Андрей Смирнов
Время чтения: ~20 мин.
Просмотров: 0

Что даст плазменная лампа вашему интерьеру: интересные факты, обзор

Работа

С 1881 года Никола Тесла служит инженером в Центральном телеграфе Будапешта. Ему открывается возможность лицезреть некоторые изобретения, а также подумать над воплощением в реальность собственных идей. Именно здесь великий физик представил миру двухфазный электродвигатель переменного тока, названный затем его именем.

Изобретения Николы позволяли передавать энергию на огромные расстояния, питая приборы освещения, например, лампочки. Тесла, однако, уже через год переехал в Париж, чтобы работать у предпринимателя Томаса Эдисона. Его компания занималась строительством электрической станции на железнодорожном вокзале города Страсбурга, мэру которого позже Никола продемонстрирует работу изобретенного им асинхронного электродвигателя.

В 1884 году Тесла уезжает в Америку. Он был обижен тем, что ему не выплатили в Париже обещанную премию. Там он начинает работать инженером, ремонтирующим электродвигатели в очередной компании Эдисона.

Однако последнего начинают раздражать блестящие идеи великого физика. В результате этого между ними завязывается спор на миллион долларов. Николе удалось победить, но Эдисон свел все к шутке и деньги не выплатил. После этого Тесла уволился и стал безработным. Спасением для него стало знакомство с американским инженером Брауном Томпсоном, благодаря которому о юном физике стало узнавать больше людей.

Особенности строения плазменного светильника

Плазменная лампа-шар представляет собой специфический светильник. Плафон светильника круглый и прозрачный, а внутри сферы происходит настоящая «магия». Из центра лампы к периферии прозрачного плафона отходят многочисленные плазменные разряды, которые завораживают своими яркими переливами и изгибами, которые не поддаются прогнозам и кажется, что они живут своей собственной жизнью. Можно сказать, что внешне такая лампа похожа на шар предсказаний цыганской гадалки, дающим наставления тем, кто может их прочесть.

Плазменная лампа в качестве ночника

Благодаря такому необычному и магическому внешнему виду такая вот «плазма» даст многое:

  • придаст атмосферу загадочности и необычности;
  • станет экзотическим дизайнерским элементом;
  • светильник способен своей работой нормализовать психическую деятельность человека, снять стресс и усталость;
  • да и в целом это станет оригинальной изюминкой интерьера, которую можно встретить далеко не в каждом доме или квартире.

Стоит отметить, что в отличие от стандартных осветительных приборов, плазменная лампа-шар станет необычным и оригинальным подарком на день рождения.
Итак, плазменная лампа представляет собой прозрачный шар на подставке, внутри которого бьются энергетические разряды. Они способны реагировать на прикосновения человека к прозрачной сфере или даже голосу.

Реакция лампы на прикосновение

При прикосновении к такой лампе разряды внутри нее начинают концентрироваться и «бить» в место, к которому притронулся палец. Это очень красивое зрелище, которое способно завораживать на долгие часы.
Этот предмет больше похож на элемент фантастического фильма, нежели на светильник. Для получения такого эффекта используются современные технологии, что позволяет добиться высокого качества данной осветительной продукции.

Особенности эксплуатации плазменного шара

Чтобы ваша «плазма» могла приносить вам радость и умиротворение на протяжении многих лет, за ней нужен правильный уход, который предполагает следующее:

  • запрещается класть на лампу разнообразные металлические предметы. Часто, из любопытства, на сферу кладут монетки различного номинала. Даже небольшая монетка может послужить причиной удара током. При этом сама сфера может лопнуть и выпустить наружу уже не столь красивые и безопасные разряды;
  • лампа должна подключаться к сети питания на 220 В. Также для ее питания можно использовать и USB-порт (если имеется такая возможность). Такой разъем можно подсоединить своими руками, если у вас имеется старая модель светильника;
  • время работы лампы не должно превышать более двух часов. Иначе это может привести к перегреву, а это негативным образом скажется на прочности прозрачной колбы и в дальнейшем может привести к нарушению ее герметичности.

Как видите, правила более чем просты и понятны. Главное здесь следить, чтобы дети, которых плазменные разряды будут неизменно притягивать, не повредили сферу с газом и не выпустили «фейерверки» наружу.

Плазменная лампа своими руками

Итак, настало время практики, ведь плазменная лампа уже ждет. Для начала стоит достать из старого монитора нужную для проекта плату. Для этого следует снять заднюю крышку монитора. От кнопки выключения должен отходить толстый, в большинстве случаев белый проводок.

Шнур питания стоит припаивать очень аккуратно, так как провода, отходящие от платы, очень тонкие. Одно неловкое движение, и можно испортить всю работу. После окончания место спайки нужно качественно обмотать изоляционной лентой. Но рано оставлять паяльник

Этот инструмент поможет еще в одном важном деле

Сама лампа еще не присоединена к цепи. Для неё остался последний, самый толстый провод. Его также нужно припаять, только теперь к лампочке. Вот почти все приготовления окончены. В подготовленный корпус стоит поместить все устройства так, чтобы сверху осталась одна лампа. Тревожный момент – время проверки. Шнур питания вставляем в розетку, палец – на стекло. Если внутри появились молнии, значит, всё сделано правильно.

Комплектация плазменного светильника

Современные лампы-шары, формирующие у себя внутри плазменные разряды, содержат в себе:

  • сам плазменный светильник. У современных моделей должен иметься разъем для USB. У страх моделей такой разъем можно сделать своими руками, отрезав вилку для розетки и подсоединив к ней USB от старого шнура. Только перед проведением таких работ своими руками убедитесь в том, что USB разъем работает нормально;
  • USB-кабель. Это обязательный элемент всех современных моделей;
  • инструкция по эксплуатации. С помощью инструкции вы сможете выяснить все нюансы и тонкости работы прибора, возможность его починки своими руками, а также другие важные моменты, которые приводят производители.

Набор плазменной лампы

Покупая такой светильник, необходимо обязательно убедиться в исправности лампы (особенно прозрачной сферы). Ее прозрачная часть не должна быть повреждена, покрыта царапинами или трещинами. При их наличии обязательно требуйте замену продукции.
Обычно осветительный прибор имеет следующие технические характеристики:

  • питание – 220 В (стандартное);
  • мощность — 8 Вт;
  • материалы изготовления: пластик, стекло и электронные компоненты.

Технические характеристики лампы должны быть указаны как на упаковке, так и в инструкции к ней.
Приобретая плазменный светильник нужно знать, что диаметр его сферической колбы может варьироваться в достаточно широком диапазоне (от 8 до 20 см).

Интересные факты

Если к работающей плазменной лампе на расстоянии 5—20 см держа в руке поднести неоновую, люминесцентную (в том числе и неисправную) или любую другую газоразрядную лампу, то она начнёт светиться.

(Источник и )

About sTs

Люблю самоделки. Стремлюсь к здоровому, гармоничному образу жизни. В людях ценю открытость и честность. Своим сайтом хочу донести до молодёжи ценность созидательных качеств в человеке. Пусть каждый обретет новые знакомства и получит массу знаний и опыта, которые сделают из него целостную личность! Подробнее о себе рассказываю в блоге.

  • Нам 10 лет! — 26.07.2020
  • Новые Настоящие разрушители мифов — 02.07.2020
  • Школа Самоделкина «МозгоЧины» — 19.12.2019
  • Идея уркашения детской комнаты — 21.08.2019
  • Акция! Возможность открыть свою обучающую школу от МозгоЧинов! — 19.07.2019
  • Самодельная люстра в виде пирамиды с Трикветрами — 05.06.2019
  • Поиск администраторов! — 29.01.2019
  • Лайфхаки для родителей или старших братьев и сестёр — 13.12.2018
  • Креативный подарок другу — 20.11.2018
  • Как избавиться от недостатков школьного образования и системы — 09.09.2018
  • Обновление сайта, снова открыта регистрация — 02.09.2018
  • Узнай, как я зарабатываю путешествуя и занимаясь любимым делом — 02.08.2018
  • Как я навёл порядок в своей коллекции домашних фото и видео на 300 Гб — 02.08.2018
  • Как за 20 минут сделать крутой шлем виртуальной реальности v.3.0 — 23.07.2018

Как сделать водон…

Журнальный столик…

¡ — Опыты с конде…

Микроробот из бум…

Портативная «мозг…

Деревянная коробк…

Устройство и принцип работы лампы PLS

PLS лампа представляет собой источник света. Эта лампа состоит из стеклянной колбы, в которую помещается небольшое количество серы и газ аргон. Кроме того, в колбу могут прибавляться добавки различных веществ, которые влияют на цветность излучаемого света. Для создания внутри колбы сверхвысокочастотного (СВЧ) электрического поля используется генератор этого поля – магнетрон. Для питания магнетрона используется специальный блок питания, подключаемый к электрической сети. Для предотвращения помех от СВЧ излучения стеклянная колба помещается в специальный сетчатый резонатор, который является экраном для электромагнитных волн и прозрачен для света. Для фокусировки луча света используется рефлектор, принцип действия которого описан здесь.

Схема устройства серной лампы: 1 — Блок питания, управления и контроля. 2 — Магнетрон. 3 — Волновод. 4 — СВЧ-возбудитель. 5 — Электродвигатель горелки. 6 — Вентилятор. 7 — Корпус лампового модуля. 8 — Горелка. 9 — Сетка. 10 — Отражатель.

Генерируемая с помощью магнетрона СВЧ энергия поступает в колбу по волноводной линии передачи. При воздействии СВЧ поля газы серы в аргоне ионизируются. После достижения в течение 10-15 секунд необходимой температуры в колбе, газ переходит в состояние плазмы. Эта плазма излучает свет.

При работе лампы для ее равномерного прогрева ее необходимо вращать. В противном случае при перегреве сера теряет свойства полиморфизма, и спектр излучаемого света станет линейчатым. Для исключения перегрева лампы она обдувается воздухом.

В случае отключения источника питания и пропадания плазменного излучения для повторного включения лампа должна охладиться в течение 5 минут. После снижения внутренней температуры до некоторого порога, она может быть вновь зажжена.

ПРИМЕНЕНИЕ ДЛЯ ОСВЕЩЕНИЯ РАСТЕНИЙ И ТЕПЛИЦ

Большинство растений нуждается в солнечном или искусственно создаваемом свете. При несоблюдении этого условия они хуже растут, болезненно вытягиваются, хуже цветут и не плодоносят, а листья начинают желтеть.

В российских условиях наблюдается отчётливый недостаток естественного освещения в осенне-зимний период. Следовательно, возникает необходимость «подсвечивать» домашние и тепличные растения. При этом необходимо учитывать их видовые особенности.

Растения короткого дня нуждаются в свете исключительно для вегетации; цветение и плодоношение у них происходит зимой или осенью. Растения длинного дня, напротив, могут нормально цвести, только если световой день составляет не менее 12–14 часов. На цветение некоторых культур свет вовсе не влияет, однако без него они постепенно чахнут.

При применении в теплицах источников искусственного освещения важно также учитывать влияние на растения преобладания различных спектров излучения:

  • синий — активизирует фотосинтез;
  • жёлтый и зелёный — приводят к деформации и увяданию;
  • оранжевый и красный — стимулируют цветение и образование завязи;
  • ультрафиолетовый — формирует устойчивость к холоду.

Полностью замещать солнечный свет искусственным не рекомендуется: преобладание того или иного спектра вместо полноценного излучения приводит к болезни растения. Ртутные светильники характеризуются слабым световым потоком и не подходят для больших теплиц.

Металлогалогенные, с их преимущественно синим спектром, помогают укрепиться корням, однако тормозят цветение. Натриевые, напротив, обладают красным спектром и подходят для активизации процессов цветения и образования завязей.

Идеальной альтернативой солнцу являются плазменные лампы, отличающиеся как большой мощностью, так и непрерывным спектром.

Использовать их рекомендуется на всех стадиях развития культуры, кроме цветения: в этот период лучше применять натриевые источники света. При пренебрежении этим советом наблюдается резкое снижение урожайности, однако сами плоды отличаются высоким качеством.

Подбор количества светильников и высоты их размещения следует производить эмпирически: главное требование — равномерное освещение всей площади помещения. Как показывает практика, для большинства теплиц вполне достаточно одной плазменной лампы.

Одно из лучших решений для освещения теплиц — плазменные лампы серии PSH от корпорации LG. Ресурс устройств превышает 60000 часов; мощность — 730 Вт. Цветовая температура — в диапазоне 4500–7500 К; светоотдача — более 80 Лм/Вт.

Параметры сети: переменное напряжение 220 В, частота 50/60 Гц. Вес устройства с балластом — всего 19 кг. Угол наклона луча — 50–120о.

Развитие технологии производства плазменных источников света и выход на рынок новых производителей позволяют в ближайшем будущем рассчитывать на снижение цен на продукцию и расширение ассортимента. А значит, подобрать безопасную и долговечную лампу для теплицы станет значительно проще.

2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Лампа с разрядами и интерьер

Установка плазменного светильника в доме или квартире будет отличным решением по следующим причинам:

  • лампа имеет компактные размеры и хорошо впишется как на полку, так и на журнальный столик;
  • возможность декорирования внешнего вида прибора расширяет перечень стилей, в которые он сможет гармонично вписаться, не нарушив общий замысел;
  • это отличный ночничок, который способен создать атмосферу таинственности и сказки;лампа способствует снятию раздражения, усталости и стрессов.

Плазменная лампа-шар и дети

Несмотря на то, что это очень красивый и практичный ночник, в детской размещение такого прибора не рекомендуется, так как из-за подвижных игр дети могут повредить его стеклянную часть и порезаться. Лучшим решением будет размещение лампы на специальной полке и выставление ее на стол для выполнения функции ночника уже в вечерние часы. Таким образом, вы и порадуете своего ребенка, и убережете его от травм.
Кроме детской, подобный светильник станет оригинальным решением для спальни или гостиной. Наиболее подходящими стилями для размещения такой лампы будет «хай-тек», «эклектика», «минимализм», «классика». При этом «хай-тек», как наиболее приближенный стиль к тесловским творениям, будет самым лучшим решением. В стиле «ретро» такая лампа также займет свое достойное место.

Интерьер в стиле хай-тек

А вот для других стилей (например, «ампир», «готика» и т.д.) необходимо дополнительная стилизация светильника.
Помните, цвет свечения разрядов стоит выбирать под цвет стен, потолка и мебели. Например, на фоне кофейных стен фиолетовые вспышки будут смотреться просто отлично.
Кроме этого плазменная лампа отлично впишется ориентальный дизайн, где превалируют темные цвета отделки стен, мебели, штор и занавесок.

Компоненты

Первый вопрос, который надо решить: «Что понадобится при создании этого агрегата?» Ведь плазменная лампа не валяется в гараже!

Для шара молний понадобится несколько важных компонентов. Первый – это обычная лампа накаливания. Чем больше она в размерах, тем дольше можно наблюдать разряды. По поводу вольтажа: тут он особой роли не играет. Ну, если придираться, то лампа на сто ватт сгодится отлично. Вторая деталь – плата, называемая предельным трансформатором. Этот компонент является одним из главных в данной схеме. От него будет зависеть все. Где можно найти такую плату? Для этого не нужно далеко ходить. Любой старый ламповый монитор от компьютера или «толстый» телевизор оснащен этой платой. Третий компонент – корпус. О нем заботиться не стоит, так как оболочка не влияет на работу плазменной лампы. Но для соблюдения техники безопасности, да и в целях эстетики картонный, деревянный или пластмассовый корпус не помешает. Также стоит знать об инструментах. Главным помощником при создании станет паяльник. Благодаря ему схема плазменной лампы сможет соединиться.

Высокоэффективная плазма (HEP)

Высокоэффективное плазменное освещение — это класс плазменных ламп, системная эффективность которых составляет 90 люмен на ватт или более. Лампы этого класса потенциально являются наиболее энергоэффективным источником света для наружного, коммерческого и промышленного освещения. Это связано не только с их высокой эффективностью системы, но и с небольшим источником света, который они представляют, что обеспечивает очень высокую эффективность светильника.

Рейтинг эффективности светильников (LER) — это единый показатель качества, который Национальная ассоциация производителей электрооборудования определила для решения проблем, связанных с заявлениями производителей об эффективности, и предназначен для обеспечения надежного сравнения типов освещения. Он определяется как произведение эффективности светильника (EFF) на общую номинальную мощность лампы в люменах (TLL) на балластный коэффициент (BF), деленное на входную мощность в ваттах (IP):

LER = EFF × TLL × BF / IP

«Системный КПД» для высокоэффективной плазменной лампы определяется тремя последними переменными, то есть не включает КПД светильника. Хотя плазменные лампы не имеют балласта, у них есть источник питания ВЧ, который выполняет аналогичную функцию. В безэлектродных лампах включение электрических потерь или «балластного фактора» в заявленных люменах на ватт может быть особенно важным, поскольку преобразование электроэнергии в мощность радиочастоты (RF) может быть очень неэффективным процессом.

Многие современные плазменные лампы имеют очень маленькие источники света — намного меньше, чем лампы HID или люминесцентные лампы, что также приводит к гораздо более высокой эффективности светильника. Газоразрядные лампы высокой интенсивности имеют типичный КПД светильника 55%, а люминесцентные лампы — 70%. Плазменные лампы обычно имеют КПД более 90%.

Правила безопасности

Соблюдение простых правил поможет уберечь себя и окружающих от непредвиденных травм. Следует помнить, что электрический ток – это не игрушка. Первое правило очень простое: к оголенным проводам голыми руками не прикасаться. Контакт производить только при помощи изолированных инструментов. Второе правило также касается проводов.

Только теперь стоит позаботиться о жизнеспособности схемы. Нужно располагать оголенные провода так, чтобы они при случае не касались друг друга. Иначе возможно краткое замыкание, которое приведет к неприятным последствиям

И еще одно важное правило, относящееся в большей мере к любителям попить кофе или чай во время работы. Очень не рекомендуется присутствие жидкостей на рабочем месте

ВИДЫ, ТИПЫ И ХАРАКТЕРИСТИКИ ПЛАЗМЕННЫХ ЛАМП

Основными разновидностями таких устройств являются:

  • ртутные (Mercury-Vapor lamps, или MV);
  • металлогалогенные (Metal-Halide lamps, или MH);
  • натриевые (High-Pressure Sodium lamps, или HPS);
  • серные (сульфидные, плазменные, Light Emitting Plasma, или LEP).

Лампы первых трёх типов обычно не называются плазменными и имеют существенные недостатки, главный из которых — неестественное освещение с преобладанием синего или красного спектра. Кроме того, ртуть, используемая в MV, крайне токсична, и такие устройства необходимо собирать и утилизировать в особом порядке.

При использовании в качестве светящегося вещества того или иного металла возбуждаемый в атомах резонанс ограничен значениями, характерными для природы вещества.

Сера же отличается полиформизмом — способностью к формированию молекул, состоящих из произвольного числа атомов. Каждая такая молекула характеризуется индивидуальной частотой резонанса. В итоге совокупность молекул даёт полный (непрерывный) спектр, практически идентичный солнечному свету.

Состав эмитируемого плазменными серными лампами света: 79% — видимый диапазон; 20% — инфракрасный спектр; 1% — ультрафиолетовый спектр.

Существенным затруднением при изготовлении устройств является невозможность использования металлических электродов. Сера — неметалл, при нагревании активно взаимодействующий с веществом электрода и разрушающий его. В качестве альтернативного способа возбуждения резонанса в начале 1990-х годов Майклом Ури и Чарльзом Вудом было предложено использовать микроволновое излучение.

СВЧ-волны, разогревающие серные пары в инертном газе, продуцируют аналогичные применяемым в микроволновых лампах магнетроны. С целью уточнения терминологии используемые в лампах магнетроны часто называют лайтронами.

Излучатель имеет форму герметичного стеклянного сосуда (колбы), в которой находятся буферный инертный газ и несколько миллиграммов порошкообразной серы. Диаметр стеклянной ёмкости — от 30 до 50 мм. Для обеспечения наибольшего эффекта и равномерного прогрева колбу помещают в резонатор и обеспечивают её непрерывное вращение.

Частоты излучения стандартного магнетрона — около 2,5 ГГц — вполне достаточно для запуска процесса. Необходимой составляющей лампы является система охлаждения, поскольку температура стенок колбы может доходить до 1000°C. При это наружная температура устройства не превышает 60°C.

Плазменные лампы по большинству характеристик превосходят источники света других типов:

  • КПД — 85–90% (у ламп накаливания — 10%, у светодиодных — 30–50%);
  • срок службы — в среднем 50000 часов (1000 и 50000 часов соответственно);
  • светоотдача — 80–150 лм/Вт (10–15 и 80–170 Лм/Вт соответственно);
  • ослабление светоотдачи за время использования — не более 10% (40–60% и 30% соответственно);
  • коэффициент цветопередачи — 85–100 (100 и 70–90 соответственно);
  • цветовая температура — 4500–7500 К (2000–2800 и 2700–6500 К соответственно).

Среди достоинств изделий необходимо отметить высочайший КПД, полный спектр излучаемого света, аналогичный солнечному, долговечность, экологичность и сильный световой поток. Основные недостатки — высокая стоимость и ограниченный ассортимент продукции.

Особенности эксплуатации плазменных ламп напрямую связаны с двумя из перечисленных выше параметров: большой мощностью и полным спектром излучения. Первый фактор предопределил использование устройств для освещения помещений с большой высотой потолков (более 6 м) и открытых пространств.

Серные светильники и прожекторы используются в торговых центрах, складах, аэропортах, на стадионах, вокзалах, нефтяных вышках, для подсветки рекламы, зданий и сооружений.

Благодаря полному спектру света и отсутствию «мигания» плазменное оборудование идеально подходит для проведения теле- и киносъёмок, а также выращивания растений.

Для освещения дома и квартиры более популярны другие типы ламп:

  • люминесценые;
  • светодиодные.

Для отдельных помещений, например, ванной или кухни также могут применяться галогенные источники света.

Преимущества и недостатки систем освещения на PLS лампе

Преимущества светильников на PLS лампе следующие:

  • наличие сплошного спектра;
  • большой коэффициент цветопередачи;
  • большой коэффициент светоотдачи (80-90 лм/ватт);
  • отсутствие пульсаций в спектре света;
  • большой срок службы;
  • экологичность.

Светильники на PLS лампе можно сравнить с аналогами, например, газоразрядными галогенными лампами.

Спектр галогенной лампы является линейчатым и поэтому предметы в ее освещении кажутся искаженными. Спектр PLS лампы непрерывный, при этом, 73% излучения лежит в видимом диапазоне спектра, 20% — в ИК диапазоне, и всего 1% — в наиболее неприятном для человека ультрафиолетовом диапазоне.

Галогенная лампа содержит пары ртути, а серная лампа не содержит никаких вредных примесей. Поэтому для такой лампы нет проблем при утилизации.

Освещение плазменными прожекторами горнолыжного комплекса

Из-за отсутствия электродов надежность серных ламп значительно выше надежности галогенных и наработка на отказ у них составляет 50 тысяч часов. У галогенных ламп этот показатель равен всего 15-20 тысячам часов.

К недостаткам светильников на серной лампе относится сложность их конструкции. Такая сложность пока не позволяет разработать светильник на серной лампе малой мощности.

Меры предосторожности

Нужно быть осторожным и стараться не помещать электронные приборы (вроде компьютерной мыши) рядом с плазменной лампой. Это может привести не только к нагреванию стеклянной поверхности, но и к существенному воздействию переменного тока на электронный прибор. Электромагнитное излучение, создаваемое плазменной лампой, может наводить помехи в работе таких приборов, как цифровые аудиопроигрыватели и подобные устройства. Если на плазменную лампу положить металлический предмет, вроде монеты, можно получить ожог или удар током. Кроме того, прикосновение металлическим предметом к стеклу, способно привести к возникновению электрической дуги и прожиганию стекла насквозь. Значительное переменное электрическое напряжение может индуцироваться лампой в проводниках даже сквозь непроводящую сферу. Прикосновение одновременно к лампе и к заземленному предмету приводит к удару электрическим током. Создает вокруг себя из кислорода токсичный для человека озон.

Как Тесла зажигал лампочки

У Николы было много изобретений. Однако большинство знает его, потому что Тесла изобрел лампочку. Кроме того, он был удивительным человеком, который умел делать физические трюки. К таким относится и фокус с лампочкой. Тесла зажигал ее в руке посредством пропуска через себя тока высокого напряжения.

Никола является автором многих изобретений, без которых нельзя представить современный мир. В их числе двигатель переменного тока, катушка Теслы, радио, рентгеновские лучи, лампочка Тесла, лазер, плазменный шар и многое другое. Его гениальность и склад ума даже пугали некоторых людей.

Заключение

Плазменная лампа-шар, при правильном подходе к ее выбору, станет эффектным дополнением практически любого интерьера и стиля. При этом она будет радовать глаз и не надоест вам даже через несколько лет работы. Такой светильник можно смело использовать как эффективный способ борьбы с усталостью и чрезмерной напряженностью, от чего страдают многие из нас.

Приветствуем Вас, наши дорогие покупатели и желаем всем доброго здоровья и приятных подарков! Сегодня мы расскажем о необычном предмете интерьера -это плазменный светильник «Магический шар», который также можно найти в интернете по запросам: плазма шар, шар Тесла, домашняя катушка Теслы, «шар с молниями», ну и собственно «магический шар». Почему мы склоняемся к названию «магический шар»? Как ни странно, но в последнее время подавляющее большинство покупателей этого девайса, составляют всевозможные работники магических салонов, гадалки и, великие и ужасные «маги и чародеи».

И это не случайно,испокон веков центральным предметом любого «волшебного» салона являлся хрустальный шар, в котором гадалки и предсказатели, якобы, видели прошлое и будущее человека. Раньше это были обычные шары из стекла или хрусталя, чаще сплошные, иногда полые, которые некоторые предприимчивые «маги» перед сеансом наполняли дымом и затыкали пробкой. В наши же дни, для создания атмосферы мистики и всепронизывающей магии всё чаще используются именно плазменные шары. Согласитесь, разноцветные всполохи молний переливающиеся в хрупком сосуде, выглядят куда как эффектней обычной стеклянной сферы и позволяют «окучивать» клиента на более профессиональном уровне.

Изобретение плазменного светильника и принцип работы.

Давайте разбираться что это за чудо-шар такой и откуда он появился. Изобретение плазма шара приписывают выдающемуся физику и ученому Николе Тесла (1856-1943 г.г.). В 1894 году Тесла подробно описал устройство плазменной лампы, состоящей из стеклянной колбы и электрода, на который подавался переменный ток, в результате чего, на его конце возникало свечение. Тесла назвал своё изобретение «Одноконтактная лампа» или «Газоразрядная трубка». В те времена это не выглядело так эффектно как сегодня, потому как технология использования инертных газов была ещё не доступна. Свой современный вид плазма-шар получил благодаря другому изобретателю Джеймсу Фалку, который уже в 70-х годах нашего века, конструировал необычные светильники, в принципе работы которых лежали разработки Теслы, и продавал их в научные музеи и коллекционерам. В наши дни пространство между внешней колбой и электродом заполняют инертным газом, благодаря чему и создаётся эффект непрерывного пульсирования разноцветных молний.

Плазма-шар в подарок.

Шар Теслы – это идеальный подарок. Ведь его завораживающая красота придется по вкусу всем без исключения, независимо от пола и возраста. Взрослым будет приятно украсить дом стильным и необычным предметом интерьера, а дети очень любят трогать поверхность шара и любоваться миниатюрными молниями, бьющими в место соприкосновения с рукой. Мерное, успокаивающее свечение, окажет благоприятное воздействие на нервную систему и поможет снять усталость после тяжёлого трудового дня. А ещё, с помощью магического шара, можно показывать детям фокусы и проводить вместе с ними различные физические опыты, например такие как в этом видео.

Нас часто спрашивают, опасны ли магические шары для окружающих, а особенно для детей

Отвечаем – нет, не опасны, нужно лишь соблюдать несколько основных правил предосторожности:

  • Не подносить к поверхности шара электронные и радио устройства ( мобильные телефоны, плееры тачпады и т.д.)
  • Не класть на поверхность шара металлические предметы ( за исключением случаев, когда это необходимо для опытов)
  • Не прикасаться одновременно к поверхности шара и заземлённому объекту (батарее например)
  • Естественно, не стучать по шару и не ронять его.
  • Рекомендуется отключать светильник на 10-15 минут, через каждые 3-4 часа непрерывной работы.

Итак

Плазменный светильник «Магический шар» – вещь очень необычная и притягивающее внимание. Он будет отличным подарком для Ваших друзей, шикарным предметом интерьера в Вашем доме и увлекательным развлечением для Ваших детей

и.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации