Андрей Смирнов
Время чтения: ~17 мин.
Просмотров: 41

Явление электромагнитной индукции

Индукционный ток правило

Определяющее направление индукционного тока правило звучит следующим образом: «Индукционный ток направлен так, чтобы своим магнитным полем противодействовать изменению магнитного потока, которым он вызван». Правая рука развернута ладонью навстречу магнит¬ным силовым линиям, при этом большой палец направлен в сторону движения проводника, а четыре пальца по-казывают, в каком направлении будет течь индукционный ток. Перемещая проводник, мы перемещаем вместе с проводчиком все электроны, заключенные в нем, а при перемещении в магнитном поле электрических зарядов на них будет действовать сила по правилу левой руки.

Направление индукционного тока

Направление индукционного тока, как и его величина, определяется правилом Ленца, в котором говорится, что направление индукционного тока всегда ослабляет действие фактора, возбудившего ток. При изменении потока магнитного поля через контур направление индукционного тока будет таким, чтобы скомпенсировать эти изменения. Когда магнитное поле возбуждающее ток в контуре создается в другом контуре, направление индукционного тока зависит от характера изменений: при увеличении внешнего тока индукционный ток имеет противоположное направление, при уменьшении — направлен в ту же сторону и стремиться усилить поток.

Индукционный ток в катушке

Катушка с индукционным током имеет два полюса (северный и южный), которые определяются в зависимости от направления тока: индукционные линии выходят из северного полюса. Приближение магнита к катушке вызывает появление тока с направлением, отталкивающим магнит. При удалении магнита ток в катушке имеет направление, способствующее притягиванию магнита.

Индукционный ток возникает

Индукционный ток возникает в замкнутом контуре, находящемся в переменном магнитном поле. Контур может быть как неподвижным (помещенным в изменяющийся поток магнитной индукции), так и движущимся (движение контура вызывает изменение магнитного потока). Возникновение индукционного тока обуславливает вихревое электрическое поле, которое возбуждается под воздействием магнитного поля.

Как создать индукционный ток

О том, как создать кратковременный индукционный ток можно узнать из школьного курса физики.

Для этого есть несколько способов:

  • — перемещение постоянного магнита или электромагнита относительно катушки,
  • — перемещение сердечника относительно вставленного в катушку электромагнита,
  • — замыкание и размыкание цепи,
  • — регулирование тока в цепи.

Сила индукционного тока

Основной закон электродинамики (закон Фарадея) гласит, что сила индукционного тока для любого контура равна скорости изменения магнитного потока, проходящего через контур, взятой со знаком минус. Сила индукционного тока носит название электродвижущей силы.

Приложения

Принципы электромагнитной индукции применяются во многих устройствах и системах, в том числе:

  • Токовые клещи
  • Электрические генераторы
  • Электромагнитное формование
  • Графический планшет
  • Эффект Холла метров
  • Индукционная готовка
  • Асинхронные двигатели
  • Индукционное уплотнение
  • Индукционная сварка
  • Индуктивная зарядка
  • Индукторы
  • Магнитные расходомеры
  • Фонарик с механическим приводом
  • Пикапы
  • Кольцо Rowland
  • Транскраниальная магнитная стимуляция
  • Трансформеры
  • Беспроводная передача энергии

Электрический генератор

Прямоугольная проволочная петля, вращающаяся с угловой скоростью ω в направленном радиально наружу магнитном поле B фиксированной величины. Цепь завершается щетками, скользящими по контактам с верхним и нижним дисками, имеющими токопроводящие обода. Это упрощенная версия барабанного генератора .

ЭДС, генерируемая законом индукции Фарадея из-за относительного движения цепи и магнитного поля, является явлением, лежащим в основе электрических генераторов . Когда постоянный магнит перемещается относительно проводника или наоборот, создается электродвижущая сила. Если провод подключен через электрическую нагрузку , ток будет течь, и, таким образом , вырабатывается электрическая энергия , преобразующая механическую энергию движения в электрическую. Например, барабан-генератор основан на рисунке справа внизу. Другая реализация этой идеи — диск Фарадея , показанный в упрощенном виде справа.

В примере с диском Фарадея диск вращается в однородном магнитном поле, перпендикулярном диску, заставляя ток течь в радиальном плече из-за силы Лоренца. Чтобы управлять этим током, необходима механическая работа. Когда генерируемый ток протекает через проводящий обод, этим током создается магнитное поле по закону Ампера (обозначено на рисунке как «индуцированный B»). Таким образом, обод становится электромагнитом, который сопротивляется вращению диска (пример закона Ленца ). На дальней стороне рисунка обратный ток течет от вращающегося рычага через дальнюю сторону обода к нижней щетке. B-поле, индуцированное этим обратным током, противостоит приложенному B-полю, стремясь уменьшить поток через эту сторону цепи, противодействуя увеличению потока из-за вращения. На ближней стороне рисунка обратный ток течет от вращающегося рычага через ближнюю сторону обода к нижней щетке. Индуцированное B-поле увеличивает поток на этой стороне цепи, противодействуя уменьшению потока из-за вращения. Энергия, необходимая для поддержания движения диска, несмотря на эту реактивную силу, в точности равна генерируемой электрической энергии (плюс энергия, теряемая из-за трения , джоулева нагрева и других неэффективностей). Такое поведение характерно для всех генераторов, преобразующих механическую энергию в электрическую.

Электрический трансформатор

Когда электрический ток в петле провода изменяется, изменяющийся ток создает изменяющееся магнитное поле. Второй провод, находящийся в зоне действия этого магнитного поля, будет испытывать это изменение магнитного поля как изменение связанного магнитного потока, d Φ B / dt . Таким образом, во втором контуре возникает электродвижущая сила, которая называется наведенной ЭДС или ЭДС трансформатора. Если два конца этого контура соединить через электрическую нагрузку, ток будет течь.

Токовые клещи

Токовые клещи

Токовые клещи — это тип трансформатора с разъемным сердечником, который можно раздвинуть и закрепить на проводе или катушке для измерения тока в нем или, наоборот, для создания напряжения. В отличие от обычных инструментов, зажим не имеет электрического контакта с проводником и не требует его отключения во время крепления зажима.

Магнитный расходомер

Закон Фарадея используется для измерения расхода электропроводных жидкостей и шламов. Такие приборы называются магнитными расходомерами. Индуцированное напряжение ℇ, создаваемое в магнитном поле B из-за проводящей жидкости, движущейся со скоростью v , таким образом, определяется выражением:

Eзнак равно-Bℓv,{\ displaystyle {\ mathcal {E}} = — B \ ell v,}

где ℓ — расстояние между электродами в магнитном расходомере.

Паразитная индукция и тепловые потери

В любом металлическом объекте, движущемся по отношению к статическому магнитному полю, будут возникать индукционные токи, как и в любом неподвижном металлическом предмете по отношению к движущемуся магнитному полю. Эти энергетические потоки в сердечниках трансформаторов нежелательны, из-за них в слое металла течёт электрический ток, который нагревает металл.

В соответствии с правилом Ленца вихревые токи протекают внутри проводника по таким путям и направлениям, чтобы своим действием возможно сильнее противится причине, которая их вызывает. Вследствие этого при движении в магнитном поле на хорошие проводники действует тормозящая сила, вызываемая взаимодействием вихревых токов с магнитным полем. Этот эффект используется в ряде приборов для демпфирования колебаний их подвижных частей.

Есть ряд методов, используемых для борьбы с этими нежелательными индуктивными эффектами.

  • Электромагниты в электрических двигателях, генераторах и трансформаторах не делают из сплошного металла, а используют тонкие листы жести, называемые «ламинатами». Эти тонкие пластины уменьшают паразитные вихревые токи, как будет описано ниже.
  • Катушки индуктивности в электронике обычно используют магнитные сердечники, чтобы минимизировать паразитный ток. Их делают из смеси металлического порошка со связующим наполнителем, и они имеют различную форму. Связующий материал предотвращает прохождение паразитных токов через порошковый металл.

Расслоение электромагнита

Вихревые токи возникают, когда сплошная масса металла вращается в магнитном поле, так как внешняя часть металла пересекает больше силовых линий, чем внутренняя, следовательно, индуцированная электродвижущая сила неравномерна и стремится создать токи между точками с наибольшим и наименьшим потенциалами. Вихревые токи потребляют значительное количество энергии, и часто приводят к вредному повышению температуры.

На этом примере показаны всего пять ламинатов или пластин для демонстрации расщепление вихревых токов. На практике число пластин или перфорация составляет от 40 до 66 на дюйм, что приводит к снижению потерь на вихревых токах примерно до одного процента. Хотя пластины могут быть отделены друг от друга изоляцией, но поскольку возникающие напряжения чрезвычайно низки, то естественной ржавчины или оксидного покрытия пластин достаточно, чтобы предотвратить ток через пластины.

Это ротор от двигателя постоянного тока диаметром примерно 20 мм, используемого в проигрывателях компакт-дисков

Обратите внимание, для снижения паразитных индуктивных потерь сделано расслоение полюса электромагнита на части.

Паразитные потери в катушках индуктивности

На этой иллюстрации сплошной медный стержень катушки индуктивности во вращающемся якоре просто проходит под кончиком полюса N магнита

Обратите внимание на неравномерное распределение силовых линий через стержень. Магнитное поле имеет большую концентрацию и, следовательно, сильнее на левом краю медного стержня (a, b), тогда как слабее по правому краю (c, d)

Поскольку два края стержня будут двигаться с одинаковой скоростью, это различие в напряженности поля через стержень создаст вихри тока внутри медного стержня.

Это одна из причин, по которой устройства с высоким напряжением, как правило, более эффективны, чем низковольтные устройства. Высоковольтные устройства имеют множество небольших витков провода в двигателях, генераторах и трансформаторах. Эти многочисленные небольшие витки провода в электромагните разбивают вихревые потоки, а в пределах больших, толстых катушек индуктивности низкого напряжения образуется вихревые токи большей величины.

Вред для здоровья

Сегодня ведется множество дискуссий в отношении вреда индукционных плит, ведь принцип их работы построен на электромагнитных полях, о негативном действии которых хорошо известно. По этому поводу было проведено множество экспериментов.

Ученые доказали, что на расстоянии одного сантиметра от источника электромагнитное излучение всегда выше допустимой нормы ICNIRP.

В случае смещения кастрюли относительно центра рабочей поверхности или в ситуации, если ее диаметр меньше диаметра конфорки, указанная норма будет больше нормы на расстоянии до 12 см.

Этот параметр характерен для случаев, когда используется специальная посуда для приготовления пищи. Если на рабочей поверхности находится эмалированный предмет, опасная зона больше — до 20 см.

Чем это опасно для здоровья?

Электромагнитное поле, которое возникает возле тела человека, может привести к появлению наведенных токов в организме и негативному воздействию на ЦНС. Для защиты здоровья специалисты ICNIRP установили требования в отношении верхних пределов токов.

Чтобы убедиться, соответствуют ли индукционные плиты таким нормам, было проведено исследование с участием группы добровольцев различного возраста и пола.

Люди располагались в непосредственной близости от варочной поверхности (на расстоянии пяти сантиметров). Ученые в этот момент изучали токи, которые протекали в теле и ЦНС организма.

Было доказано, что показатели тока в случае применения встроенных моделей минимальны.

Что касается портативных моделей, в них показатели тока выше, но они также не превысили установленную норму.

Стоит отметить, что установленная ICNIRP граница в 50 раз меньше минимального порога, при котором происходит стимулирование ЦНС человека.

Каков итог исследования?

Специалисты опубликовали результаты эксперименты, но признали, что информации о вреде электромагнитных полей пока недостаточно

Важно понимать, что характер подобных излучений может меняться в зависимости от природы его появления

Существует еще одно исследование, результаты которого можно найти на сайте ВОЗ.

В эксперименте принимали участие люди и животные, но доказать негативное влияние электромагнитного излучения на ЦНС или сердечно-сосудистую систему не удалось.

Пользователи, которые отдали предпочтение индукционной плите, должны брать во внимание следующие моменты:

Не используйте посуду с явными следами повреждений, а также имеющую выпуклое дно;
Желательно, чтобы применяемые кастрюли и сковороды покрывали рабочую поверхность конфорки

При этом посуда должна располагаться ровно по центру области нагрева;
В процессе работы индукционной плиты находитесь от нее подальше и не прикасайтесь к поверхности;
При покупке посуды обращайте внимание на специальные пометки, в которых производитель отмечает возможность применения изделий на плите индукционного типа;
В процессе перемешивания пищи используйте неметаллические столовые предметы.

Конструктивные особенности

Основу кабеля составляют токопроводящие жилы, количество которых может быть от 4 до 14 штук. Жилы представляют собой конструкции из нескольких скрученных между собой проводов, помещённых во внешнюю изоляцию — как правило, поливинилхлорид, отличающийся высокой устойчивостью к перепадам температур.

Поверх сердечника (переплетения жил) накладывается плёнка из синтетических материалов, на который создаётся экран — переплетение тонкой оголённой медной проволоки. Экран защищает кабель от наводок и воздействия различных помех электромагнитного характера. Он также обеспечивает стабильное качество пропускания электрического тока и высокую надёжность изделия.

Явление электромагнитной индукции

Классическое определение этого явления гласит, что оно представляет собой появление упорядоченного движения заряженных частиц в замкнутом проводящем ток контуре (проводнике) при изменении проходящей через него, создаваемой постоянным магнитом совокупности силовых магнитных линий.

На заметку. Впервые обнаружить описываемое в статье явление экспериментальным путем получилось в 1831 году у известного ученого-физика Майкла Фарадея. Для своих опытов он использовал железное кольцо с намотанными с двух противоположных сторон витками медного провода, которые были соединены с гальваническим элементом и магнитной стрелкой. При подключении к первой обмотке гальванического элемента стрелка некоторое время двигалась, после чего останавливалась, после его отключения – плавно возвращалась в первоначальное положение. Подобные движения стрелки позволили предположить, что упорядоченное движение носителей электрических зарядов может возникать под воздействием совокупности силовых магнитных линий, источником которых служит первая обмотка.

Майкл Фарадей

Самоиндукция. Индуктивность. Энергия магнитного поля тока

Подробности
Просмотров: 527

«Физика — 11 класс»

Самоиндукция.

Если по катушке идет переменный ток, то:
магнитный поток, пронизывающий катушку, меняется во времени,
а в катушке возникает ЭДС индукции .
Это явление называют самоиндукцией.

По правилу Ленца при увеличении тока напряженность вихревого электрического поля направлена против тока, т.е. вихревое поле препятствует нарастанию тока.
При уменьшения тока напряженность вихревого электрического поля и ток направлены одинаково, т.е.вихревое поле поддерживает ток.

На вышеприведенном рисунке
при замыкании ключа первая лампа вспыхивает практически сразу, а вторая — с заметным запозданием, т.к. ЭДС самоиндукции в цепи второй лампы велика, и сила тока не сразу достигает своего максимального значения.

При размыкании ключа в катушке L возникает ЭДС самоиндукции, которая поддерживает уменьшающийся ток.
В момент размыкания через гальванометр идет ток размыкания, направленный против начального тока до размыкания.
Сила тока при размыкании может быть больше начального тока, т.е. ЭДС самоиндукции больше ЭДС источника тока.

Индуктивность

Величина индукции магнитного поля, создаваемого током, пропорционален силе тока, а магнитный поток пропорционален магнитной индукции.

Следовательно

Ф = LI

где L — индуктивность контура (иначе коэффициентом самоиндукции), т.е. это коэффициент пропорциональности между током в проводящем контуре и магнитным потоком.

Используя закон электромагнитной индукции, получаем равенство

Индуктивность — это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на 1 А за 1 с.

Индуктивность зависит от размеров проводника, его формы и магнитных свойств среды, в которой находится проводник, но не зависит от силы тока в проводнике.

Индуктивность катушки (соленоида) зависит от количества витков в ней.

Единицу индуктивности в СИ называется генри (1Гн).
Индуктивность проводника равна 1 Гн, если в нем при равномерном изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В.

Аналогия между самоиндукцией и инерцией.

Явление самоиндукции подобно явлению инерции в механике.

В механике:
Инерция приводит к тому, что под действием силы тело приобретает определенную скорость постепенно.
Тело нельзя мгновенно затормозить, как бы велика ни была тормозящая сила.

В электродинамике:
При замыкании цепи за счет самоиндукции сила тока нарастает постепенно.
При размыкании цепи самоиндукция поддерживает ток некоторое время, несмотря на сопротивление цепи.

Явление самоиндукции выполняет очень важную роль в электротехнике и радиотехнике.

Энергия магнитного поля тока

По закону сохранения энергии энергия магнитного поля, созданного током, равна той энергии, которую должен затратить источник тока (например, гальванический элемент) на создание тока.
При размыкании цепи эта энергия переходит в другие виды энергии.

При замыкании цепи ток нарастает.
В проводнике появляется вихревое электрическое поле, действующее против электрического поля, созданного источником тока.
Чтобы сила тока стала равной I, источник тока должен совершить работу против сил вихревого поля.
Эта работа идет на увеличение энергии магнитного поля тока.

При размыкании цепи ток исчезает.
Вихревое поле совершает положительную работу.
Запасенная током энергия выделяется.
Это обнаруживается, например, по мощной искре, возникающей при размыкании цепи с большой индуктивностью.

Энергия магнитного поля, созданного током, проходящим по участку цепи с индуктивностью L, определяется по формуле

Магнитное поле, созданное электрическим током, обладает энергией, прямо пропорциональной квадрату силы тока.

Плотность энергии магнитного поля (т. е. энергия единицы объема) пропорциональна квадрату магнитной индукции: wм ~ В2,
аналогично тому как плотность энергии электрического поля пропорциональна квадрату напряженности электрического поля wэ ~ Е2.

Следующая страница «Электромагнитное поле. Электродинамический микрофон»

Назад в раздел «Физика — 11 класс, учебник Мякишев, Буховцев, Чаругин»

Электромагнитная индукция. Физика, учебник для 11 класса — Класс!ная физика

Электромагнитная индукция. Магнитный поток —
Направление индукционного тока. Правило Ленца —
Закон электромагнитной индукции —
ЭДС индукции в движущихся проводниках. Электродинамический микрофон —
Вихревое электрическое поле —
Самоиндукция. Индуктивность. Энергия магнитного поля тока —
Электромагнитное поле —
Примеры решения задач —
Краткие итоги главы

Ток — срабатывание — индукционный элемент

Ток срабатывания индукционного элемента измеряется при плавном увеличении тока в момент зацепления сектора с червяком.

Ток срабатывания индукционного элемента измеряется при плавном увеличении тока в момент зацепления сектора с червяком. Регулировка тока срабатывания производится ступенями, перестановкой винта на регулировочной колодке.

Ток срабатывания индукционного элемента измеряется при плавном увеличении тока в момент зацепления сектора с червяком.

Ток срабатывания индукционного элемента измеряется по схеме рис. 20 при плавном увеличении тока от 0 5 уставки до тока срабатывания.

Схема устройства индукционного реле типа ИТ.

Ток срабатывания индукционного элемента регулируется путем изменения числа витков обмотки перестановкой контактного винта 17 на контактной колодке.

Кривые зависимости времени срабатывания реле типа ИТ-80 ( РТ-80 от относительного значения тока при / с. р 4 а и различных уставках времени.

Током срабатывания индукционного элемента реле называется наименьшее значение тока, при котором червяк, установленный на оси диска, при повороте рамки входит в зацепление с зубчатым сектором реле.

За ток срабатывания индукционного элемента принимается тот минимальный ток в реле, при котором диск 3 с рамкой 3 втянется так, что червяк 4 войдет в зацепление с сектором 5 и реле доработает до замыкания контактов.

Проверяется ток срабатывания индукционного элемента. При измерении тока срабатывания следует установить максимальную уставку по времени, чтобы убедиться в надежной работе червячной передачи по всей дуге сектора.

Проверяется ток срабатывания индукционного элемента.

Настройка отсечки реле типа РТ-80 ( ИТ-80.

Проверяется ток срабатывания индукционного элемента. При измерении тока срабатывания, который также следует определять при синусоидальном токе, нужно установить максимальную уставку по времени, чтобы убедиться в надежной работе червячной передачи по всей дуге сектора.

За ток срабатывания индукционного элемента принимается тот минимальный ток в реле, при котором диск 3 с рамкой 8 втянется так, что червяк 4 войдет в зацепление с сектором 5 и реле доработает до замыкания контактов.

Величина тока срабатывания индукционного элемента устанавливается путем перемещения винтов 21 на контактной колодке 20, чем изменяется количество участвующих в работе витков обмотки реле.

Примечания

  1. , с. 208.
  2. Michael Faraday, by L. Pearce Williams, p. 182-3
  3. Michael Faraday, by L. Pearce Williams, p. 191-5
  4. Michael Faraday, by L. Pearce Williams, p. 510
  5. Maxwell, James Clerk (1904), A Treatise on Electricity and Magnetism, Vol. II, Third Edition. Oxford University Press, pp. 178-9 and 189.
  6. В-поле наведенного тока ведет к снижению магнитного потока, в то время как движение цикла имеет тенденцию к увеличению (так как В (х) возрастает по мере цикла движений). Эти противоположные действия — пример принципа Ле Шателье в форме закона Ленца.
  7. K. Simonyi, Theoretische Elektrotechnik, 5th edition, VEB Deutscher Verlag der Wissenschaften, Berlin 1973, equation 20, page 47
  8. В этом примере предполагается, что скорости движения намного меньше скорости света, поэтому корректировкой поля, связанной с преобразованиями Лоренца, можно пренебречь.
  9. Единственным способом определения этого является измерение x от xC в движущемся контуре, скажем ξ = x — xC (t). Тогда за время t движущийся наблюдатель увидит поле B (ξ, t), тогда как неподвижный наблюдатель увидит в той же точке поле B [ ξ + xC (t) ] = B (ξ + xC0 + v t) при xC0 = xC (t = 0).
  10. Images and reference text are from the public domain book: Hawkins Electrical Guide, Volume 1, Chapter 19: Theory of the Armature, pp. 272—273, Copyright 1917 by Theo. Audel & Co., Printed in the United States
  11. Images and reference text are from the public domain book: Hawkins Electrical Guide, Volume 1, Chapter 19: Theory of the Armature, pp. 270—271, Copyright 1917 by Theo. Audel & Co., Printed in the United States

Пример 2: проводник, движущийся в постоянном магнитном поле

Рис. 4. Два проводника замкнутые на проводящие обода образуют «рамку» вращающуюся с угловой скоростью ω в радиальном, направленном наружу магнитном поле B фиксированной величины. Ток подается щётками, касающимися верхнего и нижнего дисков с проводящими ободами.

На рис. 4 показан шпиндель, образованный двумя дисками с проводящими ободами, и проводники, расположенные вертикально между этими ободами. ток скользящими контактами подается на проводящие обода. Эта конструкция вращается в магнитном поле, которое направлено радиально наружу и имеет одно и то же значение в любом направлении. то есть мгновенная скорость проводников, ток в них и магнитная индукция, образуют правую тройку, что заставляет проводники вращаться.

Сила Лоренца

В этом случае на проводники действует Сила Ампера, а на единичный заряд в проводнике Сила Лоренца — поток вектора магнитной индукции B , ток в проводниках, соединяющих проводящие обода, направлен нормально к вектору магнитной индукции, тогда сила, действующая на заряд в проводнике, будет равна

F=qBv,{\displaystyle F=qBv\,,}

где v = скорости движущегося заряда

Следовательно, сила действующая на проводники

F=IBℓ,{\displaystyle {\mathcal {F}}=IB\ell ,}

где l — длина проводников

Здесь мы использовали B как некую данность, на самом деле она зависит от геометрических размеров ободов конструкции, и это значение можно вычислить, используя Закон Био — Савара — Лапласа . Данный эффект используется и в другом устройстве, называемом Рельсотрон

Закон Фарадея

Интуитивно привлекательный, но ошибочный подход к использованию правила потока выражает поток через цепь по формуле ΦB = B w ℓ, где w — ширина движущейся петли.

Ошибочность такого подхода в том, что это не рамка в обычном понимании этого слова. Прямоугольник на рисунке образован отдельными проводниками, замкнутыми на обод. Как видно на рисунке, ток по обоим проводникам течет в одном направлении, то есть здесь отсутствует понятие «замкнутый контур»

Наиболее простое и понятное объяснение этому эффекту дает понятие сила Ампера. То есть вертикальный проводник может быть вообще один, чтобы не вводить в заблуждение. Или же проводник конечной толщины может быть расположен на оси, соединяющей обода. Диаметр проводника должен быть конечным и отличаться от нуля, чтобы момент силы Ампера был ненулевой.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации