Андрей Смирнов
Время чтения: ~22 мин.
Просмотров: 0

Откуда берётся близорукость и как её лечить

Наведенное напряжение

Наведенное напряжение на неработающем токопроводе измеряется при наложении закороток, предусмотренных проектом. Измерения ведут на середине пролета между закорот-ками. Переносным вольтметром поочередно замеряют напряжение между разными фазами и между фазами и землей.

Симметричные жесткие токопроводы на опорных изоляторах.

Наведенное напряжение W может быть значительным, и для его ограничения при работах на отключенной цепи устанавливаются закоротки в начале и конце токопровода, а при необходимости и в промежуточных его точках с таким расчетом, чтобы наведенное напряжение не превышало 250 В, требуемых по условиям безопасности.

Наведенное напряжение U может быть значительным, и для его ограничения при работах на отключенной цепи устанавливаются закоротки. Количество и месторасположение закороток выбирается с таким расчетом, чтобы значение U не превышало 250 В.

Наведенное напряжение V может быть значительным и для его ограничения при работах на отключенной цепи устанавливаются закоротки в начале и конце токопровода при необходимости и в промежуточных его точках с таким расчетом, чтобы наведенное напряжение не превышало 250 В, требуемых по условиям безопасности.

Если наведенное напряжение высоко, нужно заземлять два конца. В этом случае в экране возникают наведенные токи, что приводит к дополнительному нагреву кабеля. Однако потери в экране все же гораздо меньше, чем потери в центральной токопроводящей жиле, и максимальный дополнительный нагрев находится в пределах от 1 до 3 С.

Это наведенное напряжение усиливается и регистрируется. Можно считать, что вращающееся поле Н обусловливает когерентность прецессии спинов, в результате чего возникает макроскопический магнитный момент, прецессирующий с частотой VQ. В другом варианте схемы возбуждающая и приемная катушки объединены и процесс переориентации ядер детектируется как поглощение энергии ВЧ-поля.

Переменное напряжение U.

Это наведенное напряжение переменного тока подвергается в мостовом преобразователе станции катодной защиты однопо-лупериодному выпрямлению, увеличивает защитный ток и тем самым вызывает снижение потенциала труба — грунт. Поскольку рабочий ток в высоковольтной воздушной линии или на участке электрифицированной железной дороги изменяется во времени, происходит синхронное изменение и наведенного напряжения и вместе с ним выпрямленного переменного тока, вследствие чего потенциал труба — грунт непрерывно колеблется. Оптимальная настройка станции катодной защиты в таких условиях становится затруднительной или даже невозможной. Преобразователи, стойкие к воздействию высокого напряжения, и в этом случае оказываются выгодными, потому что их дроссели резко уменьшают наведенное переменное напряжение. В итоге потенциал труба — грунт стабилизируется.

Полярность наведенного напряжения в зависимости от взаимного расположения и направления намотки катушек может совпадать ( быть согласной) или не совпадать ( быть встречной) с принятой положительной полярностью напряжения второй катушки.

Величины наведенных напряжений у полупроводниковых реле значительно меньше, чем у электромеханических реле. Мертвые зоны этих защит также имеют меньшие величины, и вследствие этого потеря направленности действия реле в рассматриваемом случае все же может быть.

Фаза наведенного напряжения смещена по отношению к току на 90 и может, таким образом, значительно отличаться от фазы напряжения, наведенного электростатически. Действие высших гармоник тока линии передачи пропорционально частоте, как это видно из соотношения (31.4), и может приводить к нарушению работы телефонных линий, тем более что телефонные линии чувствительны к ним больше, чем к основной гармонике.

Опасности наведенных напряжений и защите от них посвящена глава, здесь ограничимся лишь примерами. Опасность таких напряжений особенно велика, если автомашина перевозит пожаро — и взрывоопасные грузы.

Для снижения наведенных напряжений на трубопроводах используют главным образом заземляющие устройства. Защитные заземления устанавливают в таких местах на трубопроводах, где наведенные электрифицированной железной дорогой напряжения трубопровода превышают допустимые.

В зоне наведенного напряжения при работе на проводах ( тросах), выполняемых с не имеющей изолирующего звена телескопической вышки или другого механизма для подъема людей, их рабочие площадки соединяются посредством переносного заземления с проводом ( тросом), а сама вышка или механизм заземляются. Провод ( трос) при этом должен быть заземлен на ближайшей опоре.

Углубляемся в тему

Питание потребителей осуществляется от обмоток низкого напряжения понижающего трансформатора, являющегося важнейшей составляющей работы трансформаторной подстанции. Соединение подстанции и абонентов выглядит следующим образом: к потребителям подводится общий проводник, отходящий от точки соединения трансформаторных обмоток, называемый нейтралью, наряду с тремя проводниками, представляющими собой выводы остальных концов обмоток. Выражаясь простыми словами, каждый из этих трех проводников является фазой, а общий – это ноль.

Между фазами в трехфазной энергетической системе возникает напряжение, называемое линейным. Его номинальное значение составляет 380 В. Дадим определение фазному напряжению — это напряжение между нулем и одной из фаз. Номинальное значение фазного напряжения составляет 220 В.

Электроэнергетическая система, в которой ноль соединен с землей, называется «система с глухозаземленной нейтралью». Чтобы было предельно понятно даже для новичка в электротехнике: под «землей» в электроэнергетике понимается заземление.

Физический смысл глухозаземленной нейтрали следующий: обмотки в трансформаторе соединены в «звезду», при этом, нейтраль заземляют. Ноль выступает в качестве совмещенного нейтрального проводника (PEN). Такой тип соединения с землей характерен для жилых домов, относящихся к советской постройке. Здесь, в подъездах, электрический щиток на каждом этаже просто зануляют, а отдельное соединение с землей не предусмотрено

Важно знать, что подключать одновременно защитный и нулевой проводник к корпусу щитка весьма опасно, потому как существует вероятность прохождения рабочего тока через ноль и отклонения его потенциала от нулевого значения, что означает возможность удара током

К домам, относящимся к более поздней постройке, от трансформаторной подстанции предусмотрено подведение тех же трех фаз, а также разделенных нулевого и защитного проводника. Электрический ток проходит по рабочему проводнику, а назначение защитного провода заключается в соединении токопроводящих частей с имеющимся на подстанции заземляющим контуром. В этом случае в электрических щитках на каждом этаже располагается отдельная шина для раздельного подключения фазы, нуля и заземления. Заземляющая шина имеет металлическую связь с корпусом щитка.

Известно, что нагрузка по абонентам должна быть распределена по всем фазам равномерно. Однако, предсказать заранее, какие мощности будут потребляться тем или иным абонентом, не представляется возможным. В связи с тем, что ток нагрузки разный в каждой отдельно взятой фазе, появляется смещение нейтрали. Вследствие чего и возникает разность потенциалов между нулем и землей. В случае, когда сечение нулевого проводника является недостаточным, разность потенциалов становится еще значительнее. Если же связь с нейтральным проводником полностью теряется, то велика вероятность возникновения аварийных ситуаций, при которых в фазах, нагруженных до предела, напряжение приближается к нулевому значению, а в ненагруженных, наоборот, стремится к значению 380 В. Это обстоятельство приводит к полной поломке электрооборудования. В то же время, корпус электрического оборудования оказывается под напряжением, опасным для здоровья и жизни людей. Применение разделенных нулевого и защитного провода в данном случае поможет избежать возникновения таких аварий и обеспечить требуемый уровень безопасности и надежности.

Напоследок рекомендуем просмотреть полезные видео по теме, в которых даются определения понятиям фазы, нуля и заземления:

Надеемся, теперь вы знаете, что такое фаза, ноль, земля в электрике и зачем они нужны. Если возникнут вопросы, задайте их нашим специалистам в разделе «Задать вопрос электрику«!

Рекомендуем также прочитать:

Об этой статье

Соавтор(ы):
Штатный редактор wikiHow

В создании этой статьи участвовала наша опытная команда редакторов и исследователей, которые проверили ее на точность и полноту. wikiHow тщательно следит за работой редакторов, чтобы гарантировать соответствие каждой статьи нашим высоким стандартам качества. Количество просмотров этой статьи: 46 915.

Категории: Избранная статья | Дом и сад

English:Make Your Own Electricity

Español:generar energía eléctrica

Deutsch:Eigenen Strom herstellen

Nederlands:Je eigen stroom opwekken

Italiano:Generare la Propria Elettricità

Português:Gerar Sua Própria Eletricidade

Français:produire sa propre électricité

Bahasa Indonesia:Membuat Listrik Sendiri

Čeština:Jak si vyrobit vlastní elektřinu

العربية:إنتاج الكهرباء بنفسك

Печать

Информация о напряжении

Напряжение — работа электрического тока, при которой происходит перемещение заряда из одной точки в другую. Оно имеет векторное направление. Электрическим током является движение заряженных элементарных частиц под воздействие электромагнитного поля.

Некоторые начинающие физики не знают, в чем измеряется напряжение

Знать это очень важно, поскольку элементы электрической цепи можно рассчитать неверно. Единицей измерения тока является ампер (А), а напряжения — вольт (В)

В последнем случае применяется вольтметр — прибор, измеряющий величину напряжения или разности потенциалов. Он подключается параллельно в систему. Например, нужно измерить его значение на лампочке накаливания. Для этого необходимо подключиться параллельно к ней, а не последовательно.

Физический смысл

Под физическим смыслом напряжения или разности потенциалов понимают работу, необходимую для перемещения точечного заряда в 1 Кл из одного места в другое. В этом случае переносится только положительный потенциал. При этом возникает электродвижущая сила (ЭДС), которая называется напряжением или разностью потенциалов.

Для понимания физического смысла следует рассмотреть более простой пример. Пусть существует некоторая система, состоящая из насоса, труб и крана. Насос — напряженность электрического поля, трубы — провода, а кран — сопротивление системы. При включении первого происходит закачивание воды. Если немного приоткрыть кран, то она польется маленькой струйкой. При открытии его полностью жидкость будет уходить более интенсивно.

Формулы для вычислений

Все формулы для расчетов построены на законах Ома. Их всего два: для участка и для всей цепи. Формулировка первого: ток, протекающий на искомом участке, прямо пропорционален U и обратно пропорционален R. Его математическая запись имеет такой вид: I=U/R. Из последнего получаются такие соотношения:

  1. U=IR.
  2. R=U/I.
  3. P=IU=(I2 )R=(U2 )/R, где Р — мощность.

Для полной цепи закон формулируется иначе: ток I прямо пропорционален ЭДС (E) и обратно пропорционален алгебраической сумме внешнего R и внутреннего r сопротивлений. Следует отметить, что r — проводимость источника питания. Записывается он в таком виде: I=E/(R+r). Физики вывели следующие соотношения, помогающие при расчетах:

  1. Е=I (R+r).
  2. R=(E/I)-r.
  3. r=(E/I)-R.
  4. Р=ЕI=(E2 )/(R+r)=(R+r)I2.

Тождества для переменного тока

Напряжение при переменном токе классифицируется на определенные виды. К ним относятся следующие:

  1. Мгновенное или действующее — параметр, который измеряют приборы (Um).
  2. Амплитудное — величина, характеризующее максимальную величину в определенный момент времени. Расчитывается по формуле с учетом угловой частоты (w), времени (t) и угла между фазами (f), который измеряется осциллографом: u (t)=Uмsin (wt+f).
  3. Среднеквадратичное (Uq) — величина, вычисляемая по формуле: Uq=0,7073Uм).

Для расчета следует иметь знания об индуктивной Xl, емкостной Xc и резистивной R нагрузках. Первая — проводимость всех элементов, содержащих индуктивность (катушки, трансформаторы, электродвигатели). Во втором случае учитываются все емкостные радиодетали (варисторы и конденсаторы). Резистивная нагрузка включает все значения резисторов.

Полный импеданс цепи (Z) равен сумме всех элементов, содержащий активную, индуктивную и емкостную. Специалисты рекомендуют использовать такие формулы, необходимые для расчетов:

  1. Xl=wL.
  2. Хс=1/wC.
  3. Z=R+Xc+Xl.
  4. I=Uм/Z.
  5. Uм=IZ.
  6. Z=Uм/I.

Четвертая формула является законом Ома для участка цепи, которую следует применять при переменных токах.

Таким образом, при помощи формулы напряжения можно рассчитывать не только основные параметры электричества для постоянного и переменного токов, но и его допустимые величины для человека.

Преимущества переменного тока

В наших розетках протекает переменный ток. Но почему именно он, чем он лучше постоянного?

Дело в том, что только величину переменного напряжения можно изменять с помощью преобразовательных устройств – трансформаторов. А делать это приходится многократно.

Теплоэлектростанции, гидроэлектростанции и атомные электростанции находятся далеко от потребителей. Возникает необходимость передачи больших мощностей на расстояния, исчисляемые сотнями и тысячами километров. Провода линий электропередач имеют малое сопротивление, но все же оно присутствует. Поэтому ток, проходя по ним, нагревает проводники. Более того, за счет разности потенциалов в начале и конце линии, к потребителю приходит меньшее напряжение, чем было на электростанции.

Бороться с этим явлением можно, либо уменьшив сопротивление проводов, либо снизив значение тока. Уменьшение сопротивления возможно только с увеличением сечением проводов, а это дорого, а порой – невозможно технически.

А вот уменьшить ток можно, увеличив значение напряжения линии. Тогда при передаче одной и той же мощности ток по проводам пойдет меньший. Уменьшаться потери на нагрев проводов.

Технически это выглядит так. От генераторов переменного тока электростанции напряжение подается на повышающий трансформатор. Например, 6/110 кВ. Далее по линии электропередач напряжением 110 кВ (сокращенно – ЛЭП-110 кВ) электрическая энергия отправляется до следующей распределительной подстанции.

Если эта подстанция предназначена для питания группы деревень в районе, то напряжение понижается до 10 кВ. Если при этом нужно отправить весомую часть принятой мощности энергоемкому потребителю (например, комбинату или заводу), могут использоваться линии напряжением 35 кВ. На узловых подстанциях для разделения напряжения между потребителями, находящихся на разном удалении и потребляющими разные мощности, используются трехобмоточные трансформаторы. В нашем примере это – 110/35/6 кВ.

Теперь напряжение, полученное на сельской подстанции, претерпевает новое преобразование. Его величина должна стать приемлемой для потребителя. Для этого мощность проходит через трансформатор 10/0,4 кВ. Напряжение между фазой и нулем линии, идущей к потребителю, становится равным 220 В. Оно и доходит до наших розеток.

Думаете, что это все? Нет. Для полупроводниковой техники, являющейся начинкой наших телевизоров, компьютеров, музыкальных центров эта величина не подойдет. Внутри них 220 В понижаются до еще меньшего значения. И преобразуется в постоянный ток.

Вот такая метаморфоза: передавать на большие расстояния лучше переменный ток, а нужен нам, в основном – постоянный.

Еще одно достоинство переменного тока: проще погасить электрическую дугу, неизбежно возникающую между размыкающимися контактами коммутационных аппаратов. Напряжение питания изменяется и периодически переходит через нулевое положение. В этот момент дуга гаснет самостоятельно при соблюдении определенных условий. Для постоянного напряжения потребуется более серьезная защита от подгорания контактов. Но при коротких замыканиях на постоянном токе повреждения электрооборудования от действия электрической дуги серьезнее и разрушительнее, чем на переменном.

Применение газовых разрядов в технике

О вредном воздействии тех или иных разрядов вкратце речь уже шла выше

Теперь обратим внимание на пользу, которую они приносят в промышленности и в быту

Тлеющий разряд применяют в электротехнике (стабилизаторы напряжения), в технологии нанесения покрытий (метод катодного распыления, основанный на явлении коррозии катода). В электронике его используют для получения ионных и электронных пучков. Широко известной областью применения тлеющего разряда являются люминесцентные и так называемые экономичные лампы и декоративные неоновые и аргоновые газоразрядные трубки. Кроме того, тлеющий разряд применяют в газовых лазерах и в спектроскопии.

Искровой разряд находит применение в предохранителях, в электроэрозионных методах точной обработки металлов (искровая резка, сверление и так далее). Но наиболее известен он благодаря использованию в свечах зажигания двигателей внутреннего сгорания и в бытовой технике (газовые плиты).

Дуговой разряд, будучи впервые использован в осветительной технике еще в 1876 году (свеча Яблочкова – «русский свет»), до сих пор служит в качестве источника света – например, в проекционных аппаратах и мощных прожекторах. В электротехнике дуга используется в ртутных выпрямителях. Кроме того, она применяется в электросварке, в резке металла, в промышленных электропечах для выплавки стали и сплавов.

Коронный разряд находит применение в электрофильтрах для ионной очистки газов, в счетчиках элементарных частиц, в молниеотводах, в системах кондиционирования воздуха. Также коронный разряд работает в копировальных аппаратах и лазерных принтерах, где посредством его производится заряд и разрядка светочувствительного барабана и перенос порошка с барабана на бумагу.

Таким образом, газовые разряды всех типов находят самое широкое применение. Электрический ток в газах успешно и эффективно используется во многих областях техники.

Газовый разряд и его типы

Итак, электрический ток в газах обусловлен упорядоченным движением заряженных частиц под действием приложенного к ним электрического поля. Наличие таких зарядов, в свою очередь, возможно благодаря различным факторам ионизации.

Так, термоионизация требует значительных температур, но открытое пламя в связи с некоторыми химическими процессами способствует ионизации. Даже при сравнительно невысокой температуре в присутствии пламени фиксируется появление в газах электрического тока, и опыт с проводимостью газа позволяет легко в этом убедиться. Надо поместить пламя горелки или свечи между обкладками заряженного конденсатора. Цепь, разомкнутая прежде из-за воздушного зазора в конденсаторе, замкнется. Включенный в цепь гальванометр покажет наличие тока.

Электрический ток в газах называется газовым разрядом. Нужно иметь в виду, что для поддержания стабильности разряда действие ионизатора должно быть постоянным, так как из-за постоянной рекомбинации газ теряет электропроводящие свойства. Одни носители электрического тока в газах – ионы – нейтрализуются на электродах, другие – электроны, — попадая на анод, направляются к «плюсу» источника поля. Если ионизирующий фактор перестанет действовать, газ немедленно снова станет диэлектриком, и ток прекратится. Такой ток, зависимый от действия внешнего ионизатора, называется несамостоятельным разрядом.

Особенности прохождения электрического тока через газы описываются особой зависимостью силы тока от напряжения – вольт-амперной характеристикой.

Рассмотрим развитие газового разряда на графике вольт-амперной зависимости. При повышении напряжения до некоторого значения U1 ток нарастает пропорционально ему, то есть выполняется закон Ома. Возрастает кинетическая энергия, а следовательно, и скорость зарядов в газе, и этот процесс опережает рекомбинацию. При значениях напряжения от U1 до U2 такое соотношение нарушается; при достижении U2 все носители зарядов достигают электродов, не успевая рекомбинировать. Все свободные заряды задействованы, и дальнейшее повышение напряжения не приводит к увеличению силы тока. Такой характер движения зарядов называется током насыщения. Таким образом, можно сказать, что электрический ток в газах обусловлен также особенностями поведения ионизированного газа в электрических полях различной напряженности.

Когда разность потенциалов на электродах достигает определенного значения U3, напряжение становится достаточным, чтобы электрическое поле вызвало лавинообразную ионизацию газа. Кинетической энергии свободных электронов уже хватает для ударной ионизации молекул. Скорость их при этом в большинстве газов составляет около 2000 км/с и выше (она рассчитывается по приближенной формуле v=600 Ui, где Ui – ионизационный потенциал). В этот момент происходит пробой газа и существенное возрастание тока за счет внутреннего источника ионизации. Поэтому такой разряд называется самостоятельным.

Наличие внешнего ионизатора в данном случае уже не играет роли для поддержания в газах электрического тока. Самостоятельный разряд в разных условиях и при различных характеристиках источника электрического поля может иметь те или иные особенности. Выделяют такие типы самостоятельного разряда, как тлеющий, искровой, дуговой и коронный. Мы рассмотрим, как ведет себя электрический ток в газах, кратко для каждого из этих типов.

Стая

Но пока такие боеприпасы применяются одиночно. Качественный скачок произойдет тогда, когда они получат возможность действовать роем, как и было показано в фильме «Падение ангела».

Эта технология очень близка к конечной реализации: достаточно посмотреть в интернете многочисленные ролики, в которых сняты мировые рекорды по управлению стаями дронов. Лидеры в данной технологии — США, где в этой области особо активно оборонное агентство DARPA, и Китай с государственной корпорацией Norinco.

В стаи беспилотников входят разные аппараты — от разведывательных БПЛА до ударных и барражирующих боеприпасов. Ими управляют системы с искусственным интеллектом, а операторы лишь назначают цели. Эти системы только испытываются и не участвовали в боевых действиях, но сомнений в том, что это дело ближайшего будущего, нет.

AeroVironment QuantixБПЛА интересной схемы — тейлситтер, осуществляющий вертикальные взлет и посадку. При длине 72 см и метровом размахе крыльев может находиться в воздухе около 45 мин.

Как избежать появления статического электричества

1. Повышайте влажность

Сухой воздух в помещении — лучший друг статического электричества. Но оно практически не проявляется, если влажность превышает 85%.

Чтобы повысить этот показатель, регулярно проводите влажную уборку и используйте увлажнители воздуха.

Когда включено отопление, на батарею можно положить мокрую ткань, чтобы вода испарялась и делала воздух менее сухим.

2. Применяйте натуральные материалы

Большинство натуральных материалов сохраняют влагу, синтетические — нет. Поэтому первые меньше вторых подвержены возникновению статического электричества.

Если расчёсывать волосы пластиковой расчёской, они получат статический заряд и начнут разлетаться друг от друга, портя причёску. Этого можно избежать, используя аксессуары из дерева.

Такая же история с обувью на резиновой подошве. Она провоцирует создание статического электричества на теле. Но стельки из натуральных материалов нивелируют его эффект.

Футболки из хлопка, одежда из других натуральных тканей не создают статическое электричество. Искусственный свитер — наоборот.

3. Используйте заземление

С помощью него статическое электричество можно отвести в землю. Это касается не только громоотводов, которые перенаправляют заряд молний, но и работы с электрическим оборудованием.

Когда профессиональный мастер раскрывает ноутбук, чтобы почистить его от пыли, он обязательно использует специальный шнур заземления, закреплённый на руке, — антистатический браслет.

Антистатический браслет / aliexpress.com

Он нужен, чтобы избежать попадания разряда статического электричества от рук на микросхемы. Иначе он повредит их, и через время компьютер может выйти из строя.

Что же такое электроны? Какова их природа?

СВОБОДНЫЕ ЭЛЕКТРОНЫ

В металле, как и во всех твёрдых телах, каждый атом занимает определённое место. Правда, при некоторых условиях атомы твёрдых тел могут покидать свои места, но во всяком случае они долгое время остаются «привязанными» к определённому месту. В зависимости от температуры каждый атом более или менее сильно колеблется около этого места, не удаляясь от него сколько-нибудь далеко. В отличие от других твёрдых тел металлы обладают одной интересной особенностью: в пространстве между атомами металлов движутся свободные электроны, то есть электроны, не связанные с определёнными атомами.

Гальванический ток в металлах.

История

Одним из первых, чьё внимание привлекло электричество, был греческий философ Фалес Милетский, который в VII веке до н. э. обнаружил, что потёртый о шерсть янтарь (др.-греч

ἤλεκτρον: электрон) приобретает свойства притягивать лёгкие предметы. Однако, долгое время знание об электричестве не шло дальше этого представления. В 1600 году Уильям Гилберт ввёл в обращение сам термин электричество («янтарность»), а в 1663 году магдебургский бургомистр Отто фон Герике создал электростатическую машину в виде насаженного на металлический стержень серного шара, которая позволила наблюдать не только эффект притягивания, но и эффект отталкивания. В 1729 году англичанин Стивен Грей провёл опыты по передаче электричества на расстояние, обнаружив, что не все материалы одинаково передают электричество. В 1733 году француз Шарль Дюфе установил существование двух типов электричества стеклянного и смоляного, которые выявлялись при трении стекла о шёлк и смолы о шерсть. В 1745 г. голландец Питер ван Мушенбрук создаёт первый электрический конденсатор — Лейденскую банку. Примерно в эти же годы работы по изучению атмосферного электричества вели и русские учёные — Г. В. Рихман и М. В. Ломоносов.

Первую теорию электричества создаёт американец Бенджамин Франклин, который рассматривает электричество как «нематериальную жидкость», флюид («Опыты и наблюдения с электричеством», 1747 год). Он также вводит понятие положительного и отрицательного заряда, изобретает молниеотвод и с его помощью доказывает электрическую природу молний. Изучение электричества переходит в категорию точной науки после открытия в 1785 году закона Кулона.

Майкл Фарадей — основоположник учения об электромагнитном поле

Далее, в 1791 году, итальянец Гальвани публикует «Трактат о силах электричества при мышечном движении», в котором описывает наличие электрического тока в мышцах животных. Другой итальянец Вольта в 1800 году изобретает первый источник постоянного тока — гальванический элемент, представляющий собой столб из цинковых и серебряных кружочков, разделённых смоченной в подсоленной воде бумагой. В 1802 году Василий Петров обнаружил вольтову дугу.

В 1820 году датский физик Эрстед на опыте обнаружил электромагнитное взаимодействие. Замыкая и размыкая цепь с током, он увидел колебания стрелки компаса, расположенной вблизи проводника. Французский физик Ампер в 1821 году установил, что связь электричества и магнетизма наблюдается только в случае электрического тока и отсутствует в случае статического электричества. Работы Джоуля, Ленца, Ома расширяют понимание электричества. Гаусс формулирует основную теорему теории электростатического поля ().

Опираясь на исследования Эрстеда и Ампера, Фарадей открывает явление электромагнитной индукции в 1831 году и создаёт на его основе первый в мире генератор электроэнергии, вдвигая в катушку намагниченный сердечник и фиксируя возникновение тока в витках катушки. Фарадей открывает электромагнитную индукцию () и законы электролиза (), вводит понятие электрического и магнитного полей. Анализ явления электролиза привёл Фарадея к мысли, что носителем электрических сил являются не какие-либо электрические жидкости, а атомы — частицы материи. «Атомы материи каким-то образом одарены электрическими силами», — утверждает он. Фарадеевские исследования электролиза сыграли принципиальную роль в становлении электронной теории. Фарадей создал и первый в мире электродвигатель — проволочка с током, вращающаяся вокруг магнита. Венцом исследований электромагнетизма явилась разработка английским физиком Д. К. Максвеллом теории электромагнитных явлений. Он вывел уравнения, связывающие воедино электрические и магнитные характеристики поля в 1873 году.

В 1880 году Пьер Кюри открывает пьезоэлектричество. В том же году Д. А. Лачинов показал условия передачи электроэнергии на большие расстояния. Герц экспериментально регистрирует электромагнитные волны (1888 год).

В 1897 году Джозеф Томсон открывает материальный носитель электричества — электрон, место которого в структуре атома указал впоследствии Эрнест Резерфорд.

В XX веке была создана теория Квантовой электродинамики. В 1967 году был сделан очередной шаг на пути изучения электричества. С. Вайнберг, А. Салам и Ш. Глэшоу создали объединённую теорию электрослабых взаимодействий.

Потребители электричества

Электроэнергия требуется для самых разных задач как в бытовом хозяйстве, так и в промышленном секторе. Классическим примером использования данного носителя энергии является освещение. Однако в наши дни электричество в доме служит для обеспечения работы более широкого спектра приборов и оборудования. И это лишь небольшая часть потребностей общества в энергоснабжении.

Данный ресурс также требуется для поддержания работы транспортной инфраструктуры: для обслуживания линий троллейбусов, трамваев и метро и т. д. Отдельно стоит отметить промышленные предприятия. Заводы, комбинаты и перерабатывающие комплексы зачастую требуют подключения огромных мощностей. Можно сказать, это самые крупные потребители электроэнергии, использующие данный ресурс для обеспечения работы технологического оборудования и местной инфраструктуры.

Причины возникновения

Повышенное напряжение в сети может возникнуть по ряду причин, как аварийных, так и технологических, обусловленных особенностями ваших электросетей. Рассмотрим несколько ситуаций подробнее:

  1. Колебания, вызванные разницей потребления в сети днём и ночью. Напряжение повышается ближе к полуночи, когда все жильцы спят, а близлежащие крупные потребители энергии не работают. Днём же напряжение может быть в норме или даже пониженным.
  2. Зимой сеть в норме, а летом вольт в розетке больше нормы. Также связано с разницей в потребляемой мощности. Зимой включают обогреватели, в связи с этим нагрузка возрастает, увеличиваются и просадки на линии.
  3. Отгорание нуля и перекос фаз. Когда неисправен нулевой провод, например, на вводе в дом проблемы с контактом или ноль вовсе отгорел, то напряжение в квартирах, подключенных к одной фазе, будет высоким – до и больше 300 вольт, в зависимости от того, насколько несимметрична нагрузка. Зато в квартирах, подключенных к другим фазам, будет пониженное напряжение. Аналогичная ситуация возникает и при проблемах с нулем во внешних линиях электропередач, тогда проблема будет не только в квартирах, но и целые улицы с частными домами могут пострадать.

Первых две проблемы обусловлены устройством трансформаторной подстанции, они обустраиваются РПН (устройство регулирования под нагрузкой), вольтодобавочными трансформаторами или другими техническими решениями. Таким образом напряжение настраивают для корректного электроснабжения.

Но допустим, что есть длинная улица в поселке из частных домов. Тогда подстанция обустраивается так, чтобы обеспечить нормальное питание отдалённых потребителей, тогда у тех потребителей, что расположены ближе к ТП будет высокое напряжение, а в последних домах нормальное или низкое. Особенно остро это проявляется в то время, когда линия сильно нагружена.

Напряжение или разность потенциалов?

Надо заметить, что напряжение и разность потенциалов — это одно и то же. По сути, это сила, которая способна заставить электрические заряды двигаться потоком. Не имеет значения, куда будет направлено это движение.

Разность потенциалов — просто другое выражение для напряжения. Оно нагляднее и, может быть, понятнее, но сути дела не меняет. Поэтому главный вопрос состоит в том, откуда берется напряжение, и от чего оно зависит.

В том, что касается домашней сети 220 Вольт, ответ простой. На гидростанции поток воды вращает ротор генератора. Энергия вращения трансформируется в силу напряжения. Атомная электростанция вначале превращает воду в пар. Он и крутит турбину. В бензоэлектростанции ротор вращает сила сгорающего бензина. Есть и другие источники, но суть всегда одна и та же: энергия превращается в напряжение.

Самое время задаться вопросом о зависимости напряжения от частоты. Но мы еще не знаем, откуда берется частота.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации