Андрей Смирнов
Время чтения: ~20 мин.
Просмотров: 0

Электрический потенциал человека

Циркуляция и ротор(математическое отступление).

Как мы видели в пункте 1,
работа электростатического поля оказалась равной криволинейному интегралу, вычисленному
вдоль траектории, по которой движется заряд.

Вообще в математике криволинейный интеграл от любой векторной функции
по кривой (контуру) L означает следующее.
Разделим всю кривую на очень малые элементы
и получим векторы с направлениями,
определяемыми выбором движения, модули которых равны длинам этих участков; для
каждого вычислим скалярное произведение ;
просуммируем
полученные результаты; переходя к пределу бесконечно малых элементов кривой,
получим криволинейный интеграл (или интеграл по контуру).

Пусть теперь в области пространства, в которой определено векторное поле расположена
произвольная замкнутая кривая L (рис.6.3).

def: Циркуляцией вектора
по произвольному замкнутому контуру L называется криволинейный интеграл Г

, (6.7)

где — единичный
вектор, касательный к контуру L, указывающий направление обхода этого
контура.

Фактически интегрируется только касательная составляющая
векторного поля Аl, поэтому помимо (6.7) для обозначения циркуляции
используют ещё следующие эквивалентные формулы:


.

Будем, кроме того, считать, что на контуре выбрано положительное
направление обхода, то есть направление, при движении, вдоль которого область,
ограниченная контуром, остаётся всегда слева (более точно см. ниже).

Вновь вспомним о гидродинамике. Если мы рассмотрим векторное
поле скоростей текущей
жидкости, и поместим в произвольную точку этой жидкости небольшую турбинку (колёсико
с лопастями) то в зависимости от своей ориентации, турбинка будет вращаться
с большей или меньшей скоростью. Если вычислить циркуляцию вектора скорости
вдоль контура, совпадающего с ободом турбинки, а затем разделить на длину этого
обода, то мы получим (в соответствие с теоремой о среднем) некоторое среднее
значение проекции скорости частиц жидкости на касательную к контуру vl. Но именно
с такой линейной скоростью и будут вращаться лопасти турбинки. Таким образом,
чем больше циркуляция вектора скорости, тем с большей скоростью будет вращаться
турбинка, помещённая в данную точку жидкости, а это в свою очередь означает,
большую завихрённость жидкости в рассматриваемой точке. (Характерный пример
— вода, вытекающая из ванны.)

Следует отметить, однако, что характеризовать
завихрённость поля непосредственно циркуляцией Г нельзя, поскольку поле может
быть очень неоднородным, и степень его завихрённости будет изменяться от точки
к точке. Желая же определить такую «локальную» завихрённость, мы должны будем
уменьшать размеры контура L, стягивая его в точку. При этом,
очевидно, циркуляция будет стремиться к 0. В связи с этим, для характеристики
степени завихрённости поля вводят понятие плотности циркуляции, определяя её
как предел, к которому стремится отношение циркуляции вектора
по контуру L, к площади
DS,
ограниченной этим контуром, когда данный контур стягивается
к рассматриваемой точке пространства. (При этом, соответственно, DS0):


.

Вычисляя этот предел, мы будем иметь уже некоторое конечное,
отличное от нуля число. Однако, это значение будет зависеть от ориентации контура L в поле.
Например, как уже говорилось ранее,
от ориентации турбинки в жидкости. Изменяя ориентацию турбинки, мы можем получить
максимальное и минимальное значения Г (соответствующие двум противоположным
ориентациям турбинки, при этом одно из них будет положительным, а другое отрицательным),
а также при некоторой ориентации турбинка вообще перестанет вращаться, что соответствует
Г=0. Данные обстоятельства показывают, что всё многообразие значений плотности
циркуляции векторного поля может быть, вообще говоря, представлено в виде проекции
некоторого вектора, на нормаль к площадке контура L. При этом данный вектор
по абсолютной величине будет равен максимальному значению плотности циркуляции
вектора в рассматриваемой
точке пространства, и направлен в сторону, соответствующую направлению нормали
к контуру L, при которой плотность циркуляции принимает это максимальное значение.

Данный вектор называется ротором или вихрем векторного поля
(от французского
(или английского) слова rotation — вращение, или лат. roto- вращаюсь) и проекция этого
вектора на любое направление в каждой точке пространства определяется
выражением:


    (6.10)

Здесь — нормаль
к площадке DS, согласованная с направлением обхода контура L
правилом правого винта (буравчика) — рис.6.4.

Объяснение

Для объяснения внутренней контактной разности потенциалов в металлах прибегают к модели свободных электронов и к зонной теории. Рассмотрим энергетическую диаграмму, изображающую полную энергию одного электрона. Полная энергия электрона равна сумме потенциальной энергии в электрических полях и кинетической энергии. Нулевая полная энергия на энергетической диаграмме соответствует неподвижному электрону вдали от металла (это т.н. энергетический уровень вакуума). Для электрона внутри металла полная энергия будет отрицательна; электрон находится в потенциальной яме.

Рассмотрим вначале энергетическую структуру изолированного металла. Предположим, что температура металла равна 0 К. Энергетическая структура металла в простейшем случае определяется двумя величинами: работой выхода (т.е. расстоянием от уровня Ферми до уровня вакуума) и степенью заполнения верхней зоны электронами (энергия Ферми). Все энергетические уровни от начала энергетической зоны вплоть до уровня Ферми будут заполнены электронами. Максимальная кинетическая энергия электрона, в соответствии с зонной теорией металлов, равна энергии Ферми. Положение уровня Ферми на шкале полных энергий из-за принципа Паули будет являться значением химического потенциала данной системы электронов.

Приведение металлов в соприкосновение выводит систему из равновесия (поскольку химические потенциалы двух металлов не совпадают), происходит диффузия электронов в сторону уменьшения их энергии, приводящая к изменению заряда и электрического потенциала металлов. В приконтактной области начинается рост электрического поля. Появление электрического поля сдвигает все энергетические уровни электронов этих металлов, и вслед за ними будет двигаться уровень Ферми. Когда положение уровня Ферми (химического потенциала) обоих металлов на шкале энергии сравняются, заряд в приконтактной области перестанет меняться, наступит диффузионно-дрейфовое равновесие. Необходимо подчеркнуть, что диффузия электронов практически не меняет ни концентрацию электронов, ни величину энергии Ферми каждого металла. Разность положений нижних краев энергетической зоны в первом и втором металле, отнесенная к заряду электрона, и будет называться внутренней контактной разностью потенциалов.

Потенциальность электростатического поля

Электрическое поле с напряженностью ​\( \vec{E} \)​ при перемещении заряда ​\( q \)​ совершает работу. Работа ​\( A \)​ электростатического поля вычисляется по формуле:

где ​\( d \)​ – расстояние, на которое перемещается заряд,
​\( \alpha \)​ – угол между векторами напряженности электрического поля и перемещения заряда.

Важно!
Эта формула применима для нахождения работы только в однородном электростатическом поле. Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только начальным и конечным положением заряда

Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только начальным и конечным положением заряда.

Потенциальным называется поле, работа сил которого по перемещению заряда по замкнутой траектории равна нулю.

Важно!
Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю. Электростатическое поле является потенциальным

Работа электростатического поля по перемещению заряда равна изменению потенциальной энергии, взятому с противоположным знаком. В электродинамике энергию принято обозначать буквой ​\( W \)​, так как буквой ​\( E \)​ обозначают напряженность поля:

Потенциальная энергия заряда ​\( q \)​, помещенного в электростатическое поле, пропорциональна величине этого заряда. Потенциальная энергия взаимодействия зарядов вычисляется относительно нулевого уровня (аналогично потенциальной энергии поля силы тяжести). Выбор нулевого уровня потенциальной энергии определяется исходя из соображений удобства при решении задачи.

Понятие потенциала в физике

Что такое потенциал в физике? Это понятие очень часто применяется для описания качеств сил и полей самой разной природы. Скалярная функция, характеризующая некоторую величину, представляющуюся вектором, – вот что это потенциал. Гравитационный потенциал описывает соответствующее поле. В термодинамике это понятие применяется для системной внутренней энергии, в механике – для той или иной приложенной к предмету силы.

Электрика, прежде всего, интересует, что такое потенциал в электричестве. Из общего определения нетрудно вывести, что характеристика электрополя – это электрический потенциал. В своей статической форме электрический потенциал показывает потенциальную энергию одиночного «плюсового» заряда, помещаемого в данное место электрополя, и является одной из разновидностей электромагнитного потенциала. Вторая его форма – векторная (в отличие от скалярной), описывает магнитное поле.

Важно! Характеристика поля, описывающая зависимость работы при передвижении исключительно от исходной точки и места назначения, – это потенциальность поля. Траектория перемещения в этом случае на работу не влияет

Потенциал. Разность потенциалов. ЗАДАЧИ с решениями

Формулы, используемые на уроках «Решение задач на тему: Работа перемещения заряда в электрическом поле. Потенциал. Разность потенциалов» для подготовки к ЕГЭ.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача № 1.
 Металлический шар диаметром d заряжен с поверхностной плотностью зарядов σ. Найти потенциал φ этого шара, если он окружен заземленной проводящей сферой, имеющей общий с шаром центр. Диаметр сферы D. Среда — воздух.

Задача № 2.
 Потенциал заряженного шара φ1 = 300 В. Чему равен потенциал φ2 электрического поля этого шара в точке, отстоящей на расстоянии l = 50 см от его поверхности, если радиус шара R = 25 см?

Задача № 3.
 Определить потенциал φ точки поля, находящейся на расстоянии а =  9 см от поверхности заряженного шара радиусом R = 1 см, если поверхностная плотность зарядов на шаре σ = 1 • 10–11 Кл/см2. Среда — воздух.

Задача № 4.
 В точке 1 поля точечного заряда-источника потенциал φ1 = 40 В, а в точке 2 φ2 = 10 В. Найти потенциал φ в точке М, лежащей посередине между точками 1 и 2 (рис. 3-6). 

Задача № 5.
 В трех вершинах квадрата со стороной а = 20 см находятся заряды q1 = 1 • 10–8 Кл, q2 = 2 • 10–8 Кл и q3 = 2 • 10–8 Кл (рис. 3-7). Определить потенциал φ электрического поля, созданного этими зарядами в четвертой вершине. 

Задача № 6.
 Четыре одинаковых точечных заряда q расположены на одной прямой на расстоянии r друг от друга. Какую работу А надо совершить, чтобы переместить эти заряды в вершины тетраэдра со стороной r? Среда — вакуум.

Задача № 7.
Два одинаково заряженных шарика диаметрами d = 0,5 см каждый расположены на расстоянии l = 2 см между их поверхностями (рис. 3-14). До какого потенциала φ они заряжены, если сила их отталкивания друг от друга F = 2 мкН? Среда — воздух. 

Задача № 8.
 В однородном электрическом поле напряженностью Е = 2 кВ/см переместили заряд q = –20 нКл в направлении силовой линии поля на расстояние d = 10 см. Найти работу поля А, изменение потенциальной энергии поля ΔWп и напряжение (разность потенциалов) U между начальной и конечной точками перемещения.

Задача № 9.
 Между двумя горизонтальными плоскостями, заряженными разноименно и расположенными на расстоянии d = 5 мм друг от друга, находится в равновесии капелька масла массой 20 нг (нанограмм) (рис. 3-10). Найти число избыточных электронов N на этой капельке. Среда — воздух. Разность потенциалов между плоскостями U = 2 кВ. 

Задача № 10.
 На пластине М поддерживается потенциал φ1 = +80 В, а на пластине N – φ2 = –80 В (рис. 3-11, а). Расстояние между пластинами d = 10 см. На расстоянии d1 = 4 см от пластины М помещают заземленную пластину Р (рис. 3-11, б). Найти изменение напряженности ΔЕ1 поля на участке МР и изменение напряженности поля ΔЕ2 на участке PN при этом. Построить графики зависимостей напряженностей Е = Е(х) и потенциала φ = φ(х) от расстояния между точками поля и пластинами. 

Это конспект по теме «Потенциал. Разность потенциалов. ЗАДАЧИ с решениями». Выберите дальнейшие действия:

  • Вернуться к списку конспектов по Физике.
  • Проверить свои знания по Физике.

Потенциал. Эквипотенциальные поверхности.

В механике взаимодействие тел характеризует силой или потенциальной энергией. Электрическое поле, которое обеспечивает взаимодействие между электрически заряженными телами, также характеризуют двумя величинами. Напряженность электрического поля — это силовая характеристика. Теперь введем энергетическую характеристику — потенциал. С помощью этой величины можно будет сравнивать между собой любые точки электрического поля. Таким образом, потенциал как характеристика поля должен зависеть от значения заряда, содержащегося в этих точках. Поделим обе части формулы A = W1 — W2 на заряд q, получим

Отношение W/q не зависит от значения заряда и принимается за энергетическую характеристику, которую называют потенциалом поля в данной точке. Обозначают потенциал буквой φ.

Потенциал электрического поля φ — скалярная энергетическая характеристика поля, которая определяется отношением потенциальной энергии W положительного заряда q в данной точке поля к величине этого заряда:

Единица потенциала — вольт:

Подобно потенциальной энергии значения потенциала в данной точке зависит от выбора нулевого уровня для отсчета потенциала. Чаще всего в электродинамике за нулевой уровень берут потенциал точки, лежащей в бесконечности, а в электротехнике — на поверхности Земли.

С введением потенциала формулу для определения работы по перемещению заряда между точками 1 и 2 можно записать в виде

Поскольку при перемещении положительного заряда в направлении вектора напряженности электрическое поле выполняет положительную работу A = q (φ1 — φ2 )> 0, то потенциал φ1 больше чем потенциал φ2 . Таким образом, напряженность электрического поля направлена в сторону уменьшения потенциала.

Если заряд перемещать с определенной точки поля в бесконечность, то работа A = q (φ — φ ). Поскольку φ = 0, то A = qφ. Таким образом, величина потенциала φ определенной точки поля определяется работой, которую выполняет электрическое поле, перемещая единичный положительный заряд из этой точки в бесконечность,

Если электрическое поле создается точечным зарядом q, то в точке, лежащей на расстоянии r от него, потенциал вычисляют по формуле

По этой формуле рассчитывают и потенциал поля заряженного шара. В таком случае r — это расстояние от центра шара до выбранной точки поля. С этой формулы видно, что на одинаковых расстояниях от точечного заряда, который создает поле, потенциал одинаков. Все эти точки лежат на поверхности сферы, описанной радиусом r вокруг точечного заряда. Такую сферу называют эквипотенциальной поверхностью.

Эквипотенциальные поверхности — геометрическое место точек в электрическом поле, которые имеют одинаковый потенциал, — один из методов наглядного изображения электрических полей.

Эквипотенциальные поверхности электрических полей, созданных точечными зарядами разных знаков

Силовые линии всегда перпендикулярны эквипотенциальных поверхностей. Это означает, что работа сил поля по перемещению заряда по эквипотенциальной поверхности равна нулю.

В случае наложения электрических полей, созданных несколькими зарядами, потенциал электрического поля равен алгебраической сумме потенциалов полей, созданных отдельными зарядами, φ = φ1 + φ2 + φ3 . Эквипотенциальные поверхности таких систем имеют сложную форму. Например, для системы из двух одинаковых по значению одноименных зарядов эквипотенциальные поверхности имеют вид, изображенный на рисунке. Эквипотенциальные поверхности однородного поля явлются плоскостями.

Эквипотенциальные поверхности: а — поля двух одинаковых зарядов б — однородного поля

Физика для средней школы

Потенциал

Из механики известно, что работа консервативных сил связана с изменением потенциальной энергии. Система «заряд — электростатическое поле» обладает потенциальной энергией (энергией электростатического взаимодействия). Поэтому, если не учитывать взаимодействие заряда с гравитационным полем и окружающей средой, то работа, совершаемая при перемещении заряда в электростатическом поле, равна изменению потенциальной энергии заряда, взятому с противоположным знаком:

Если Wp2 = 0, то в каждой точке электростатического поля потенциальная энергия заряда q равна работе, которая была бы совершена при перемещении заряда q из данной точки в точку с нулевой энергией.

Пусть электростатическое поле создано в некоторой области пространства положительным зарядом q (рис. 1).

Рис. 1

Будем помещать в точку М этого поля различные пробные положительные заряды q. Потенциальная энергия их различна, но отношение для данной точки поля и служит характеристикой поля, называемой потенциалом поля в данной точке:

Единицей потенциала в СИ является вольт (В) или джоуль на кулон (Дж/Кл).

Потенциалом электростатического поля в данной точке называют скалярную физическую величину, характеризующую энергетическое состояние поля в данной точке пространства и численно равную отношению потенциальной энергии, которой обладает пробный положительный заряд, помещенный в эту точку, к значению заряда.

Потенциал — это энергетическая характеристика поля в отличие от напряженности поля, являющейся силовой характеристикой поля.

Необходимо отметить, что потенциальная энергия заряда в данной точке поля, а значит, и потенциал зависят от выбора нулевой точки. Нулевой эта точка называется потому, что потенциальную энергию (соответственно потенциал) заряда, помещенного в эту точку поля, уславливаются считать равной нулю.

Нулевой уровень потенциальной энергии выбирается произвольно, поэтому потенциал можно определить только с точностью до некоторой постоянной, значение которой зависит от того, в какой точке пространства выбрано его нулевое значение.

В технике принято считать нулевой точкой любую заземленную точку, т.е. соединенную проводником с землей. В физике за начало отсчета потенциальной энергии (и потенциала) принимается любая точка, бесконечно удаленная от зарядов, создающих поле. Если нулевая точка выбрана, то потенциальная энергия (соответственно и потенциал в данной точке) заряда q становится определенной величиной.

На расстоянии r от точечного заряда q, создающего поле, потенциал определяется формулой

При указанном выше выборе нулевой точки потенциал в любой точке поля, создаваемого положительным зарядом q, положителен, а поля, создаваемого отрицательным зарядом, отрицателен:

По этой формуле можно рассчитывать потенциал поля, образованного равномерно заряженной проводящей сферой радиусом R в точках, находящихся на поверхности сферы и вне ее. Внутри сферы потенциал такой же, как и на поверхности, т.е.

Если электростатическое поле создается системой зарядов, то имеет место принцип суперпозиции: потенциал в любой точке такого поля равен алгебраической сумме потенциалов, создаваемых в этой точке каждым зарядом в отдельности:

Зная потенциал поля в данной точке, можно рассчитать потенциальную энергию заряда q0 помещенного в эту точку: Wp1 = q. Если положить, что Wp2 = 0, то из уравнения (1) будем иметь

Потенциальная энергия заряда q в данной точке поля будет равна работе сил электростатического поля по перемещению заряда q0 из данной точки в нулевую. Из последней формулы имеем

Потенциал поля в данной точке численно равен работе по перемещению единичного положительного заряда из данной точки в нулевую (в бесконечность).

Потенциальная энергия заряда q помещенного в электростатическое поле точечного заряда q на расстоянии r от него,

Если q и q — одноименные заряды, то , если q и q — разные по знаку заряды, то .

Отметим еще раз, что по этой формуле можно рассчитать потенциальную энергию взаимодействия двух точечных зарядов, если за нулевое значение Wp выбрано ее значение при r = бесконечности.

Если электростатическое поле образовано системой n точечных электрических зарядов, то потенциальная энергия системы определяется по формуле

где — потенциал поля, созданного всеми зарядами, кроме заряда qi, в той точке поля, где находится заряд qi.

Информация о напряжении

Напряжение — работа электрического тока, при которой происходит перемещение заряда из одной точки в другую. Оно имеет векторное направление. Электрическим током является движение заряженных элементарных частиц под воздействие электромагнитного поля.

Некоторые начинающие физики не знают, в чем измеряется напряжение

Знать это очень важно, поскольку элементы электрической цепи можно рассчитать неверно. Единицей измерения тока является ампер (А), а напряжения — вольт (В)

В последнем случае применяется вольтметр — прибор, измеряющий величину напряжения или разности потенциалов. Он подключается параллельно в систему. Например, нужно измерить его значение на лампочке накаливания. Для этого необходимо подключиться параллельно к ней, а не последовательно.

Физический смысл

Под физическим смыслом напряжения или разности потенциалов понимают работу, необходимую для перемещения точечного заряда в 1 Кл из одного места в другое. В этом случае переносится только положительный потенциал. При этом возникает электродвижущая сила (ЭДС), которая называется напряжением или разностью потенциалов.

Для понимания физического смысла следует рассмотреть более простой пример. Пусть существует некоторая система, состоящая из насоса, труб и крана. Насос — напряженность электрического поля, трубы — провода, а кран — сопротивление системы. При включении первого происходит закачивание воды. Если немного приоткрыть кран, то она польется маленькой струйкой. При открытии его полностью жидкость будет уходить более интенсивно.

Формулы для вычислений

Все формулы для расчетов построены на законах Ома. Их всего два: для участка и для всей цепи. Формулировка первого: ток, протекающий на искомом участке, прямо пропорционален U и обратно пропорционален R. Его математическая запись имеет такой вид: I=U/R. Из последнего получаются такие соотношения:

  1. U=IR.
  2. R=U/I.
  3. P=IU=(I2 )R=(U2 )/R, где Р — мощность.

Для полной цепи закон формулируется иначе: ток I прямо пропорционален ЭДС (E) и обратно пропорционален алгебраической сумме внешнего R и внутреннего r сопротивлений. Следует отметить, что r — проводимость источника питания. Записывается он в таком виде: I=E/(R+r). Физики вывели следующие соотношения, помогающие при расчетах:

  1. Е=I (R+r).
  2. R=(E/I)-r.
  3. r=(E/I)-R.
  4. Р=ЕI=(E2 )/(R+r)=(R+r)I2.

Тождества для переменного тока

Напряжение при переменном токе классифицируется на определенные виды. К ним относятся следующие:

  1. Мгновенное или действующее — параметр, который измеряют приборы (Um).
  2. Амплитудное — величина, характеризующее максимальную величину в определенный момент времени. Расчитывается по формуле с учетом угловой частоты (w), времени (t) и угла между фазами (f), который измеряется осциллографом: u (t)=Uмsin (wt+f).
  3. Среднеквадратичное (Uq) — величина, вычисляемая по формуле: Uq=0,7073Uм).

Для расчета следует иметь знания об индуктивной Xl, емкостной Xc и резистивной R нагрузках. Первая — проводимость всех элементов, содержащих индуктивность (катушки, трансформаторы, электродвигатели). Во втором случае учитываются все емкостные радиодетали (варисторы и конденсаторы). Резистивная нагрузка включает все значения резисторов.

Полный импеданс цепи (Z) равен сумме всех элементов, содержащий активную, индуктивную и емкостную. Специалисты рекомендуют использовать такие формулы, необходимые для расчетов:

  1. Xl=wL.
  2. Хс=1/wC.
  3. Z=R+Xc+Xl.
  4. I=Uм/Z.
  5. Uм=IZ.
  6. Z=Uм/I.

Четвертая формула является законом Ома для участка цепи, которую следует применять при переменных токах.

Таким образом, при помощи формулы напряжения можно рассчитывать не только основные параметры электричества для постоянного и переменного токов, но и его допустимые величины для человека.

Уравнивание и выравнивание

Разберем основные понятия и термины:

  • Уравнивание потенциалов — нивелирование разности значений электрических потенциалов между металлическими элементами электроустановки, в помещении, где размещается электроустановка, включая токопроводящие элементы здания. При этом опасной считается ситуация, когда появляется возможность одновременного касания человека проводящих частей. Достигается не размыкаемым соединением всех токоведущих частей между собой с помощью проводников.
  • Выравнивание потенциалов — это система снижения относительной разности электрических потенциалов между заземлением, доступными к прикосновению проводящими частями электроустановок, поверхностью земли и всеми металлоконструкциями здания. Для этого, система выравнивания потенциалов должна иметь не размыкаемое соединение с рабочим (защитным) заземлителем.

Кроме того, к выравниванию потенциалов относится снижение разности электрических потенциалов на поверхности грунта (пола, перекрытий) для предотвращения эффекта шагового напряжения.

Что означает термин «не размыкаемое»? Все токопроводящие линии соединены между собой постоянно (контактные колодки, винтовые соединения, пайка, сварка и прочее). Не допускается установка размыкающих устройств: плавких предохранителей, выключателей, защитных автоматов. То есть, вся система выравнивания потенциалов представляет собой единый токопроводящий контур, объединенный с аналогичным контуром защитного заземления.

Благодаря этим системам, во всех точках, которых может одновременно коснуться человек, происходит выравнивание электрического потенциала до одинакового значения. Ситуация, когда при одновременном касании в одной точке будет напряжение 220 вольт, а в другой 10 вольт, исключается.

Ваш дом становится абсолютно безопасным.

Кулоновский потенциал

Иногда термин кулоновский потенциал используется просто для обозначения электростатического потенциала как полный синоним. Однако можно сказать, что в целом эти термины несколько различаются по оттенку и преимущественной области применения.

Также под кулоновским могут понимать потенциал любой природы (то есть не обязательно электрический), который при точечном или сферически симметричном источнике имеет зависимость от расстояния 1r{\displaystyle {\frac {1}{r}}} (например, гравитационный потенциал в теории тяготения Ньютона, хотя последний чаще всё же называют ньютоновским, так как он был изучен в целом раньше), особенно если надо как-то обозначить весь этот класс потенциалов в отличие от потенциалов с другими зависимостями от расстояния.

Формула электростатического потенциала (кулоновского потенциала) точечного заряда в вакууме:

φ=kqr,{\displaystyle \varphi =k{\frac {q}{r}},}

где k{\displaystyle k} обозначен коэффициент, зависящий от системы единиц измерения — например, в СИ:

k=14πε{\displaystyle k={\frac {1}{4\pi \varepsilon _{0}}}} = 9·109 В·м/Кл,

q{\displaystyle q} — величина заряда, r{\displaystyle r} — расстояние от заряда-источника до точки, для которой рассчитывается потенциал.

  • Можно показать, что эта формула верна не только для точечных зарядов, но и для любого сферически симметричного заряда конечного размера, например, равномерно заряженного шара, правда, только в свободном от заряда пространстве — то есть, например, над поверхностью шара, а не внутри его.
  • Кулоновский потенциал в приведенном выше виде используется в формуле кулоновской потенциальной энергии (потенциальной энергии взаимодействия системы электростатически взаимодействующих зарядов):
    W=∑i<jkqiqjrij=12∑i≠jkqiqjrij.{\displaystyle W=\sum _{i<j}k{\frac {q_{i}q_{j}}{r_{ij}}}={\frac {1}{2}}\sum _{i\neq j}k{\frac {q_{i}q_{j}}{r_{ij}}}.}

14 Электрическое поле в веществе

Электрическое
поле в веществе. Вещество, внесенное в
электрическое поле, может существенно
изменить его. Это связано с тем, что
вещество состоит из заряженных частиц.
В отсутствие внешнего поля частицы
распределяются внутри вещества так,
что создаваемое ими электрическое поле
в среднем по объемам, включающим большое
число атомов или молекул, равно нулю.
При наличии внешнего поля происходит
перераспределение заряженных частиц,
и в веществе возникает собственное
электрическое поле. Полное электрическое
поле складывается в соответствии с
принципом суперпозиции из внешнего
поля и внутреннего поля , создаваемого
заряженными частицами вещества. Вещество
многообразно по своим электрическим
свойствам. Наиболее широкие классы
вещества составляют проводники и
диэлектрики. Проводник — это тело или
материал, в котором электрические заряды
начинают перемещаться под действием
сколь угодно малой силы. Поэтому эти
заряды называют свободными. В металлах
свободными зарядами являются электроны,
в растворах и расплавах солей (кислот
и щелочей) — ионы. Диэлектрик — это тело
или материал, в котором под действием
сколь угодно больших сил заряды смещаются
лишь на малое, не превышающее размеров
атома расстояние относительно своего
положения равновесия. Такие заряды
называются связанными. Свободные и
связанные заряды. СВОБОДНЫЕ ЗАРЯДЫ 1)
избыточные электрич. заряды, сообщённые
проводящему или непроводящему телу и
вызывающие нарушение его электронейтральности.
2) Электрич. заряды носителей тока. 3)
положит. электрич. заряды атомных
остатков в металлах. СВЯЗАННЫЕ ЗАРЯДЫ
Электрич. заряды частиц, входящих в
состав атомов и молекул диэлектрика, а
также заряды ионов в кристаллич.
диэлектриках с ионной решёткой.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации