Андрей Смирнов
Время чтения: ~20 мин.
Просмотров: 44

Производство электроэнергии

Электричество в каждом

Но впервые наука обратила внимание на электрофизику, а точнее на способность живых организмов вырабатывать электричество, после презабавного случая с лягушачьими лапками в XVIII, которые в один ненастный день где-то в Болонье, начинали дергаться от соприкосновения с железом. Зашедшая в лавку мясника за французским деликатесом, жена болонского профессора Луиджи Гальватти, увидела эту ужасную картину и рассказала мужу о нечистой силе, которая бушует по соседству. Но Гальватти посмотрел на это с научной точки зрения, а спустя 25 лет упорных трудов вышла его книга «Трактаты о силе электричества при мышечном движении»

В ней ученый впервые заявил – электричество есть в каждом из нас, а нервы это своеобразные «электропроводы»

Но Гальватти посмотрел на это с научной точки зрения, а спустя 25 лет упорных трудов вышла его книга «Трактаты о силе электричества при мышечном движении». В ней ученый впервые заявил – электричество есть в каждом из нас, а нервы это своеобразные «электропроводы».

Передача электроэнергии по Wi-Fi

Инженеры Вашингтонского университета разработали технологию, позволяющую использовать Wi-Fi в качестве источника энергии для питания портативных устройств и зарядки гаджетов. Технология уже признана журналом Popular Science как одна из лучших инноваций 2015 года. Повсеместное распространение технологии беспроводной передачи данных само по себе произвело настоящую революцию. И вот теперь настала очередь беспроводной передачи энергии по воздуху, которую разработчики из Вашингтонского университета назвали PoWiFi (от Power Over WiFi).

   Передача электроэнергии. Технология передачи электроэнергии по Wi-Fi

На стадии тестирования исследователи сумели успешно заряжать литий-ионные и никель-металл-гидридные аккумуляторы небольшой емкости. Используя роутер Asus RT-AC68U и несколько сенсоров, расположенных на расстоянии 8,5 метров от него. Эти сенсоры как раз и преобразуют энергию электромагнитной волны в постоянный ток напряжением от 1,8 до 2,4 вольта, необходимых для питания микроконтроллеров и сенсорных систем. 

Особенность технологии в том, что качество рабочего сигнала при этом не ухудшается. Достаточно лишь перепрошить роутер, и можно будет пользоваться им как обычно, плюс подавать питание к маломощным устройствам. На одной из демонстраций была успешно запитана небольшая камера скрытого наблюдения с низким разрешением, расположенная на расстоянии более 5 метров от роутера. Затем на 41% был заряжен фитнес-трекер Jawbone Up24, на это ушло 2,5 часа.

На вопрос о том, почему эти процессы не сказываются негативно на качестве работы сетевого канала связи, разработчики ответили, что это становится возможным благодаря тому, что перепрошитый роутер, во время своей работы, по незанятым передачей информации каналам рассылает пакеты энергии. К этому решению пришли когда обнаружили, что в периоды молчания энергия попросту утекает из системы, а ведь ее можно направить для питания маломощных устройств.

Перспектива технологии PoWiFi

В перспективе технология PoWiFi вполне сможет послужить для питания датчиков, встроенных в бытовую технику, такую как кофеварки, кондиционеры, стиральные машины, чтобы управлять ими беспроводным способом. Такие датчики уже весьма распространены, они не требуют много энергии, а служат лишь для управления, поэтому со временем необходимость их подключения к традиционным источникам питания отпадет. Кто знает, может быть дело дойдет и до зарядки сотовых телефонов, и других мобильных устройств, инженеры не исключают такой возможности.

Во время исследований систему PoWiFi разместили в шести домах, и предложили жильцам пользоваться интернетом как обычно. Загружать веб-страницы, смотреть потоковое видео, а потом рассказать, что изменилось. В результате оказалось, что производительность сети не изменилась никак. То есть интернет работал как обычно, и присутствие добавленной опции не было заметным.

И это были лишь первые тесты, когда по Wi-Fi собиралось относительно небольшое количество энергии. Планы разработчиков, тем не менее, заключаются в том, чтобы улучшить систему PoWiFi. Повысить ее эффективность, используя многочисленные датчики на больших расстояниях, и таким образом масштабировать ее.

Уже в декабре 2015 года на конференции CoNEXT 2015 в Гейдельберге, Германия, Ассоциации по вычислительной технике был представлен итоговый документ по PoWiFi.

Так же читайте по теме:

Будем рады, если подпишетесь на наш Блог!

Система генерации электрического тока

Производство энергии электричества осуществляется силами отдельного сектора промпроизводства, представляющего собой распределенную систему генерирующих мощностей. Система генерации электроэнергии состоит преимущественно из электростанций, однако, существует и немало технологических решений для самостоятельного получения электрического тока:

1. С помощью сжигания органического топлива.

2. Посредством накопительных аккумуляторов и обычных батареек.

3. Преобразованием лучей дневного солнца в энергию электричества.

4. Используя ветряки и другие аналогичные им генераторы энергии электричества.

Важно помнить, что при всем разнообразии персональных источников электрического тока, его централизованное производство позволяет обеспечивать потребителей электрическим током с куда более низкими издержками. Себестоимость электричества за киловатт/час полученного непосредственно на ГЭС будет стоить в сотни раз дешевле, чем аналогичное количество энергии, полученное от сжигания газа или бензина и электрогенераторе

Тепловая энергия и эффекты расширения жидкостей или газов при нагревании, а также освоение возможностей преобразования в движение тепла, выделяющейся при сгорании твердого ископаемого топлива, — использовались людьми задолго до наступления эпохи повсеместного распространения электричества.

Паровые машины стали одними из первых массовых устройств для генерации электрического тока, где эффекты магнетизма и его роль в образовании электрических полей нашли свое прикладное применение.

Наличие магнитных полей — одна из базовых характеристик целого ряда как отдельных элементов периодической системы Менделеева (преимущественно металлов), так композитных их соединений. Образование магнитного поля вокруг проводников тока может происходить статически, за счет собственных заряженных частиц, так и динамически, при вращении подвижных элементов генератора. Для преобразования движения в электричество используется прочная связь между магнитными полями вокруг проводника и потоком электрической энергии, которая по нему течет.

Благодаря присутствию в проводниках заряженных частиц в свободном состоянии, они оказались доступны для воздействия магнитных полей, которые приводили эти частицы в упорядоченное движение, получившее название электрического тока. Его генерация в проводниках производится динамо-машинами за счет создания вокруг проводников концентрических магнитных полей, приводящих в движения свободные электроны, находящиеся внутри проводника. Движение электричества в проводнике происходит по направлению от плюса к минусу, где плюсом выступает заряженная частица, а минусом оказывается ближайшая частица, способная принять электрический заряд.

Динамически воздействуя на проводники посредством магнитных полей, генераторы электроэнергии могут создавать лишь переменный ток, который характеризуется по частоте его подачи, выраженной в герцах. Большинство крупных современных генерирующих мощностей поставляют потребителю энергию с переменной частотой в 50 герц. Наряду с этим показателем, нередко упоминают такие параметры, как напряжение мощность и силу тока. Мощность потребляемая в единицу времени сегодня применяется в электроэнергетике для расчета сумм, подлежащих к уплате за пользование электрической энергией. Здесь стоит подробнее остановиться на главной особенности электрической энергии, как потребительского товара.

Электричество. И друг, и враг

Зависимость человечества от электроэнергии из года в год возрастает. Даже незначительные отключения ее доставляют массу проблем. В случае масштабных перебоев альтернативных источников энергии не хватит для полноценного обеспечения городов и промышленных объектов.

Энергетика создает одну из основ современной цивилизации и все более активно загрязняет окружающую среду. Меняется климат Земли, что может привести к глобальной катастрофе. Пока ученые ищут выход из создавшейся ситуации, каждый человек может оказать помощь в безопасном и рациональном использовании электроэнергии.

Экономия и бережное расходование любых ресурсов, в том числе и электричества, необходимы. Любой потребитель, включающий в доме свет, знает, сколько усилий потрачено на то, чтобы сделать жизнь безопасней, удобней и легче. Культура потребления энергии означает грамотное ее использование. В первую очередь это соблюдение техники безопасности.

Невозможно существование современного мира без электричества. Это факт, не требующий подтверждения. Если вдруг оно исчезнет, цивилизация будет разрушена. Поэтому у человечества нет другого пути, кроме дальнейшего развития энергетической отрасли.

Классификация линий электропередач

В энергетике принято разделять ЛЭП на виды в зависимости от следующих показателей:

  1. Конструктивные особенности линий, осуществляющих передачу электроэнергии. В зависимости от исполнения они могут быть двух видов:
  • Воздушными. Передача электричества осуществляется с использованием проводов, которые подвешиваются на опоры. Воздушные линии электропередач
  • Кабельными. Такой способ монтажа подразумевает укладку кабельных линий непосредственно в грунт или в специально предназначенные для этой цели инженерные системы. Обустройство блочной кабельной канализации
  1. Вольтаж. В зависимости от величины напряжения ЛЭП принято классифицировать на следующие виды:
  • Низковольтные, к таковым относятся все ВЛ с напряжением не более 1-го кВ.
  • Средние – от 1-го до 35-ти кВ.
  • Высоковольтные – 110,0-220,0 кВ.
  • Сверхвысоковольтные – 330,0-750,0 кВ.
  • Ультравысоковольтные — более 750-ти кВ. Ультравысоковольтная ЛЭП Экибастуз-Кокчетав 1150 кВ
  1. Разделение по типу тока при передаче электричества, он может быть переменным и постоянным. Первый вариант более распространен, поскольку электростанции, как правило, оборудованы генераторами переменного тока. Но для уменьшения нагрузочных потерь энергии, особенно на большой дальности передачи, более эффективен второй вариант. Как организованы схемы передачи электричества в обоих случаях, а также преимущества каждого из них, будет рассказано ниже.
  2. Классификация в зависимости от назначения. Для этой цели приняты следующие категории:
  • Линии от 500,0 кВ для сверхдальних расстояний. Такие ВЛ связывают между собой отдельные энергетические системы.
  • ЛЭП магистрального назначения (220,0-330,0 кВ). При помощи таких линий осуществляется передача электричества, вырабатываемого на мощных ГЭС, тепловых и атомных электростанциях, а также их объединения в единую энергосистему.
  • ЛЭП 35-150 кВ относятся к распределительным. Они служат для снабжения электроэнергией крупных промышленных площадок, подключения районных распределительных пунктов и т.д.
  • ЛЭП с напряжением до 20,0 кВ, служат для подключения групп потребителей к электрической сети.

Суть явления

В отличие от природных ресурсов вроде газа, электроэнергию невозможно закачивать в хранилища и брать оттуда столько, сколько нужно. Поэтому выработка электроэнергии напрямую зависит от потребления. Когда спрос на электричество больше, электростанция вырабатывает больше электроэнергии.

Повседневное использование электроэнергии

Таким образом, передачу электрического тока можно охарактеризовать как непрерывный процесс выработки, транспортировки и потребления. На государственном уровне передача электроэнергии относится к вопросам стратегической безопасности и является приоритетной задачей, на инфраструктуру которой ежегодно выделяются огромные суммы бюджетных средств.

Например, в России в 2018 году на благоустройство энергетической инфраструктуры было потрачено 30 миллиардов долларов.

Дополнительная информация. Недавно в Австралии была запущена первая в мире аккумулирующая электроэнергию станция фирмы Тесла. Саму электроэнергию добывают ветряки, которые заряжают гигантский блок батарей. От них энергия уже передается конечному потребителю по проводам. Таким образом, люди не остаются без электричества в безветренный день.

Решение проблемы ветряков аккумуляцией электроэнергии

Маршрут транспортировки электричества

Итак, как мы уже сказали, начальной точкой является электрическая станция, которая, собственно, и генерирует электроэнергию. На сегодняшний день основными видами электростанций являются гидро- (ГЭС), тепло- (ТЭС) и атомные (АЭС). Помимо этого бывают солнечные, ветровые и геотермальные эл. станции.

Далее от источника электричество передается к потребителям, которые могут находиться на дальних расстояниях. Чтобы осуществить передачу электроэнергии, нужно повысить напряжение с помощью повышающих трансформаторов (напряжение могут повысить вплоть до 1150 кВ, в зависимости от расстояния).

Почему электроэнергия передается при повышенном напряжении? Все очень просто. Вспомним формулу электрической мощности — P=UI, тогда если передавать энергию к потребителю, то чем выше напряжение на линии электропередач — тем меньше ток в проводах, при той же потребляемой мощности. Благодаря этому можно строить ЛЭП с большим напряжением, уменьшив сечение проводов, по сравнению с ЛЭП с низшим напряжением. Значит и сократятся расходы на строительство — чем тоньше провода, тем они дешевле.

Соответственно от станции электричество передается на повышающий трансформатор (при необходимости), а после этого с помощью ЛЭП осуществляется передача электроэнергии на ЦРП (центрально распределительные подстанции). Последние, в свою очередь, находятся в городах или в близком расстоянии от них. На ЦРП происходит понижение напряжения до 220 или же 110 кВ, откуда электроэнергия передается к подстанциям.

Далее напряжение еще раз понижают (уже до 6-10 кВ) и происходит распределение электрической энергии по трансформаторным пунктам, именуемым также ТП. К трансформаторным пунктам электричество может передаваться не по ЛЭП, а подземной кабельной линией, т.к. в городских условиях это будет более целесообразно. Дело в том, что стоимость полосы отчуждения в городах достаточно высокая и более выгодно будет прокопать траншею и заложить кабель в ней, нежели занимать место на поверхности.

От трансформаторных пунктов электроэнергия передается к многоэтажным домам, постройкам частного сектора, гаражному кооперативу и т.д

Обращаем ваше внимание на то, что на ТП напряжение еще раз понижается, уже до привычных нам 0,4 кВ (сеть 380 вольт)

Если кратко рассмотреть маршрут передачи электроэнергии от источника к потребителям, то он выглядит следующим образом: электростанция (к примеру, 10 кВ) – повышающая трансформаторная подстанция (от 110 до 1150 кв) – ЛЭП – понижающая трансформаторная подстанция – ТП (10-0,4 кВ) – жилые дома.

Вот таким способом электричество передается по проводам в наш дом. Как вы видите, схема передачи и распределения электроэнергии к потребителям не слишком сложная, все зависит от того, насколько большое расстояние.

Наглядно увидеть, как электрическая энергия поступает в города и доходит до жилого сектора, вы можете на картинке ниже:

Более подробно об этом вопросе рассказывают эксперты:

Как электричество поступает от источника к потребителю

Электрическая тема. Все документы

Электромонтаж своими руками — Электронный курс

Техника безопасности
Необходимый инструмент
Чтение проекта
Укладка проводки и самые простые расключения
Сложные расключения
Заземление
Выбор автоматов
Щит управления
Итоги

Из рассылки

Короткое замыкание
Автоматы защиты
Защита от токовой утечки
Как расключать распределительный электрощит
Серия рассылок: «Умные устройства». 1. Диммер- что это такое и как можно использовать
Серия рассылок: «Умные устройства». 2. Блок защиты, датчик движения, таймер отключения и еще кое-что
Как управлять включением/выключением электропотребителей из 2-х, 3-х, 4-х, … мест. Реализация: двухпроводная система с применением бистабильного реле
Как защитить бытовую технику от перенапряжений и индустриальных помех в сети электропитания. Стабилизация напряжения.
Автоматизация водоснабжения в частном доме
Включение потребителей (например, нагревательные установки) по заданной временнОй программе
Включение света, звукового извещателя или видеокамеры при появлении движущегося объекта в зоне действия датчика
Защита галогенных ламп и ламп накаливания от перегорания, продление их службы в несколько раз
Включение/выключение света (и не только) в зависимости от времени суток (сумерки/рассвет)
Отключение питания от потребителя в случае превышения потребляемой мощности. Защита от несанкционированного подключения к питающей сети
Отключение от электропитания неприоритетной цепи
Как имитировать присутствие человека в помещении путем включения/выключения света через случайные промежутки времени
Контроль и поддержание заданной температуры в помещении
Как заставить работать вентилятор в санузле после отключения освещения на установленный отрезок времени

Статьи на «электрическую тему»

Ввод кабеля в здание
Установка светильников, выключателей, розеток
Как нужно делать проходы для проводки через стены и перекрытия?
Выбор и установка счетчика электроэнергии
Как построить молниеотвод?

Монтаж электропроводки

Монтаж выключателей, штепсельных розеток и светильников
Монтаж осветительных электроустановок. Основные сведения
Монтаж электропроводки в трубах
Монтаж электропроводки в подвалах, гаражах и мастерских
Монтаж электропроводки в подвалах
Монтаж электропроводки в чердачных помещениях
Монтаж электропроводки плоскими проводами
Прокладка проводов на роликах
Устройство проходов через стены, пересечения проводок
Монтаж скрытых электропроводок
Монтаж тросовых электропроводок
Монтаж открытых электропроводок
Монтаж наружных электропроводок
Виды контактных соединений. Часть 7
Виды контактных соединений. Часть 6
Виды контактных соединений. Часть 5
Виды контактных соединений. Часть 4
Виды контактных соединений. Часть 3
Виды контактных соединений. Часть 2
Виды контактных соединений. Часть 1
Монтаж контактных соединений — общие требования
Механизмы для электромонтажных работ
Изоляция кабелей
Монтаж электропроводок
Определение сечения жил проводов
Правила эксплуатации электропроводок
Выбор сечения кабеля в зависимости от нагрузки
Провод с одинарной изоляцией
Кабели для силовой электропроводки (2)
Кабели для силовой электропроводки (1)
Про провода и кабели
Как расключать распределительный электрощит

Заземление, зануление

Про заземление, зануление в вопросах и ответах
Монтаж вертикальных заземлителей
Искусственные заземлители
Естественные заземлители
Заземляющие устройства
Защитные заземления электроустановок

Электробезопасность

Какие факторы влияют на исход поражения электрическим током
Что такое электрические травмы?
Смерть человека от электрического тока
Действие электрического тока на организм человека

Про электричество. Разное

Соединительные кабельные муфты Raychem
Включение в однофазную сеть трехфазного электродвигателя
Как производится выбор плавких вставок предохранителей
Как измерить частоту вращения электрических машин
Маркировка выводных концов машин постоянного тока
Как осуществляется пуск двигателя постоянного тока
Как высушить изоляцию обмоток электродвигателя
Межвитковое замыкание в обмотках электрических машин
Обрыв стержней короткозамкнутых роторов электродвигателей
Как определить мощность электродвигателя
Как увеличить срок службы ламп накаливания
Изменение параметров 3-х фазного асинхронного двигателя
Приборы осветительных электроустановок
Электрические источники света
Световые величины
ИБП для загородного жилья
Пара слов про силовой электрощит

Трансформатор. Передача Электроэнергии

Трансформатор — это устройство для повышения или
понижения переменного напряжения. Простейший трансформатор
состоит из двух обмоток, одна из которых называется
первичной, а другая — вторичной. Обмотки
трансформатора расположены на общем сердечнике из
электротехнической стали; обычно он изготовляется наборным из
листов для уменьшения потерь на вихревые токи.

Принцип действия трансформатора основан на явлении
электромагнитной индукции. Когда на первичную обмотку подается
переменное напряжение, возникающий в результате этого
переменный магнитный поток возбуждает во вторичной обмотке
(катушке) переменное напряжение той же частоты. Однако
напряжение на обмотках будет различным в зависимости от числа
витков в каждой из них.

Согласно закону Фарадея, ЭДС индукции на вторичной обмотке
равна

1;

11

Разделив эти выражения одно на другое, получим:

Это уравнение трансформатора, показывающее, как напряжение на
вторичной обмотке связано с напряжением на первичной обмотке.
Если n2>n1; то трансформатор
повышающий, если n2 < nl, то —
понижающий.

Из закона сохранения энергии следует, что выходная мощность
трансформатора не может превышать его входную мощность.

Грамотно сконструированный трансформатор может иметь КПД
порядка 99%; столь низки потери энергии в нем. Таким образом,
выходная мощность трансформатора практически равна входной, и,
поскольку мощность равна р = IU, имеем:

Трансформатор может работать только на переменном токе.

Трансформаторы играют важную роль в передаче энергии на
расстояние. Электростанции часто располагаются далеко от
промышленных городов, гидроэлектростанции строятся на больших
реках, для атомных электростанций требуется большое количество
охлаждающей воды, тепловые электростанции тоже часто строят
вдали от городов, чтобы уменьшить загрязнение воздуха.

В любом случае электроэнергию часто приходится передавать на
большие расстояния, и в линиях электропередачи всегда
неизбежны потери энергии.

Потери энергии можно уменьшить, если использовать в линиях
электропередачи высокое напряжение.

Чем выше напряжение, тем меньше сила тока, и тем меньшая доля
мощности теряется в линии электропередачи.

Рассмотрим следующую задачу: поселок потребляет электрическую
мощность в среднем 120 кВт от электростанции, расположенной в
10 км. Полное сопротивление линии электропередачи равно 0,40
Ом. Следует определить потери мощности при напряжении на
линии: а) 240 В; б) 24 000 В.

Решение

а) Если передать мощность 120 кВт при напряжении 240 В, то
сила тока в линии составит

Потери мощности в линии достигнут

Свыше 80% общей мощности будет теряться в линии выделяться в
виде тепла. то] б) При U = 24 000 В,

Потери мощности составят:

Меньше 1% общей мощности будет теряться в линии, если энергию
передавать высоким напряжением.

Что такое электрическая система

С общей точки зрения, электроэнергетическая система обычно понимается как очень большая сеть, которая связывает электростанции (большие или малые) с нагрузками с помощью электрической сети, которая может охватывать целый континент, такой как Европа или Северная Америка.

Структура электроэнергетических систем, которые вы ДОЛЖНЫ полностью понять (фото: Carla Wosniak via Flickr)

Таким образом, энергосистема, как правило, простирается от электростанции прямо до гнезд внутри помещений клиентов. Они иногда называются системами полной мощности, поскольку они являются автономными.

Меньшие энергетические системы могут быть изготовлены из частей или секций большей, полной системы. На рисунке 1 показаны несколько элементов, которые работают вместе и подключены к сети питания.

Подсистема, представленная на рисунке 1 (а), может быть одним из конечных пользователей электрической энергии системы полной мощности . Подсистема, представленная на рисунке 1 (b), может быть одной из малых электростанций, работающих как распределенная генерация (DG). Большинство этих энергосистем работают только при подключении к полной системе питания.

Системы электропитания, которые поставляются внешним источником электроэнергии или которые производят (путем преобразования из других источников) электричество и передают его в большую сетку, называются системами частичной энергетики.

Рисунок 1 (a, b) — Подсистемы питания специального назначения

Энергосистемы, которые представляют интерес для наших целей, представляют собой широкомасштабные полномасштабные энергосистемы, которые охватывают большие расстояния и были развернуты на протяжении десятилетий энергетическими компаниями.

Генерация — это производство электроэнергии на электростанциях или генерирующих единицах, где форма первичной энергии преобразуется в электричество. Передача — это сеть, которая перемещает власть от одной части страны или региона к другому. Обычно это хорошо взаимосвязанная инфраструктура, в которой несколько линий электропередач соединяют разные подстанции, которые изменяют уровни напряжения, предлагая улучшенную избыточность.

Распределение, наконец, обеспечивает мощность (можно сказать, локально по сравнению с системой передачи) до конечных нагрузок (большая часть которых подается при низком напряжении) через промежуточные этапы, на которых напряжение преобразуется вниз (преобразуется) на более низкие уровни.

Есть части мира, в которых дерегулирование и приватизация отрасли уже полностью изменили индустриальный ландшафт, в то время как в других проблемах еще предстоит увидеть.

В наши дни

Технологии беспроводной передачи электроэнергии сильно шагнули вперед, в основном в области передачи данных. Так значительных успехов достигла радиосвязь, беспроводные технологии типа Bluetooth и Wi-fi. Особых нововведений не произошло, в основном изменялись частоты, способы шифровки сигнала, представление сигнала перешло из аналогового в цифровой вид.

Если вести речь о передаче электроэнергии без проводов для питания электрооборудования, стоит упомянуть о том, что в 2007 году исследователи из Массачусетского института передали энергию на 2 метра и зажгли 60-ваттную лампочку таким образом. Эта технология получила названия WiTricity, в её основе электромагнитный резонанс приемника и передатчика. Стоит отметить, что приемник получает порядка 40-45% электроэнергии. Обобщенная схема устройства для передачи энергии через магнитное поле изображена на рисунке ниже:

На видео пример применения этой технологии для зарядки электромобиля. Суть заключается в том, что на дно электромобиля крепят приемник, а в гараже или на другом месте устанавливают передатчик на полу.

Вы должны поставить машину так, чтобы приемник располагался над передатчиком. Устройство передает достаточно много электроэнергии без проводов – от 3,6 до 11 кВт в час.

Компания в перспективе рассматривает обеспечение электричеством такой технологией и бытовой техники, а также всей квартиры в целом. В 2010 году компания Haier представила беспроводной телевизор, который получает питание с помощью аналогичной технологии, а также видеосигнал без проводов. Подобные разработки ведут и другие передовые компании, такие как Intel, Sony.

В быту широко распространены технологии беспроводной передачи электроэнергии, например, для зарядки смартфона. Принцип аналогичный – есть передатчик, есть приемник, КПД порядка 50%, т.е. для заряда током в 1А передатчик будет потреблять 2А. Передатчик обычно в таких комплектах называется базой, а та часть, что подключается к телефону – приемником или антенной.

Другой нишей является беспроводная передача электричества с помощью микроволн или лазера. Это обеспечивает больший радиус действия, нежели пара метров, которые обеспечивает магнитная индукция. В микроволновом способе на принимающее устройство устанавливают ректенну (нелинейная антенна для преобразования электромагнитной волны в постоянный ток), а передатчик направляет своё излучение в эту сторону. В таком варианте беспроводной передачи электричества отсутствует необходимость прямой видимости объектов. Минусом является то, что микроволновое излучение небезопасно для окружающей среды.

Рекомендуем просмотреть видео, на котором более подробно рассмотрен вопрос:

В заключение хотелось бы отметить — беспроводная передача электричества, безусловно, удобна для использования в повседневной жизни, но у неё есть свои плюсы и минусы. Если говорить об использовании таких технологий для заряда гаджетов, то плюсом является то, что вам не придется постоянно вставлять и вынимать из разъёма вашего смартфона штекер, соответственно разъём не выйдет из строя. Минусом является низкий КПД, если для смартфона потери энергии не существенны (несколько Ватт), то для беспроводной зарядки электромобиля – это весьма большая проблема. Основной целью развития в этой технологии является повысить КПД установки, ведь на фоне повсеместной гонки за энергосбережением использование технологий с низким КПД весьма сомнительно.

Похожие материалы:

  • Закон Ома простым языком
  • Причины потерь электроэнергии на больших расстояниях
  • Что такое умные лампы

Результаты плана

В 1935 году принятая программа была выполнена и перевыполнена. Построено 40 электростанций вместо запланированных 30, введено мощностей почти втрое больше, чем предусматривалось по плану. Возведено 13 электроцентралей мощностью по 100 тыс. кВт каждая. Общая мощность российских ГЭС составила около 700 000 кВт.

В эти годы были возведены крупнейшие объекты стратегического значения, такие как всемирно известная Днепровская ГЭС. По суммарным показателям Единая советская энергосистема превзошла аналогичные системы самых развитых стран Нового и Старого Света. Производство электроэнергии по странам Европы в те годы значительно отставало от показателей СССР.

Использование атомной энергии

В наши дни производство, передача и использование электроэнергии производятся атомными электростанциями — АЭС. Они устроены практически по тому же принципу, что и тепловые.

Главный их плюс — малое количество требующегося топлива. Килограмм обогащенного урана по своей производительности эквивалентен 2,5 тыс. тонн угля. Именно поэтому АЭС теоретически можно строить в любом районе независимо от наличия близлежащих топливных ресурсов.

В настоящее время запасы урана на планете значительно больше, чем минерального горючего, а воздействие АЭС на окружающую природу минимально при условии безаварийной работы.

Огромный и серьезный недостаток АЭС — вероятность страшной аварии с непредсказуемыми последствиями, отчего для их бесперебойной работы требуются очень серьезные меры по обеспечению безопасности. К тому же производство электроэнергии на АЭС регулируется с трудом — как для их запуска, так и для полной остановки понадобится несколько недель. И практически отсутствуют технологии утилизации опасных отходов.

Освещение России

Русские ученые внесли огромный практический вклад в историю развития электричества, начиная с М. В. Ломоносова. Многие их идеи были заимствованы европейскими коллегами, однако в плане внедрения изобретений в практическую работу на пользу людям Россия всегда опережала другие страны.

Весной 1883 года на Софийской набережной построили электростанцию и успешно провели праздничное освещение центра города, приуроченное к церемонии коронации нового императора — Александра ІІІ.

В этом же году был полностью электрифицирован центр Петербурга и его сердце — Зимний дворец. Небольшой отдел при техническом обществе вырос за пару лет в Ассоциацию электроосвещения Российской империи, стараниями которой было проведено множество работ по установке фонарей на улицах Москвы и Петербурга, включая отдаленные районы. Всего через два года по всей стране начнут строить электростанции, и население России окончательно встанет на путь прогресса.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации