Андрей Смирнов
Время чтения: ~12 мин.
Просмотров: 0

Что такое активная, реактивная и полная мощность

Преимущества автоматических установок компенсации реактивной мощности:

За счет внедрения автоматических конденсаторных и дроссельных установок на проектируемые и модернизируемые объекты можно добиться следующих результатов:

– снижение уровня энергопотребления до 40%,

– уменьшение нагрузки на силовых трансформаторах, что сказывается на долговечности их эксплуатации,

– уменьшение нагрузки на кабельные и проводные линии, что позволит использовать провода с меньшим сечением,

– убрать лишние наводки и гармоники в питающих электросетях, улучшить качество транспортируемого по ним электричества,

– стоимость компенсирующего оборудования и его монтажа может окупиться в течение полгода – года, а использовать полученные преимущества можно будет несколько десятилетий.

Примечание: Фото https://www.pexels.com, https://pixabay.com

карта сайта

Коэффициент востребованности
929

Реактивная мощность

Реактивная мощность является основным условием поддержания стабильности напряжения энергосистемы. Предполагается, что достаточный запас реактивной мощности позволит поддерживать целостность энергосистемы в послеаварийных режимах при случайных отказах источников реактивной мощности. Будучи хорошо отлаженной вспомогательной службой, средства обеспечения реактивной мощностью и регулирования напряжения играют жизненно важную роль в функционировании энергетической системы. Масштабные аварийные ситуации обычно возникают в тяжело нагруженных системах, которые не обладают достаточным запасом реактивной мощности. Тяжело нагруженные системы обычно характеризуются высоким потреблением реактивной мощности и потерями реактивной мощности в линии электропередач. При аварийной ситуации активная составляющая мощности существенно не изменяется, тогда, как поток реактивной мощности может измениться весьма значительно.

Это происходит из-за того, что падение напряжения на шине из-за отказа элемента сети приводит к уменьшению потока реактивной мощности от емкости линии и конденсаторов конденсаторной установки. Следовательно, необходимо иметь весьма значительный запас реактивной мощности, чтобы обеспечить потребности в реактивной энергии в послеаварийном режиме. Реактивная мощность, которая может быть поставлена энергосистемой, зависит от конфигурации сети, режима работы и расположения источников реактивной мощности. Реактивная мощность является ключом к решению проблем с сетевым напряжением при работе энергосистемы и должна учитываться при оценке надежности системы.

В методах оценки качества предельных значений реактивной мощности источников принимаются фиксированные максимальные и минимальные значения

Сетевые искажения в аварийной ситуации обычно уменьшают посредством снижения нагрузки с активным характером мощности, уделяя при этом реактивной мощности меньшее внимание. Напряжения в послеаварийном режиме, генерация реактивной мощности и потокораспределения мощности оценивались с использованием анализа чувствительности

Посредством кусочно-линейного оценивания было установлено влияние предельных характеристик оборудования на результаты оценки. Параллельный конденсатор оказывает влияние на надежность распределительной сети. Влияние ограничений напряжения и реактивной мощности на надежность системы было исследовано с помощью метода расчета потокораспределения мощности на модели сети постоянного тока. Рассчитывалась ожидаемая величина снижения электрической энергии из-за недостаточной генерации реактивной мощности и предполагаемое значение отклонений напряжения.

Однако в существующих методиках расчета надежности редко принимается во внимание ряд вопросов. Во-первых, большинство существующих методик пренебрегают возможными отказами источников реактивной мощности, такими как синхронные компенсаторы и статические компенсаторы реактивной мощности

Во-вторых, сетевые искажения из-за дефицита активной мощности не отделены от искажений, возникающих из-за недостаточного количества реактивной мощности при снижении нагрузки в послеаварийном режиме. В-третьих, отсутствуют показатели и соответствующие методы решения вопросов надежности, связанных с недостаточным количеством реактивной мощности. И, наконец, не рассматривается взаимосвязь между активной и реактивной мощностью генератора, определяемой по P–Q диаграммам генератора. Таким образом, существующих показателей надежности недостаточно для проектировщиков и диспетчеров энергосистем для осуществления рационального планирования и эффективного управления.

Предлагаемая методика оценки показателей надежности учитывает дефицит как активной, так и реактивной мощности из-за отказов источников активной и реактивной мощности, таких как генераторы, синхронные компенсаторы и статические компенсаторы. В данной методике рассмотрены дефицит реактивной мощности и связанные с ним отклонения напряжения, возникающие из-за сбоев в источниках реактивной мощности.

Предложены новые показатели надежности, позволяющие учесть влияние дефицита реактивной мощности на надежность системы. Показатели надежности, связанные с дефицитом реактивной мощности отделены от показателей, связанных с дефицитом активной мощности. Предложен «метод подпитки реактивной мощностью» для определения дефицита реактивной мощности и места его возникновения. С использованием P–Q диаграмм мощности выполнено исследование предельного значения реактивной мощности генератора, определяемого по его выходной активной мощности.

Описание явлений

Мощностью называется скалярный вид физической величина, которая показывает, как передается или преобразуется электроэнергия. Бывает мощность постоянного и переменного тока. Что касается последнего, то делится на активную и реактивную.

Разновидности

Активной называется полезная сила, определяющая процесс прямого преобразования электроэнергии в необходимый вид силы. В каждом электроприборе преобразовывается она по-своему. К примеру, в лампочке получается свет с теплом, в утюге — тепло, а в электрическом двигателе — механическая энергия. Соответственно, показывает КПД устройства.

Реактивной называется та, которая определяется при помощи электромагнитного поля. Образуется при работе электроприборов.

Обратите внимание! Это вредная и паразитная мощностная характеристика, которая определяется тем, каков характер нагрузки. Для лампочки она равняется нулю, а для электродвигателя она может быть равна большим значениям

Основные понятия из учебного пособия

История

В качестве предка современных РСЗО называют многозарядную корейскую повозку Хвачха, разработку которой относят к XV веку, к временам правления короля Седжона Великого.

Первые действительно успешные попытки массированного боевого применения неуправляемых реактивных снарядов относятся к началу XIX века, когда около 200 пороховых ракет были выпущены в течение получаса при в 1806 году, а также к так называемой «бомбардировке Копенгагена» в 1807 году. Применялись они и в англо-американской войне 1812—1815 годов и во время Наполеоновских войн, однако, несмотря на это, недостатки первых ракет привели к тому, что к середине XIX века интерес к ним как к оружию значительно снизился.

Возрождение неуправляемых реактивных снарядов как оружия связано с разработкой в СССР Реактивным научно-исследовательским институтом (РНИИ) в период 1927—1937 годов реактивных снарядов РС-82 и РС-132, которые были приняты на вооружение РККВФ. РС-82 летом 1939 года на истребителях И-16 и И-153 впервые успешно применялись по воздушным целям в боях на реке Халхин-Гол. В ходе советско-финской войны (1939—1940 годы) 6 двухмоторных бомбардировщиков СБ были оснащены пусковыми установками для ракет РС-132. Пуски ракет РС-132 производились по наземным целям.

В 1939—1941 годах в РНИИ была создана многозарядная пусковая установка БМ-13, смонтированная на шасси грузового автомобиля ЗИС-6, которая 21 июня 1941 года была принята на вооружение, получив первое боевое крещение в середине июля 1941 года.

В послевоенный период одним из наиболее известных случаев боевого применения РСЗО является массированное применение советскими войсками систем «Град» в советско-китайском пограничном конфликте на острове Даманский. Так же РСЗО «Град» использовался Вьетнамом в войне против войск США и афгано-советскими войсками против мятежников в Афганистане.

Реактивная артиллерия активно применяется в современных конфликтах. На вооружении разных армий и даже различных вооруженных мятежников состоят практически все созданные в послевоенное время РСЗО. В частности РСЗО применяют обе стороны в военном конфликте на востоке Украины, в войне в Сирии.

В современных условиях основными направлениями совершенствования РСЗО становятся: создание самонаводящихся и суббоеприпасов, повышение точности стрельбы за счет сопряжения РСЗО с современными системами разведки и целеуказания, увеличение дальности стрельбы, наращивание огневой производительности за счет увеличения калибра и автоматизации процесса заряжания, расширение номенклатуры боеприпасов

Видео: укладка простого кабельного теплого пола

Взаимосвязь между эффективным резервом реактивной мощности и необходимой реактивной мощностью на стороне нагрузки в системах электроснабжения

Нестабильность напряжения обычно возникает при большой нагрузке на систему энергоснабжения. Кроме того, нестабильность напряжения связана с несоответствием располагаемой реактивной мощности и потребности в ней из-за ограничений, связанных с её выработкой и передачей. Это может быть связано с неисправностью, но чаще всего связано с недостатком быстродействующего резерва реактивной мощности. Резервы реактивной мощности можно классифицировать с точки зрения нагрузок и ее источников. В отношении нагрузок акцент делается на запасе в части лавины напряжения, а в отношении генерации акцент делается на количестве и мощности резервов. «Эффективный резерв реактивной мощности (Q)» определяется как, характеризующийся резерв реактивной мощности в части ее генерации.

Обычный резерв реактивной мощности определяется как разность между максимальной реактивной мощностью с учётом регулировочной характеристики генератора и текущей реактивной мощностью генератора. Однако все генераторы не могут влиять на полную энергосистему. Поэтому эффективный резерв реактивной мощности рассчитывается исходя из степени влияния выходной мощности генераторов реактивной мощности на нагрузки. Эффективный резерв реактивной мощности проверяется с использованием статического и динамического моделирования на испытательной установке, а также на реальной энергосистеме Кореи.

Сильно нагруженная система имеет большую потребность в реактивной мощности в связи с большими потерями реактивной мощности и возможностью лавины напряжения, которая может возникать в системах, не имеющих достаточного резерва реактивной мощности и, следовательно, неспособных поддерживать в системе её достаточную величину. Недостаток реактивной мощности в отдельных районах после повреждения (может быть вовлечена и вся система) является основной проблемой при проектировании и эксплуатации системы. Компоненты системы энергоснабжения, такие как генераторы, синхронные компенсаторы и статические компенсаторы реактивной мощности поддерживают напряжение на постоянном уровне. Однако если имеются физические ограничения в системе передачи, напряжение более или менее постепенно падает, даже если генератор имеет большой резерв.

Управление реактивной мощностью для повышения надёжности системы в отношении стабильности напряжения и проблем надёжности изучали многие исследователи. Некоторые исследовали оптимизированную схему управления, использующая метод декомпенсации Бендера для решения проблемы резерва реактивной мощности в критических районах. Результатом явилось повышение статической и динамической стабильности напряжения системы. Кто-то изучал метод перераспределения реактивной мощности генератора с помощью метода модального анализа. Запас по стабильности напряжения был увеличен путём управления введением реактивной мощности для каждого генератора или синхронного компенсатора.

Многие годы системные операторы зависят от резервов реактивной мощности генератора, которая является мерой стабильности напряжения энергосистемы. Также был описан контроль стабильности напряжения в реальном времени с использованием резерва реактивной мощности. Показана процедура оптимизации для оценки запаса по стабильности напряжения с использованием корреляции между резервами и уровнем стабильности напряжения. Несколько ранее было изучено влияние резервов реактивной мощности на стабильность напряжения на основе определения зон.

Как говорилось в перечисленных исследованиях, резервы реактивной мощности являются ключевым показателем, влияющим на стабильность напряжения. Поэтому нам нужно более точное представление о них. В течение ряда лет было приложено много усилий для определения резерва реактивной мощности в энергосистеме. Одни исследователи предлагают оценку резервов реактивной мощности применительно к аварийным режимам путем оценки «эффективности» этих резервов. Другие определяют резервы реактивной мощности исходя из нагрузок и генерации, обсуждая и сравнивая расчётные методы, пригодные для определения резервов реактивной мощности. Ряд ученых исследовали то, как различные подходы к резервам реактивной мощности связаны со стабильностью напряжения и ее нарушениями с точки зрения генерации.

Рассмотрим далее более точное представление резервов реактивной мощности генераторов в энергосистеме. Целью является контроль стабильности напряжения в системе на основании величины резервов реактивной мощности генераторов. Было выполнено статическое и динамическое моделирование для проверки расчётной величины резервов, определённых как «эффективные резервы реактивной мощности».

Что такое полная мощность на примере простой R-L цепи

Графики изменения мгновенных значений u,i:

Графики изменения мгновенных значений u,i:

φ — фазовый сдвиг между током и напряжением

Уравнение для S примет следующий вид 

Подставим вместо  и заменим амплитудные значения на действующие:

Значение S рассматривается как сумма двух величин , где

 и  — мгновенные активные и реактивные мощности на участках R-L.

Графики p,q,s:

Как видим из графика, наличие индуктивной составляющей повлекло за собой появление отрицательной части в полной мощности (заштрихованная часть графика), что снижает ее среднее значение. Это происходит из-за фазового сдвига, в какой-то момент времени ток и напряжение находятся в противофазе, поэтому появляется отрицательное значение S.

Итоговые выражения для действующих значений:

Активная составляющая сети выражается в ваттах (Вт), а реактивная в вольт-амперах реактивных (вар).

Полная мощность сети S, обусловлена номинальными данными генератора. Для генератора она обусловлена выражением:

Для нормальной работы генератора ток в обмотках и напряжение на зажимах не должны превышать номинальные значения Iн, Uн.  Для генератора значения P и S одинаковы, однако все-таки на практике условились S выражать в вольт-амперах (ВА).

Также энергию сети можно выразить через каждую составляющую отдельно:

Где S, P, Q – соответственно активное, реактивное и полное сопротивление сети. Они образуют треугольник мощностей:

Треугольник мощностей с преобладающей индуктивной нагрузкой

Если вспомнить теорему Пифагора, то из прямоугольного треугольника можно получить такое выражение:

Реактивная составляющая в треугольнике является положительной (QL), когда ток отстает от напряжения, и отрицательной (QC), когда опережает:

Треугольник мощностей с преобладающей емкостной нагрузкой

Для реактивной составляющей сети справедливо алгебраическое выражение:

Из чего следует что индуктивная и емкостная энергия взаимозаменяемы. То есть если вы хотите уменьшить влияние индуктивной части цепи, вам необходимо добавить емкость, и наоборот. Ниже пример данной схемы :

Схема компенсации реактивной составляющей

Векторная диаграмма показывает влияние конденсатора на cosφ. Как видно, что при включении конденсатора cosφ2> cosφ1 иIл<I.

Векторная диаграмма

Связь между полной и реактивной энергии выражается:

Отсюда:

сosφ – это коэффициент мощности. он показывает какую долю от полной энергии составляет активная энергия. Чем ближе он к 1, тем больше полезной энергии потребляется из сети.

Примечания

  1. Реактивная артиллерия // Военный энциклопедический словарь / Пред. Гл. ред. комиссии: С. Ф. Ахромеев. — 2-е изд. — М.: Воениздат], 1986. — С. 625.
  2. Туре 4 (по амер. квалификации) — калибр 203 мм, вес — 227,6 кг, дальность стрельбы 2400 м.
  3. 40 см Heavy (по амер. квалификации) — калибр 400 мм, вес 508 кг, дальность стрельбы 3700 м.
  4. 45 см Launcher (по амер. квалификации) — калибр 450 мм, дальность стрельбы 3700 м.
  5. (по амер. квалификации)
  6. Shisei (япон. название) — РСЗО 20х150 мм, вес РС 30,4 кг, дальность стрельбы 4200 м.
  7. 25.02.1946 г. Красная армия переименована в Советскую армию.
  8. РСЗО — современное название. В военное время система «Катюша» называлась — пусковые установки или установки.
  9. РСЗО «Катюша» — общее название БМ-8, БМ-13, БМ-31.
  10. Одна БМ-8–48 имеет 48 «стволов — направляющих», 48Х4 (БМ) = 192 — выстрелов за один раз. Одна батарея БМ-13-16 — 16Х4 = 64 — выстрела.
  11. Массированный метод ведения артиллерийского огня. Впервые применена 10.01.1943 г. в операции «Кольцо» (СталФ) и 12.01.1943 г. в операции «Искра» (ЛенФ и ВолФ).
  12. БМ-24 (8У31) принята на вооружение Постановлением Совета Министров СССР № 875-441сс от 22.03.1951 г., заменившая БМ-31-12.
  13. принята на вооружении Постановлением Совета Министров СССР № 4965-1936сс от 22.11.1952 г., в тот же день, что и система М-14.
  14. Указ СМ СССР № 372-130 от 28.03.1963 г. «О принятии на вооружение Советской Армии полевой реактивной системы «Град»».
  15. Сытин Л. Е. Самое современное оружие и боевая техника. — М.: АСТ, 2017. — 656 с. — ISBN 978-5-17-090382-5
  16. Владимир Скосырев. . Независимое военное обозрение. Независимая газета (16 февраля 2010). Дата обращения 3 апреля 2010.
Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации