Андрей Смирнов
Время чтения: ~12 мин.
Просмотров: 0

Емкостное сопротивление

История открытия

Зависимость между током, напряжением и сопротивлением в электрической цепи была установлена опытным путём в 1827 году. Занимаясь исследованиями электричества, Георг Симон Ом проводил ряд экспериментов над проводниками, изучая их проводимость, и в частности, подключая последовательно к источнику энергии тонкие проводники, выполненные из различных материалов. Изменяя их длину, он получал определённую силу тока. Им было установлено, что на результаты экспериментов влияет источник электрической энергии, сопротивление которого оказывалось выше, чем у используемых в опытах проводников.

По совету своего наставника Поггендорфа Ом собрал термоэлектрическую батарею, отказавшись от использования химических элементов, применив вместо них открытую Зеебеком термопару медь-висмут. Для измерения параметров цепи им использовались крутильные весы, с магнитной стрелкой сконструированные Кулоном.

На основании своих исследований физик-экспериментатор пришёл к выводу, что отклонение стрелки зависит от определённой силы, названной силой тока. Когда стрелка отклонялась, Ом закручивал весы таким образом, чтобы она возвращалась в своё начальное положение. Угол, на который закручивалась нить, он считал пропорциональной силе тока. Изменяя условия, Ом вывел математическую зависимость, составив уравнение. Выглядело оно следующим образом: Х = а/b + x, где за Х принималась сила, отклоняющая магнитную стрелку, за а — длина исследуемого образца, а b+x обозначали интенсивность и считались постоянной величиной.

В 1862 году в журнале «Физика и химия» публикуется статья Ома под названием «Определение закона, по которому металлы проводят контактное электричество». Результаты его исследований не производят впечатления на других ученых, и его выводы остаются незамеченными. Ом продолжает эксперименты, выясняя, что электричество можно рассмотреть наподобие теплового потока. Подобно разнице температур, благодаря которой совершается тепловое движение, некой величиной можно описать движение электрического заряда. Так он вводит понятие ЭДС.

Направляющие вопросы

Нужна ли тебе защита? Почему следует знать законы, регулирующие взаимоотношения людей с правоохранительными органами? Какие права на защиту имеет любой задержанный? Каковы причины задержания несовершеннолетних? Как может себя защитить несовершеннолетний при задержании органами правопорядка?

Определение

Импедансом z^(jω){\displaystyle {\hat {z}}(j\omega )\;} называется отношение комплексной амплитуды напряжения гармонического сигнала, прикладываемого к двухполюснику, к комплексной амплитуде тока, протекающего через двухполюсник в установившемся режиме, то есть после завершения переходных процессов. Для линейных пассивных цепей с постоянными параметрами в установившемся режиме импеданс не зависит от времени. Если время t в математическом выражении для импеданса не сокращается, значит, для данного двухполюсника понятие импеданса неприменимо.

z^(jω)=u^(jω,t)i^(jω,t)=U(ω)ej(ωt+ϕu(ω))I(ω)ej(ωt+ϕi(ω))=U(ω)ejϕu(ω)I(ω)ejϕi(ω)=U^(jω)I^(jω){\displaystyle {\hat {z}}(j\omega )\;={\frac {{\hat {u}}(j\omega ,t)\;}{{\hat {i}}(j\omega ,t)\;}}={\frac {U(\omega )e^{j(\omega t+\phi _{u}(\omega ))}}{I(\omega )e^{j(\omega t+\phi _{i}(\omega ))}}}={\frac {U(\omega )e^{j\phi _{u}(\omega )}}{I(\omega )e^{j\phi _{i}(\omega )}}}={\frac {{\hat {U}}(j\omega )\;}{{\hat {I}}(j\omega )\;}}}(1)
Здесь:
  • j — мнимая единица;
  • ω{\displaystyle \omega } — циклическая (круговая) частота;
  • U(ω){\displaystyle U(\omega )}, I(ω){\displaystyle I(\omega )} — амплитуды напряжения и тока гармонического сигнала на частоте ω{\displaystyle \omega };
  • ϕu(ω){\displaystyle \phi _{u}(\omega )}, ϕi(ω){\displaystyle \phi _{i}(\omega )} — фазы напряжения и тока гармонического сигнала на частоте ω{\displaystyle \omega };
  • U^(jω){\displaystyle {\hat {U}}(j\omega )\;}, I^(jω){\displaystyle {\hat {I}}(j\omega )\;} — Комплексные амплитуды напряжения и тока гармонического сигнала на частоте ω.{\displaystyle \omega .}

Исторически сложилось, что в электротехнике обозначение импеданса, комплексных амплитуд и других комплексных функций частоты записывают как f(jω){\displaystyle f(j\omega )}, а не f(ω){\displaystyle f(\omega )}. Такое обозначение подчёркивает, что используются комплексные представления гармонических функций вида ejωt{\displaystyle e^{j\omega t}}. Кроме того, над символом, обозначающим комплексный сигнал или комплексный импеданс, обычно ставят «домик» или точку: U˙(jω){\displaystyle {\dot {U}}(j\omega )\;} чтобы отличать от соответствующих действительных величин.

1.4. Определение сопротивления трансформатора.

Сопротивления
трансформатора находятся по данным
опыта короткого замыкания. Схема опыта
показана на рисунке.

Из схемы опыта
короткого замыкания видно, что напряжение
короткого замыкания равно
при номинальной нагрузке трансформатора.

Умножив на

числитель и знаменатель, получим

У силовых
трансформаторов
,
поэтому для них с достаточной точностью
принимают, что

В опыте короткого
замыкания ваттметр показывает сумму
потерь активной мощности в стали и в
меди. Поскольку Uк
в % составляет
5 – 17 %, то пропорциональный напряжению
магнитный поток в стальном сердечнике
невелик.

Потери активной
мощности в стали приблизительно
пропорциональны квадрату магнитного
потока, поэтому в опыте короткого
замыкания они очень малы и, или можно
пренебречь.

В результате:

,
откуда

или

1.5. Определение проводимостей трансформатора.

Проводимости gт
и bт
находятся
по данным опыта холостого хода. Схема
опыта показана на рисунке.

Ток холостого хода
мал и составляет
.
Потери мощности, в первичной обмотке,
зависящей от квадрата этого тока,
незначительны, в результате чего
принимают, что
.

Потери в стали
определяются выражением
,
где


активная составляющая
тока холостого хода, которая равна

Выраженные через
потери мощности в стали равны

Токи холостого
хода активная составляющая которых
покрывает потери активной мощности в
стальном сердечнике на гистерезис и
вихревые токи, в 5 – 10 раз меньше реактивной
составляющей. Приближённо принимают

Отсюда

окончательно имеем
.

Таким образом

2. Трёхобмоточные трансформаторы.

Понижающие
подстанции иногда питают распределительные
сети двух напряжений, например 10(6) и 35
кВ. Если нагрузки этих сетей соизмеримы,
то целесообразно применять трёхобмоточные
трансформаторы с двумя вторичными
обмотками вместо установки двух
двухобмоточных трансформатора.

2.1. Соединение обмоток трёхобмоточных трансформаторов.

У силовых
трансформаторов обмотки ВН и СН
соединяются в звезду, обмотка НН в
треугольник. Соответственно группа
соединения у/у/Д-0-11.

На тяговых
подстанциях для совместного питания
тяги и района устанавливают трёхобмоточные
трансформаторы.

Их первичная
обмотка соединяется в звезду, а тяговая
в треугольник. Соединение районной
обмотки зависит от её напряжений. Если
она имеет напряжение 11(6,6 кВ), то соединяют
в треугольник, при напряжении 38,5 кВ –
в звезду.

Второй закон ома определение

Закон ома для замкнутой цепи говорит о том что. Величина тока в замкнутой цепи, которая состоит из источника тока обладающего внутренним сопротивлением, а также внешним нагрузочным сопротивлением. Будет равна отношению электродвижущей силы источника к сумме внешнего и внутреннего сопротивлений.

Закон Ома 2

В сложных цепях встречаются соединения, которые нельзя отнести ни к последовательным, ни к параллельным. К таким соединениям относятся трехлучевая звезда и треугольник сопротивлений (рис.1.3).

Их взаимное эквивалентное преобразование во многих случаях позволяет упростить схему и свести ее к схеме смешанного (параллельного и последовательного) соединения сопротивлений.

При этом необходимо определенным образом пересчитать сопротивления элементов звезды или треугольника.

Закон Ома

Появление смартфонов, гаджетов, бытовых приборов и прочей электротехники коренным образом изменило облик современного человека. Приложены огромные усилия, направленные на исследование физических закономерностей для улучшения старой и создания новой техники. Одной из таких зависимостей является закон Ома.

Закон Ома для «чайников»: понятие, формула, объяснение

Это как раз та штука, которая заставляет электроны двигаться. Электрический потенциал характеризует способность поля совершать работу по переносу заряда из одной точки в другую. Так, между двумя точками проводника существует разность потенциалов, и электрическое поле совершает работу по переносу заряда.

2 Закон ома определение

Кроме того, любой проводник, как показал Дж. Максвелл, при изменении силы тока в нём излучает энергию в окружающее пространство, и потому ЛЭП ведёт себя как антенна, что заставляет в ряде случаев наряду с омическими потерями брать в расчёт и потери на излучение.

Рекомендуем прочесть:  Золото могут забрать приставы с ломбарда

Закон Ома для участка цепи

Расчеты, выполняемые с помощью закона Ома для участка цепи, будут правильны в том случае, когда напряжение выражено в вольтах, сопротивление в омах и ток в амперах.

Если используются кратные единицы измерений этих величин (например, миллиампер, милливольт, мегаом и т. д.), то их следует перевести соответственно в амперы, вольты и омы.

Чтобы подчеркнуть это, иногда формулу закона Ома для участка цепи пишут так:

Реферат: Закон Ома 2

В сложных цепях встречаются соединения, которые нельзя отнести ни к последовательным, ни к параллельным. К таким соединениям относятся трехлучевая звезда и треугольник сопротивлений (рис.1.3).

Их взаимное эквивалентное преобразование во многих случаях позволяет упростить схему и свести ее к схеме смешанного (параллельного и последовательного) соединения сопротивлений.

При этом необходимо определенным образом пересчитать сопротивления элементов звезды или треугольника.

Школьная Энциклопедия

Чтобы в электрической цепи существовал ток, необходимо наличие в ней устройства, которое создавало бы и поддерживало разность потенциалов на участках цепи за счёт сил неэлектрического происхождения. Такое устройство называется источником постоянного тока, а силы — сторонними силами.

Что такое закон Ома

Простейшим образом создать такое поле может обыкновенная батарейка. Если на конце проводника недостаток электронов, то он обозначается знаком «+», если избыток, то «-».

Электроны, имеющие всегда отрицательный заряд, естественно, устремятся к плюсу. Так в проводнике рождается электрический ток, т. е. направленное перемещение электрических зарядов.

Чтобы его увеличить, необходимо усилить электрическое поле в проводнике. Или, как говорят, приложить к концам проводника большее напряжение.

Решение задач по ТОЭ, ОТЦ, Высшей математике, Физике, Программированию

v. Напpимеp, в электpонных лампах закон Стокса для силы сопpотивления, действующей на электpон, не выполняется и ускоpение электpонов в электрическом поле нельзя считать pавным нулю. Во-втоpых, необходимо, чтобы плотность носителей тока n не зависела от напpяженности поля.

Напpимеp, в коpонном pазpяде пеpвое условие выполняется, но не выполняется втоpое. В этом pазpяде ток пеpеносится ионами, котоpые обpазуются в непосpедственной близости к остpию коpониpующего электpода и движутся затем чеpез весь пpомежуток.

Их плотность в этом пpомежутке существенно зависит от напpяженности поля.

2.4. Закон Ома для цепи переменного тока. Мощность.

В § 2.3 были выведены соотношения, связывающие амплитуды переменных токов и напряжений на резисторе, конденсаторе и катушке индуктивности:

Эти соотношения во виду напоминают закон Ома для участка цепи постоянного тока, но только теперь в них входят не значения постоянных токов и напряжений на участке цепи, а амплитудные значения переменных токов и напряжений.

Соотношения (*) выражают закон Ома для участка цепи переменного тока, содержащего один из элементов R, L и C. Физические величины R, и ωL называются активным сопротивлением резистора, емкостным сопротивлением конденсатора и индуктивным сопротивлением катушки.

При протекании переменного тока по участку цепи электромагнитное поле совершает работу, и в цепи выделяется джоулево тепло. Мгновенная мощность в цепи переменного тока равна произведению мгновенных значений тока и напряжения: p = J · u. Практический интерес представляет среднее за период переменного тока значение мощности

Здесь I и U – амплитудные значения тока и напряжения на данном участке цепи, φ – фазовый сдвиг между током и напряжением. Черта означает знак усреднения. Если участок цепи содержит только резистор с сопротивлением R, то фазовый сдвиг φ = 0:

Для того, чтобы это выражение по виду совпадало с формулой для мощности постоянного тока, вводятся понятия действующих или эффективных значений силы тока и напряжения:

Средняя мощность переменного тока на участке цепи, содержащем резистор, равна

Если участок цепи содержит только конденсатор емкости C, то фазовый сдвиг между током и напряжением Поэтому

Аналогично можно показать, что PL = 0.

Таким образом, мощность в цепи переменного тока выделяется только на активном сопротивлении. Средняя мощность переменного тока на конденсаторе и катушке индуктивности равна нулю.

Рассмотрим теперь электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки. Цепь подключена к источнику переменного тока частоты ω. На всех последовательно соединенных участках цепи протекает один и тот же ток. Между напряжением внешнего источника e (t) и током J (t) возникает фазовый сдвиг на некоторый угол φ. Поэтому можно записать

Такая запись мгновенных значений тока и напряжения соответствует построениям на векторной диаграмме (рис. 2.3.2). Средняя мощность, развиваемая источником переменного тока, равна

Как видно из векторной диаграммы, UR =  · cos φ, поэтому Следовательно, вся мощность, развиваемая источником, выделяется в виде джоулева тепла на резисторе, что подтверждает сделанный ранее вывод.

В § 2.3 было выведено соотношение между амплитудами тока I и напряжения для последовательной RLC-цепи:

Величину

полным сопротивлением

Это соотношение называют законом Ома для цепи переменного тока. Формулы (*), приведенные в начале этого параграфа, выражают частные случаи закона Ома (**).

Понятие полного сопротивления играет важную роль при расчетах цепей переменного тока. Для определения полного сопротивления цепи во многих случаях удобно использовать наглядный метод векторных диаграмм. Рассмотрим в качестве примера параллельный RLC-контур, подключенный к внешнему источнику переменного тока (рис. 2.4.1).


Рисунок 2.4.1.Параллельный RLC-контур

При построении векторной диаграммы следует учесть, что при параллельном соединении напряжение на всех элементах R, C и L одно и то же и равно напряжению внешнего источника. Токи, текущие в разных ветвях цепи, отличаются не только по значениям амплитуд, но и по фазовым сдвигам относительно приложенного напряжения. Поэтому полное сопротивление цепи нельзя вычислить по законам параллельного соединения цепей постоянного тока. Векторная диаграмма для параллельного RLC-контура изображена на рис. 2.4.2.


Рисунок 2.4.2.Векторная диаграмма для параллельного RLC-контура

Из диаграммы следует:

Поэтому полное сопротивление параллельного RLC-контура выражается соотношением

При параллельном резонансе (ω2 = 1 / LC) полное сопротивление цепи принимает максимальное значение, равное активному сопротивлению резистора:

Фазовый сдвиг φ между током и напряжением при параллельном резонансе равен нулю.

Главная 
 Онлайн учебники 
 Подготовка по всем предметам онлайн 
 Подготовка к ЕГЭ онлайн

Ёмкостное сопротивление

Допустим, что в участок цепи включен конденсатор емкости $С$, а $R=0$ и $L=0$. Будем считать силу тока ($I$) положительной, если она имеет направление, которое указано на рис. 2. Пусть заряд на конденсаторе равен $q$.

Рисунок 2.

Мы можем использовать следующие соотношения:

Если $I(t)$ определена уравнением (1), то заряд выражен как:

где $q_0$ произвольный постоянный заряд конденсатора, который не связан с колебаниями тока, поэтому можем допустить, что $q_0=0.$ Получим напряжение равно:

Формула (6) показывает, что на конденсаторе колебания напряжения отстают от колебаний силы тока по фазе на $\frac{\pi }{2}.$ Амплитуда напряжения на емкости равна:

Величину $X_C=\frac{1}{\omega C}$ называют реактивным емкостным сопротивлением (емкостным сопротивлением, кажущимся сопротивлением емкости). Если ток постоянный, то $X_C=\infty $. Это значит, что постоянный ток не течет через конденсатор. Из определения емкостного сопротивления видно, что при больших частотах колебаний, малые емкости являются небольшими сопротивлениями переменного тока.

Как определить формулой общее сопротивление цепи

Из закона Ома исходит то, что общее сопротивление равно общему напряжению, деленному на общую силу тока в цепи. При параллельном подключении напряжение, как уже было сказано, равно везде, поэтому необходимо узнать его значение на любом участке цепи. С током все сложнее, так как на каждой ветке его значение свое и зависит от конкретного R.

Также необходимо помнить, что могут быть параллельные подключения с нулевым значением R. Если в какой-либо ветке нет резистора или другого подобного элемента, но весь ток будет течь через нее и все общее значение для цепи станет нулевым. На практике это случается при выходе резистора из строя или при замыкании. Такая ситуация может навредить другим элементам из-за большой силы тока.

Таблица удельной величины для различных проводников

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации