Андрей Смирнов
Время чтения: ~18 мин.
Просмотров: 1

Расчет молниезащиты

Скачать

 Электрик — Бесплатная программа для электриков и проектировщиков предназначена в помощь электрификаторам всех уровней в быту

Программа позволяет:-рассчитать мощность по 1ф/3ф току.-рассчитать ток по 1ф/3ф мощности.-по заданому сечению и условиям прокладки оределить ток и мощность.-рассчитать потери напряжения-рассчитать токи короткого замыкания-определить диаметр провода,кабеля,шнура и спецкабеля.-определить сечение провода,кабеля,шнура и спецкабеля-проверить выбранное сечение на:-нагрев-экономическую плотность тока-потери напряжения-корону -выбрать сечение провода,кабеля,шнура и спецкабеля при определенной прокладке и потерю напряжения для проводников до 1000 В при определенной длине.-определить ток плавки материала проводника.-определить сопротивление.-определить нагрев.-определить энергию электрической цепи.-определить количество теплоты,выделяющейся в цепи(работа).-расчитать заземление,как одиночного так и контора.-расчитать промерзания грунта для работ по заземлению и прокладке кабелей-выбрать автоматы защиты-произвести расчет работ и выбор оборудования связанных с электрификацией.и многое другое.

Сайт программы: http://rzd2001.narod.ru/load.html

Программа Заземление — предназначена для расчета заземления

Программа Заземление сводится к определению длины горизонтального заземлителя (обвязка) и числа вертикальных заземлителей (стержней) при заданных условиях.

Тестировалась на Win 9x, Win XP, Win 7, Win 8, Win 10Инсталляции не требуетсяДля работы программы в Win 9x необходима библиотека для программ написанных на языке VB. Проверте, установлен ли у Вас файл C:\Windows\System\msvbvm60.dll Если у Вас его нет, то взять можно здесьУстанавливается файл msvbvm60.dll или в C:\Windows\System или в директорию программы.Подробная помощь и описание работы в программе zz.exe

Сайт программы: http://rzd2001.narod.ru/zz.html

Программа Расчет зон молниезащиты предназначена для расчета зон молниезащиты

Установите длину, ширину и высоту здания или сооружения,которое собираетесь защищать. Щелкните по последнему текстовому полю (желтое) и выберете n -среднегодовое число ударов молнии в 1 кв.км земной поверхностив месте расположения здания(сооружения) щелчком на соответствующемтекстовом поле в нижней правой части карты. Выберете из базы данных категорию защищаемого здания/сооружения. Выберете зону защиты: А или Б (щелкните на выбранное желтое поле)в соответствии с N (ожидаемое количество поражений молнией)Читайте примечание (кнопка «Примечание»). Выберете из 5-ти схем соответствующую вам и щелкните. Установите значения в левых текстовых полях и нажмите кнопку»Расчет»К каждому из пяти схем соответствует свое примечание(кнопка «Примечание»)Там же и формулы для расчета каждой схемы защиты.

Сайт программы: http://rzd2001.narod.ru/mz.html

Программа Короткое замыкание kz1000 v 1.1 предназначена для расчета токов короткого замыкания в электроустановках переменного тока напряжением до 1 кВ kz1000

Программа позволяет:рассчитать ток 1-но(3-х) фазного короткого замыканияна кабельных и воздушных линиях.Расчет в программе ведется согласно указаниям ГОСТ 28249-93 «Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ».

Сайт программы: http://rzd2001.narod.ru/kz.html

Программы для расчета заземления – обзор лучших

«Электрик»

Первый программный продукт, который хотелось бы рассмотреть, называется «Электрик». Мы уже говорили о нем, когда рассматривали лучшие программы для расчета сечения кабеля. Так вот и с вычислениями параметров заземляющего контура «Электрик» может запросто справиться. Преимущество данного продукта заключается в том, что он достаточно прост в использовании, русифицирован и к тому же есть возможность бесплатного скачивания. Увидеть интерфейс программы вы можете на скриншотах ниже:

Все, что вам нужно – задать исходные данные, после чего нажать кнопку «Расчет контура». В результате вы получите не только подробную методику вычислений с используемыми формулами, но и чертеж, на котором будет изображен готовый контур заземления. Что касается точности расчетных работ, то тут мы рекомендуем использовать только самые последние версии программы, т.к. в устаревших версиях множество недоработок, которые были устранены со временем. Если вам нужно рассчитать заземляющий контур для частного дома либо более серьезных сооружений, к примеру, котельной либо подстанции, рекомендуем использовать данный продукт.

Расчет заземления в программе Электрик показан на видео:

«Расчет заземляющих устройств»

Название второй программы говорит само за себя. Благодаря ей можно рассчитать не только контур заземления, но и молниезащиты, что также крайне необходимо. Интерфейс программки довольно простой, собственно, как и в рассмотренном выше аналоге. Выглядит форма для заполнения исходных данных следующим образом:

Если вам нужно выполнить простейший расчет заземляющего контура именно сейчас, можете воспользоваться нашим онлайн калькулятором расчета заземления. Точность вычислений конечно же уступает предоставленным в статье программным продуктам, однако все же приблизительные значения вы получите, на которые и стоит ориентироваться.

«Заземление»

Еще один программный продукт, чье название говорит само за себя. Как и в предыдущих двух программках, в этой можно без проблем разобраться, т.к. интерфейс простейший и представлен на русском языке. Последняя версия программы (v3.2) позволяет не только осуществлять расчет ЗУ, но и оценивать возможность использования ЖБ фундаментов промышленных зданий в качестве защитного контура. Помимо этого программа может помочь выбрать сечение ГЗШ, PE-проводника, а также проводников системы уравнивания потенциалов. Еще одна полезная функциональная возможность продукта – расчет напряжения прикосновения и шагового напряжения. Интерфейс вы уже встречали немного выше, выглядит он следующим образом:

Дело в том, что создатели этой программки одновременно являются и создателями «Электрик», поэтому вы можете скачать один из предоставленных в ассортименте продуктов.

«ElectriCS Storm»

Более сложной в использовании программой, для работы с которой требуются навыки моделирования, является ElectriCS Storm. Использовать ее для вычислений заземляющего контура дома не целесообразно, т.к. вы скорее всего запутаетесь и рассчитаете все с ошибками. Мы рекомендуем работать с данным софтом профессионалам в области энергетики или же студентам ВУЗов пересекающихся специальностей.

Преимуществом данного программного продукта является то, что можно осуществлять проектирование заземляющего устройства (ЗУ) и тем самым выводить 3D модель готовых защитных контуров. Помимо этого функциональные возможности программы позволяют рассчитывать электромагнитную обстановку и заземление подстанций.

Все чертежи можно сохранять в dwg формате, благодаря чему потом их можно открыть в AutoCAD.

«Акула»

Ну и замыкает наш список лучших программ для расчета заземления программный комплекс энергетика под названием «Акула», благодаря которому можно рассчитывать:

  • заземляющие устройства;
  • молниезащиту;
  • характеристики защитных аппаратов;
  • потери напряжения до 1 кВ;
  • мощность объектов, а также электрокотлов и кондиционеров;
  • сечение проводки;
  • освещенность в помещении;

Интерфейс также интуитивно понятен и представлен на русском языке:

«Акула» доступна для бесплатного скачивания, поэтому найти ее в просторах интернета не составит труда. Напоследок рекомендуем просмотреть очень полезное видео по теме:

На этом наш обзор заканчивается. Надеемся, предоставленные программы для расчета заземления пригодились вам и помогли в организации защитного контура.

Рекомендуем также прочитать:

Внутренняя молниезащита (УЗИП)

Для защиты оборудования и электрических коммуникаций внутри здания мы рекомендуем предусмотреть комплекс мер, позволяющих исключить воздействие опасных перенапряжений.

Защита электрической сети. Защита в главном/вводном распределительном щите

В главном/вводном распределительном щите устанавливается устройство защиты от импульсных перенапряжений УЗИП класса I+II+III LEUTRON PP BCD TT 25/100, которое выбрано в соответствии с трехфазным вводом в дом и системой питания TT или TN-S. Подключение выполняется последовательно (V-подключение). Мы рекомендуем использовать предохранители F1(см.схему на рисунке 4) без временной задержки, номиналом до 125 А. Если установлен вводной выключатель (или защитные предохранители вместо него), рассчитанный по нагрузке электросети, и его номинал меньше 125 А, то установка дополнительных предохранителей F1 не требуется. Схема подключения УЗИП показана на рисунке 4.

Рисунок 4. Схема подключения УЗИП класса 1+2+3 для коттеджа

Без указанных мер молниезащита объекта является неполной, поскольку только применение защитных устройств позволяет снизить перенапряжения в сети до безопасного для защищаемого оборудования уровня.

Таблица 1. Перечень необходимых материалов:

Расчет зоны молниезащиты одиночного стержневого молниеотвода

Номограмма для определения параметров зоны защиты двойного тросового молниеотвода

Тросовый молниеотвод может рассматриваться как двойной только при условии, если отношение (L/h) Расчет молниеотвода

Электрическое сопротивление заземляющего устройства предусматривается в проекте согласно требованиям Правил устройства электроустановок.

Такой контур заземления устанавливается в свободной от застройки зоне участка. Заземлению подлежат:

  • бытовые электрические приборы единичной мощностью свыше 1,3 кВт;
  • металлические корпуса ванн и душевых поддонов (они должны быть соединены металлическими проводниками с трубами водопровода);
  • металлические корпуса сетильников, встраиваемых или устанавливаемых в подвесные потолки, выполненные с применением металла;
  • металлические корпуса бытовых кондиционеров воздуха.

Заземлители устанавливаются до начала электромонтажных работ. Соединение арматуры фундаментов с арматурой стен должна выполнять строительная организация. Заземлители присоединяются к трубопроводам с помощью сварки либо хомута. Если невозможно использовать естественные заземлители, применяются заземлители искусственные. К ним относятся заземляющий контур, который создаётся как для заземления жлектроприборов, так и для молниезащиты.

Молниезащита — это система устройств, обеспечивающая безопасность здания при электрических разрядах в атмосфере. Её основная задача — изменение траектории разрядов молнии и гашение её энергии. Молниезащита включает:

  • молниеприемник — устройство, принимающее разряд молнии;
  • токоотвод — элементы распределения электрического разряда;
  • заземлитель — устройство гашения электрического разряда.

Существует несколько схем молниезащиты. Схема на основе стержневого молниеотвода включает металлический стержень, соединенный кабелями с заземлителем. Молниеотвод на основе «пространственной сетки» устанавливается на крыше дома. Он распределяет и гасит разряд в случае прямого попадания. Схема на основе натяжных систем аналогична схеме стержневого молниеотвода, но при этом проводники натянуты по периметру защищаемой зоны.

Все вышеуказанные конструкции изготавливаются из стальных стержней, канатов или стальных сеток (диаметром не менее 6 мм). Элементы в узлах соединяются сваркой. Наиболее распространена конструкция стержневых молниеотводов поскольку они наиболее просты в изготовлении и обеспечиваются надежность системы.

Молниеотводы на основе натяжных систем используют при устройстве кровель сложной формы. Пространственая сетка требует большего расхода материалов и сложнее в установке. Такой вид молниеотвода целесообразен, если крыша дома выше остальных объектов, находящихся в радиусе 50 м.

Тип молниеотвода (одиночный, двойной и многократный стержневой, одиночный и двойной тросовый) выбирают в зависимости от конструкции зданий и сооружений, их размеров, формы и взаимного расположения.

Рис. 29.1. Зона защиты одиночного стержневого молниеотвода высотой до 150м

Зона защиты молниеотвода представляет собой часть пространства, примыкающего к молниеотводу, внутри которого здание или сооружение защищено от прямых ударов молнии с определенной степенью надежности. Различают зоны защиты двух типов: А — со степенью надежности 99,5 % и выше; Б — со степенью надежности 95 % и выше. Для объектов сельскохозяйственного назначения, как правило, требуется зона Б.

Зона защиты одиночного стержневого молниеотвода высотой h≤ 150м (рис.

Исходные данные для расчета заземления

Перед началом обустройства заземления расчет которого нужно провести, необходимо заранее определиться с такими исходными данными, как:

  • Линейные размеры забиваемых в грунт стальных штырей.
  • Расстояние между ними (шаг монтажа).
  • Допустимая глубина погружения.
  • Характеристики почвы в месте обустройства заземления.

При его определении важно помнить о том, что он сильно отличается от места к месту и в значительной степени зависит от климатической зоны, к которой относится регион. Помимо этих данный придется учесть конфигурацию и материал заготовок, из которых сваривается готовое сооружение (либо обычный стальной уголок, либо медная широкая полоска)

Согласно ПУЭ минимальные размеры элементов для треугольной или линейной контурной конструкции должны быть:

  • полоса – сечение 48 мм2;
  • уголок 4х4 мм;
  • круглый брусок – сечение 10 мм2;
  • стальная труба диаметром 2,5 см со стенками толщиной не менее 3,5 мм.

В соответствие с этими требованиями ее выбирают не менее 2-2,5 метра. Расстояние между соседними точками погружения стержней должно быть кратным их длине. В зависимости от размеров и конфигурации площадки для обустройства ЗУ элементы конструкции устанавливаются либо в ряд, либо в виде правильного треугольника (иногда для этого выбирается квадратная форма). Используемые в этом случае методики расчета различных вариантов ЗУ ставят своей задачей получение данных по числу стержней и параметрам соединительной полосы (ее длины и сечения).

Описание вводимых данных в программе Заземлитель

Интерфейс программы состоит из шести блоков, в которых задаются исходные данные для расчета. Рассмотрим их подробно:

Климатический район
Каждому климатическому району соответствуют значения средних минимальных и средних максимальных температур, среднегодового количества осадков и продолжительности замерзания воды. При наведении курсором на каждый район появится подсказка, облегчающая выбор. Если вашего района в списке нет, найдите его характеристики в открытом доступе и сопоставьте с имеющимися вариантами.
Почва
Данный параметр позволяет выбрать удельное сопротивление почвы согласно ее составу. Настройка позволяет разделить пласт на два слоя, указав для каждого свой состав. В полях выбора дается список названий грунтов с цифрой приблизительного удельного сопротивления каждого при летних температурах. Удельное сопротивление зависит от множества факторов. Если вам известно точное значение удельного сопротивления вашего грунта, вы можете его задать в соответствующее поле напрямую. Исходя из удельных сопротивлений указанных типов грунтов и толщины верхнего пласта грунта, программа высчитывает эквивалентное удельное сопротивление и удельное сопротивление с учетом повышающего коэффициента выбранной климатической зоны.
Заглубление
Данный параметр указывает глубину, на которой будет располагаться верхняя точка горизонтального электрода (соединителя). Обычно траншею для заглубления копают на глубину 0,7 м. В этом случае, горизонтальный электрод будет заглублен на 0,7 − 0,2 (не вбитая часть) = 0,5 м.
Размер вертикальных электродов
В данном пункте можно выбрать форму заземлителя в виде уголка или круглую, что почти не влияет на итоговое сопротивление заземлителя. В поле «ширина» устанавливается ширина полки уголка или диаметр круга. Арматура для вертикальных электродов обычно не применяется, поскольку ее трудно забивать в землю из-за ребер. В поле «длина» выбирается длина электрода. Чаще всего — 2,5-3 м. В нижней части блока показывается сопротивление одного электрода заданной длины и ширины.
Расположение вертикальных электродов
Электроды обычно соединяют контуром в том случае, если их много, и заземление устраивается по всему периметру здания. Если заземлитель состоит из небольшого количества электродов (3 — 4), их можно соединить в ряд. В два нижних поля блока вводится предположительное количество электродов и кратность интервала. Например, при кратности 2 и длине электродов 2,5 метра расстояние между ними должно быть равным 5 метрам. Чем больше расстояние между электродами, тем выше коэффициент их использования. Но на практике для небольших зданий чаще всего используют минимальную кратность. В схемах, где значение кратности существенно меньше единицы, контур не в полной мере раскрывают свой потенциал.
Размер горизонтального соединителя
К горизонтальному заземлителю предъявляются меньшие прочностные требования, поэтому в качестве материала для его изготовления помимо уголка, трубы или круглой стали можно использовать арматуру или полосу. В поле «размер» задается ширина полосы, ширина полки уголка или диаметр круглого соединителя. Ниже выводится длина всего соединителя в зависимости от количества соединяемых электродов и схемы заземлителя. Также в блоке отображается коэффициент использования соединителя, а в последней строке — итоговое сопротивление горизонтального соединителя.

«Расчет заземляющих устройств»

Название второй программы говорит само за себя. Благодаря ей можно рассчитать не только контур заземления, но и молниезащиты, что также крайне необходимо. Интерфейс программки довольно простой, собственно, как и в рассмотренном выше аналоге. Выглядит форма для заполнения исходных данных следующим образом:

Если вам нужно выполнить простейший расчет заземляющего контура именно сейчас, можете воспользоваться нашим . Точность вычислений конечно же уступает предоставленным в статье программным продуктам, однако все же приблизительные значения вы получите, на которые и стоит ориентироваться.

Сайт для электриков

Молниезащита электроустановок систем электроснабжения: учебное пособие/А.В. Кабышев. -Томск: Изл-во ТПУ,2006. — 124 с.

Пособие подготовлено на кафедре электроснабжения промышленных предприятий ТПУ и ориентировано на студентов электроэнергетических специальностей.

ПРЕДИСЛОВИЕ ВВЕДЕНИЕ 1. ЗАЩИТА ОБЪЕКТОВ ЭЛЕКТРОЭНЕРГЕТИКИ ОТ ПРЯМЫХ УДАРОВ МОЛНИИ 1.1. Основные характеристики разряда молнии 1.2. Мероприятия по грозозащите воздушных линий электропередачи 1.3. Защита подстанций от прямых ударов молнии 1.3.1. Общие положения 1.3.2. Конструктивное выполнение молниеотводов 1.3.3. Концепции определения защитного действия молниеотводов 1.3.4. Зоны защиты молниеотводов 1.3.5. Определение надежности защиты подстанций от прямых ударов молнии 1.3.6. Расчет молниезащиты 1.3.7. Заземление молниеотводов 1.3.8. Расчет заземляющих устройств 1.4. Схемы молниезащиты подстанций промышленных предприятий 1.5. Молниезащита подходов воздушных линий электропередачи к подстанции 1.6. Схемы молниезащиты подстанций на ответвлениях 1.7. Молниезащита электрических машин 1.8. Наибольшие допустимые расстояния от вентильных разрядников до защищаемого оборудования 2. УСТРОЙСТВА И АППАРАТЫ ЗАЩИТЫ 2.1. Защитные промежутки 2.2. Трубчатые разрядники 2.3. Вентильные разрядники 2.4. Нелинейные ограничители перенапряжений 24.1. Основные требования к ОПН 2.4.2. Классификация электрических сетей для выбора ОПН 2.4.3. Условия эксплуатации ОПН в сетях с глухим заземлением нейтрали 24.4. Условия эксплуатации ОПН в распределительных сетях 6-35 кВ 2.4.5. Эксплуатация ОПН в сетях собственных нужд 2.4.6. Основные технические характеристики ОПН 3. ВНУТРЕННЯЯ СИСТЕМА МОЛНИЕЗАЩИТЫ 3.1. Режимы заземления нейтрали в сетях 0,4 кВ 3.1.1. Сеть TN-C 3.1.2. Сеть TN-S 3.1.3. Сеть TN-C-S 3.1.4. Сеть TT 3.1.5. Сеть IT 3.1.6. Краткие рекомендации по выбору сетей 3.2. Система уравнивания потенциалов на вводе в здания 3.3. Зоновая концепция молниезащиты 3.3.1. Зоны молниезащиты 3.3.2. Требования стандартов МЭК к устройствам защиты от импульсных перенапряжений 3.3.3. Требования ГОСТ к устройствам защиты от импульсных перенапряжений 3.3.4. Схемы включения устройств защиты от импульсных перенапряжений 3.3.5. Очередность срабатывания устройств защиты от импульсных перенапряжений 3.3.6. Монтаж устройств защиты от импульсных перенапряжений 3.3.7. Дополнительная защита от токов короткого замыкания 3.3.8. Методика выбора типа защитных устройств 3.3.9. Методика выбора УЗИП при воздушном вводе 3.3.10. Выбор защитных устройств: резюме 3.3.11. Особенности подключения УЗИП 4. ДИАГНОСТИКА СОСТОЯНИЯ ЗАЗЕМЛЯЮЩИХ УСТРОЙСТВ И МОЛНИЕЗАЩИТЫ 4.1. Измерение удельного сопротивления фунта 4.1.1. Грунт как проводник 4.1.2. Метод пробного электрода 4.1.3. Метод вертикального электрического зондирования 4.1.4. Реализация метода вертикального электрического зондирования 4.2. Эксплуатационный контроль сопротивления заземляющего устройства электроустановок 4.3. Измерение сопротивления связи между элементами заземляющего устройства 4.4. Осмотр устройств защиты от прямых ударов молнии БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Виды молниеприемников

Системы молниезащиты зданий могут выполняться по различным схемам. Чаще всего используются классические варианты со стержневыми молниеотводами, состоящими из стержней, соединенных с заземляющим контуром специальным проводником. Они отличаются простотой изготовления и надежностью в процессе эксплуатации. В других конструкциях основным элементом служит пространственная сетка, расположенная на крыше здания.

При прямом ударе молнии, она выполняет распределение и последующее гашение разряда. Натяжные системы работают по такому же принципу, что и стержневые конструкции, только принимающие проводники натягиваются по всему периметру крыши защищаемого объекта.

В конструкциях перечисленных схем используются стальные стержни, тросы или сетки, изготовленные из прутка диаметром не ниже 6 мм. Соединение узлов выполняется с помощью сварки. Натяжной защитный молниеотвод применяются на кровлях со сложной конфигурацией. Для пространственной сетки необходимо больше материалов, а их установка достаточно сложная, требующая знаний и практических навыков.

Каждый молниеотвод выбирается в индивидуальном порядке. Учитываются конструктивные особенности зданий и сооружений, их форма, размеры и расположение относительно друг друга. На основе этих данных делается расчет молниезащиты. Все подобные устройства создают условную защитную зону, примыкающую к ним со всех сторон.

Внутри этого пространства все объекты оказываются под защитой, и им не страшны прямые удары молний. Здесь обеспечивается определенная степень надежности, разделенная на два типа: А – 99,5% и более, Б – 95% и более. Второй вариант, как правило, используется на объектах сельского хозяйства.

Методики и программы для расчета заземления

Для облегчения процесса можно воспользоваться различными программами, которые по определенным методикам помогают рассчитать заземление на основе введенных в специальные поля данных и измерений. Список наиболее популярных:

  • «Электрик». Это многофункциональная программа, позволяющая рассчитывать множество электрических величин, которые нужны при осуществлении монтажных работ любой сложности. Методика вычисления параметров заземления лишь одна из функций ПО;
  • «Акула». Еще одно известное приложение, которое, кроме заземления, способно рассчитать систему грозозащиты, электрическую проводку или освещение;
  • ElectriCS Storm. Возможности программы позволяют не только вычислить параметры заземляющего устройства, но и громоотвод или магнитную совместимость. Единственный недостаток ElectriCS Storm в том, что пользоваться им сможет только профессионал;
  • «Заземление». Простая в использовании программа, которая подойдет даже новичку. Она использует простые алгоритмы расчета с несколькими полями ввода;
  • «Расчет заземляющих устройств». Аналог предыдущего решения, но с возможностью расчета молниезащиты. Обладает таким же простым и понятным интерфейсом на русском языке.

Программа «Электрик»

Важно! Основной недостаток подобных программ в том, что они обычно используют только один метод расчета и не позволяют изменить его или ознакомиться с методикой

Исходные данные для расчета заземления

1. Основные условия, которых необходимо придерживаться при сооружении заземляющих устройств это размеры заземлителей.

1.1. В зависимости от используемого материала (уголок, полоса, круглая сталь) минимальные размеры заземлителей должны быть не меньше:

  • а) полоса 12х4 – 48 мм2;
  • б) уголок 4х4;
  • в) круглая сталь – 10 мм2;
  • г) стальная труба (толщина стенки) – 3.5 мм.

Минимальные размеры арматуры применяемые для монтажа заземляющих устройств

1.2. Длина заземляющего стержня должна быть не меньше 1.5 – 2 м.

1.3. Расстояния между заземляющими стержнями берется из соотношения их длины, то есть: a = 1хL; a = 2хL; a = 3хL.

В зависимости от позволяющей площади и удобства монтажа заземляющие стрежни можно размещать в ряд, либо в виде какой ни будь фигуры (треугольник, квадрат и т.п.).

Цель расчета защитного заземления.

Основной целью расчета заземления является определить число заземляющих стержней и длину полосы, которая их соединяет.

Как проверить качество смонтированного контура заземления

Первый способ самый точный и действенный, но он не позволяет устранить неисправности и часто приводит к печальным последствиям при наличии ошибок. На практике применяют второй метод: привлечение специалистов подготовленных электрических подразделений.

Для лучшего освоения методов расчёта заземления лучше рассмотреть пример, а лучше – несколько.

Заземлители часто делают своими руками из стального уголка 50х50 мм длиной 2,5 м. Расстояние между ними выбирается равным длине – h=2.5м. Для глинистого грунта ρ = 60 Ом∙м. Коэффициент сезонности для средней полосы, выбранный по таблицам, равен 1,45. С его учётом ρ = 60∙1,45 = 87 Ом∙м.

Для заземления по контуру роется траншея глубиной 0,5 м и в дно забивается уголок.

d = 0.95∙p = 0.995∙0.05 = 87 Ом∙м.

h = 0,5l t = 0.5∙2.5 0.5 = 1.75 м.

По приближенной формуле R = 0.3∙87 = 26.1 Ом. Из расчёта следует, что одного стержня будет явно недостаточно, поскольку по требованиям ПУЭ величина нормированного сопротивления составляет Rнорм = 4 Ом (для напряжения сети 220 В).

Здесь вначале принимается kисп = 1. По таблицам находим для 7 заземлителей kисп = 0,59. Если подставить это значение в предыдущую формулу и снова пересчитать, получится количество электродов n = 12 шт. Затем производится новый перерасчёт для 12 электродов, где опять по таблице находится kисп = 0,54.

Таким образом, для 13 уголков Rn = Rз/(n*η) = 27,58/(13∙0,53) = 4 Ом.

Нужно изготовить искусственное заземление с сопротивлением Rнорм = 4 Ом, если ρ = 110 Ом∙м.

Заземлитель изготавливается из стержней диаметром 12 мм и длиной 5 м. Коэффициент сезонности по таблице равен 1,35. Ещё можно учесть состояние грунта kг. Измерения его сопротивления производились в засушливый период. Поэтому коэффициент составил kг =0,95.

Предлагаем ознакомиться Установка дымохода сэндвич своими руками: как сделать правильно, правила монтажа

ρ = 1,35∙0,95∙110 = 141 Ом∙м.

Электроды располагаются в ряд. Расстояние между ними должно быть не меньше длины. Тогда коэффициент использования составит по таблицам: kисп = 0,56.

После монтажа заземления производятся измерения электрических параметров на месте. Если фактическое значение R получается выше, ещё добавляются электроды.

Если рядом находятся естественные заземлители, их можно использовать.

Особенно часто это делается на подстанции, где требуется самая низкая величина R. Оборудование здесь используется максимально: подземные трубопроводы, опоры линий электропередач и др. Если этого недостаточно, добавляется искусственное заземление.

Естественное заземление на даче через арматуру фундамента

Любой приведённый пример можно использовать как алгоритм расчёта. При этом для оценки правильности может быть применена онлайн-программа.

Как выглядит онлайн-программа, с помощью которой можно рассчитать заземление

Самостоятельные расчёты заземления являются оценочными. После его монтажа следует произвести дополнительные электрические измерения, для чего приглашаются специалисты. Если грунт сухой, нужно использовать длинные электроды из-за плохой проводимости. Во влажном грунте поперечное сечение электродов следует брать как можно больше по причине повышенной коррозии.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации