллера имеется порт, могущий работать для приема аналоговой информации, то есть с АЦП.

32-битовые микроконтроллеры

Отличительные черты семейства 32-разрядных микроконтроллеров PIC32:

  • разрядность: 32 бита;
  • ядро: MIPS32 M4K;
  • частота тактирования ядра: до 120 МГц (для серии MX) и до 200 МГц (для серии MZ)[источник не указан 1542 дня];
  • выполнение большинства команд за 1 такт генератора;
  • производительность: 1.53 Dhrystone MIPS/МГц;
  • порты ввода-вывода относятся к основному частотному диапазону, таким образом, к примеру, можно дёргать портами с тактовой частотой;
  • дополнительный частотный диапазон организуется для периферии из основного посредством программно настраиваемого делителя, таким образом, частота тактирования периферии может быть снижена для снижения энергопотребления;
  • количество выводов: 28, 44, 64 и 100;
  • объём SRAM: до 128 кБ;
  • объём flash-памяти: 512 кБ с кэшем предвыборки;
  • совместимость по выводам и отладочным средствам с 16-битовыми контроллерами фирмы Microchip;
  • аппаратный умножитель-делитель с независимым от основного ядра конвейером, оптимизированным по скорости выполнения;
  • набор расширенных 16-битовых инструкций MIPS16e, позволяющий уменьшить размер кода некоторых программ на 40 %;
  • независимый от основного ядра контроллер USB.

Семейство 32-разрядных микроконтроллеров PIC32 выделяется значительно увеличенной производительностью и объёмом памяти на кристалле по сравнению с 16-разрядными микроконтроллерами и контроллерами цифровой обработки сигналов PIC24/dsPIC. Контроллеры PIC32 также оснащены большим количеством периферийных модулей, включая различные коммуникационные интерфейсы — те же, что у PIC24, и 16-битовый параллельный порт, который может использоваться, например, для обслуживания внешних микросхем памяти и жидкокристаллических TFT-индикаторов.

Семейство PIC32 построено на ядре MIPS32, отличающегося низким потреблением энергии, быстрой реакцией на прерывания, функциональностью средств разработки и лидирующим в своём классе быстродействием 1.53 Dhrystone MIPS/МГц. Такое быстродействие достигнуто благодаря эффективному набору инструкций, 5-ступенчатому конвейеру, аппаратному умножителю с накоплением и несколькими (до 8) наборами 32-разрядных регистров ядра.

Термометр на микроконтроллере PIC12F629. Альтернативная программа

Подробности
Создано 07.07.2014 15:29

Термометр на микроконтроллере PIC12F629 уже неоднократно повторялся читателями сайта, что очень радует. Подтверждение тому следующая статья, за которую огромное спасибо Дмитрию.

Термостат на PIC16F684

Подробности
Создано 18.01.2014 13:47

Проект электронного термостата, описанный далее является логическим продолжением и в чем-то объединением двух предыдущих устройств: Терморегулятор на микроконтроллере PIC16F676и Термосигнализатор с батарейным питанием.  Схема выполнялась по заказу и была изготовлена в количестве 2 экземпляров. Время наработки пока не большое, но работает все исправно.

Сторожевой таймер

Подробности
Создано 21.12.2013 13:23

Сторожевой таймер (Watchdogtimer или WDT) давно стал одним из привычных и полезных устройств, входящих в состав схемы микроконтроллеров. Выполняя функцию сброса, в случае зависания программы, он позволяет защитить оборудование от неприятных последствий. К сожалению, не каждое готовое устройство имеет в своем составе подобный элемент. В некоторых случаях это становится большой проблемой.

Термометр на микроконтроллере PIC12F629. Дополнение

Подробности
Создано 18.12.2013 12:17

Конструкция термометра на PIC12F629 с двумя датчиками вызвала неожиданный интерес. Несколько человек повторили схему. Естественно, что возникли вопросы, и эти вопросы часто повторялись. Данный материал делает попытку обобщения проблем и предлагает некоторые решения.

Термосигнализатор с батарейным питанием

Подробности
Создано 12.10.2013 07:42

Основное назначение термосигнализатора сводится к индикации достижения температурой заранее определенного значения. Автономное питание позволяет схеме выполнять непрерывную индикацию, сводит к нулю проблемы качества сетей электроснабжения и требует меньшего количества проводов для подключения. Использование полупроводникового сенсора с цифровым выходом еще больше упрощает принципиальную схему, и позволяет получить относительно высокие точностные характеристики.

Простой термометр на микроконтроллере PIC12F629 с батарейным питанием.

Подробности
Создано 20.07.2013 09:50

Общее количество конструкций термометров на микроконтроллерах посчитать сложно. Каждый автор стремиться привнести что-то свое в этот простой прибор. В итоге увеличивается функциональность, точность и область практического применения электронных температурных измерителей. Ниже описан еще один вариант термометра, главными особенностями которого стали предельная простота конструкции и автономное питание.

Терморегулятор на микроконтроллере PIC16F676

Подробности
Создано 01.05.2013 13:45

Терморегулирование сегодня является одной из самых ярких и распространенных областей применения автоматики. Оборудование для управления тепловыми процессами можно встретить в каждом доме, автомобиле или промышленном производстве. Применение современной электроники позволяет строить простые и при этом высокофункциональные системы, благодаря использованию датчиков с цифровым выходом, микроконтроллеров и других элементов. Реализовать алгоритм терморегулирования в подобных системах также не составляет особой сложности.

Охранное устройство с управлением ключами-«таблетками» iBUTTON

Рейтинг:   / 5

Подробности
Категория: схемы на PIC
Опубликовано: 10.03.2019 11:07
Просмотров: 878

А. Воскобойников, г. Смоленск
О ключах-«таблетках» iButton фирмы Dallas Semiconductors (США) мы уже рассказывали в статье А. Синюткина «Электронный замок на ключах-«таблетках» iButton» («Радио», 2001, № 2, 3). Автор предлагаемой статьи использовал эти ключи для управления охранной сигнализацией. Предлагаемое устройство может выполнять функции охранной сигнализации или просто включать освещение при движении человека в помещении и при открывании входной двери. Его схема показана на рис. 1.

Тестер микросхем

Опубликовано вт, 09/05/2017 — 15:45 пользователем trol

Устройство предназначено для тестирования логических микросхем, операционных усилителей, оптопар, и некоторых других элементов.
Из логических микросхем поддерживаются отечественные (серии 155, 555, 1531, 1533, 176, 561, 1561, 1564, 580, 589 и др.) и импортные
(74ххх, 40ххx, 45xxx) ИМС ТТЛ и КМОП. Меню и результаты проверки отображаются на цветном дисплее 128х128.
Так же тестер умеет проверять микросхемы DRAM, SRAM, считывать EPROM и показывать, есть ли в них записанные данные.
Кроме того, прибор можно использовать при отладке различных цифровых устройств как интерфейс с 40 каналами ввода-вывода управляемыми по USB.

Тестер питается через miniUSB-порт, также через этот порт его можно подключить к компьютеру. Программное обеспечение позволяет разрабатывать,
запускать и пошагово отлаживать тесты, считывать содержимое ПЗУ и обновлять прошивку устройства.

Программное обеспечение написано на Java и является кроссплатформенным (Windows, Linux, MacOS X).

Поделки на базе микроконтроллера AVR

Поделки своими руками на микроконтроллерах AVR становятся популярнее за счет своей простоты и низких энергетических затрат. Что они собой представляют и как, пользуясь своими руками и умом, сделать такие, смотрим ниже.

«Направлятор»

Такое приспособление проектировалось, как небольшой ассистент в качестве помощника тем, кто предпочитает гулять по лесу, а также натуралистам. Несмотря на то, что у большинства телефонных аппаратов есть навигатор, для их работы необходимо интернет-подключение, а в местах, оторванных от города, это проблема, и проблема с подзарядкой в лесу также не решена. В таком случае иметь при себе такое устройство будет вполне целесообразно. Сущность аппарата состоит в том, что он определяет, в какую сторону следует идти, и дистанцию до нужного местоположения.

Важно: прежде чем уходить, нужно сохранить место отправки, куда после надо возвратиться, и стрелка будет показывать на эту точку, но это будет выполнено лишь при условии работы спутников.

Построение схемы осуществляется на основе микроконтроллера AVR с тактированием от наружного кварцевого резонатора на 11,0598 МГц. За работу с GPS отвечает NEO-6M от U-blox. Это, хоть и устаревший, но широко известный и бюджетный модуль с довольно четкой способностью к установлению местонахождения. Сведения фокусируются на экране от Nokia 5670. Также в модели присутствуют измеритель магнитных волн HMC5883L и акселерометр ADXL335.


Измеритель магнитных волн HMC5883L

Беспроводная система оповещения с датчиком движения

Полезное устройство, включающее в себя прибор перемещения и способность отдавать, согласно радиоканалу, знак о его срабатывании. Конструкция является подвижной и заряжается с помощью аккумулятора или батареек. Для его изготовления необходимо иметь несколько радиомодулей HC-12, а также датчик движения hc-SR501.

Прибор перемещения HC-SR501 функционирует при напряжении питания от 4,5 до 20 вольт. И для оптимальной работы от LI-Ion аккумулятора следует обогнуть предохранительный светодиод на входе питания и сомкнуть доступ и вывод линейного стабилизатора 7133 (2-я и 3-я ножки). По окончанию проведения этих процедур прибор приступает к постоянной работе при напряжении от 3 до 6 вольт.


Датчик движения HC-SR501

Внимание: при работе в комплексе с радиомодулем HC-12 датчик временами ложно срабатывал. Во избежание этого необходимо снизить мощность передатчика в 2 раза (команда AT+P4).  Датчик работает на масле, и одного заряженного аккумулятора, емкостью 700мА/ч, хватит свыше, чем на год

Минитерминал

Приспособление проявило себя замечательным ассистентом. Плата с микроконтроллером AVR нужна, как фундамент для изготовления аппарата. Из-за того, что экран объединён с контроллером непосредственно, то питание должно быть не более 3,3 вольт, так как при более высоких числах могут возникнуть неполадки в устройстве.


Преобразователь LM2577

Вам следует взять модуль преобразователя на LM2577, а основой может стать Li-Ion батарея емкостью 2500мА/ч. Выйдет дельная комплектация, отдающая постоянно 3,3 вольта во всём трудовом интервале напряжений. С целью зарядки применяйте модуль на микросхеме TP4056, который считается бюджетным и достаточно качественным. Для того чтобы иметь возможность подсоединить минитерминал к 5-ти вольтовым механизмам без опаски сжечь экран, необходимо использовать порты UART.

Как выбрать контроллер для электровелосипеда – советы

Контроллер выбирают исходя из вида двигателя и аккумулятора. Основными параметрами считаются: напряжение и величина максимального тока.

Двигатель мощностью 350 Вт нуждается в контроллере 36 В 15 А.

Мощность 100 Вт — контроллер 48 В, силой тока не меньше 25 А. Для лучших показателей выбирают модели со значением тока 30, 35, 40 ампер.

Мощность 1000 Вт- контроллер 48 В 30 А. Существуют программируемые конструкции, где можно настраивать ток под собственные потребности.

Оптимальное соотношение скорости колес к напряжению -1 к 0,9. Исходя из этого, можно рассчитать скорость движения: при 36 В передвигаться следует при 32 км/ч, при 48 В — 45 км/ч.

Увеличение скорости изменяет и соотношение, так как имеют место существенные затраты энергии на борьбу с сопротивлением воздуха.

Контроллеры выпускают обычного типа и с функцией программирования. Последние подходят для любителей экспериментов, так как такие конструкции нуждаются в изучении. Программируемые конструкции можно подключить к компьютеру при помощи кабеля или функции Bluetooth. В компьютерном режиме изменяются различные значение тока, углы фаз.

Контроллер является незаменимой частью электровелосипеда. Он отвечает за все главные функции передвижения. Современный рынок предоставляет большой выбор исходя из мощности, напряжения, вида и способа работы.

Для того чтобы выбрать правильную оснастку электровелосипеда, необходимо изучить основные нюансы и возможности каждой модели. Выбор хорошей модели подразумевает большой спектр функций, например, отдельных выход для питания фар, задний ход, различные режимы скорости и мощности.

Детская музыкальная игрушка (2+) на PIC16F628A из компьютерной клавиатуры (Обновлено)

Автор идеи этой игрушки Игорь «Datagor»о сынишке в марте 2009 г.: «Тестирование прошло на ура! Илюшка лупит по клавишам с удовольствием.»

Фото предоставил камрад Krolevets

Ребенок с самого раннего детства любит извлекать звуки из всех предметов. Самая первая игрушка это, конечно, погремушка. Но ребенок растет, и, постепенно вытесняя погремушки, в его жизнь начинают входить все новые игрушки. Звуковые игрушки — «пищалки» (в отличие от погремушек, они упругие, и звук извлекается из них другим способом — сжатием корпуса игрушки) и разнообразные музыкальные игрушки (часто работающие на батарейках) — от мишки, способного рычать на разные голоса, до такой экзотики, как «мобильный телефон».Особенно детей интересует, чем же там занимается папа или мама? Наблюдая, как родители работают за компьютером, дети тоже хотят поучаствовать в нажимании клавиш. Чтобы не только занять ребенка, но и помочь ему развиваться, предлагаю собрать музыкальную клавиатуру на PIC16F628A.

30.10.17 изменил Datagor. Добавлены фотографии, прошивка, описание сборки и пр.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации