Андрей Смирнов
Время чтения: ~20 мин.
Просмотров: 91

Опыт эрстеда

Бизнес и финансы

БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиУправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги — контрольЦенные бумаги — оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудитМеталлургияНефтьСельское хозяйствоЭнергетикаАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. В катушку, соединённую с гальванометром, вносят магнит. Направление индукционного тока зависит

А. От скорости перемещения магнита.
Б. От того, каким полюсом вносят магнит в катушку.

Правильный ответ

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

2. В катушку, соединённую с гальванометром, вносят магнит. Сила индукционного тока зависит

А. от скорости перемещения магнита
Б. от того, каким полюсом вносят магнит в катушку

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

3. Постоянный магнит вносят в катушку, замкнутую на гальванометр (см. рисунок).

Если выносить магнит из катушки с большей скоростью, то показания гальванометра будут примерно соответствовать рисунку

4. Две одинаковые катушки замкнуты на гальванометры. В катушку А вносят полосовой магнит, а из катушки Б вынимают такой же полосовой магнит. В какой катушке гальванометр зафиксирует индукционный ток?

1) только в катушке А
2) только в катушке Б
3) в обеих катушках
4) ни в одной из катушек

5. В первом случае магнит вносят в сплошное эбонитовое кольцо, а во втором случае выносят из сплошного медного кольца (см. рисунок).

Индукционный ток

1) возникает только в эбонитовом кольце
2) возникает только в медном кольце
3) возникает в обоих кольцах
4) не возникает ни в одном из колец

6. Внутри катушки, соединённой с гальванометром, находится малая катушка, подключённая к источнику постоянного тока. В каком из перечисленных опытов гальванометр зафиксирует индукционный ток?

А. В малой катушке выключают электрический ток.
Б. Малую катушку вынимают из большой.

1) только в опыте А
2) только в опыте Б
3) в обоих опытах
4) ни в одном из опытов

7. Внутри катушки, соединённой с гальванометром, находится малая катушка, подключённая к источнику тока. Первую секунду от начала эксперимента малая катушка неподвижна внутри большой катушки. Затем в течение следующей секунды её вынимают из большой катушки. Третью секунду малая катушка находится вне большой катушки. В течение четвертой секунды малую катушку вдвигают в большую. В какой(-ие) промежуток(-ки) времени гальванометр зафиксирует появление индукционного тока?

1) только 0-1 с
2) 1 с-2 с и 3 с-4 с
3) 0-1 с и 2 с-3 с
4) только 1 с-2 с

8. Внутри катушки, соединённой с гальванометром, находится малая катушка, подключённая к источнику тока. Оси катушек совпадают. Первую секунду от начала эксперимента малая катушка неподвижна внутри большой катушки. Затем в течение следующей секунды её вращают относительно вертикальной оси по часовой стрелке. Третью секунду малая катушка вновь остаётся в покое. В течение четвёртой секунды малую катушку вращают против часовой стрелки. В какие промежутки времени гальванометр зафиксирует появление индукционного тока в катушке?

1) индукционный ток может возникнуть в любой промежуток времени
2) индукционный ток возникнет в промежутках времени 1-2 с, 3-4 с
3) индукционный ток не возникнет ни в какой промежуток времени
4) индукционный ток возникнет в промежутках времени 0-1 с, 2-3 с

9. К электромагнитным волнам относятся:

A. Волны на поверхности воды.
Б. Радиоволны.
B. Световые волны.

Укажите правильный ответ.

1) только А
2) только Б
3) только В
4) Б и В

10. Какие из приведённых ниже формул могут быть использованы для определения скорости электромагнитной волны?

A. ​\( v=\lambda\nu \)​
Б. \( v=\frac{\lambda}{\nu} \)
В. \( v=\frac{\lambda}{T} \)
Г. \( v=\lambda T \)

1) только А
2) только Б
3) А и В
4) В и Г

11. Установите соответствие между названием опыта (в левом столбце таблицы) и явлением, которое в этом опыте наблюдается (в правом столбце таблицы). В таблице под номером физической величины левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ВЕЛИЧИНА
A) опыты Фарадея
Б) опыт Эрстеда
B) опыт Ампера

ХАРАКТЕР ИЗМЕНЕНИЯ ЗНАЧЕНИЯ ВЕЛИЧИНЫ
1) действие проводника с током на магнитную стрелку
2) электромагнитная индукция
3) взаимодействие проводников с током

12. Установите соответствие между техническими устройствами и физическими явлениями, лежащими в основе их работы.

ТЕХНИЧЕСКИЕ УСТРОЙСТВА
A) генератор электрического тока
Б) электрический двигатель
B) электромагнитное реле

ФИЗИЧЕСКИЕ ЯВЛЕНИЯ
1) взаимодействие постоянных магнитов
2) взаимодействие проводников с током
3) возникновение электрического тока в проводнике при его движении в магнитном поле
4) магнитное действие проводника с током
5) действие магнитного поля на проводник с током

Часть 2

13. На какую частоту нужно настроить радиоприёмник, чтобы слушать радиостанцию, которая передает сигналы па длине волны 2,825 м?

1) 106,2 кГц
2) 106,2 МГц
3) 847,5 кГц
4) 847,5 МГц

Объяснение опыта

Согласно современным представлениям, при протекании через прямолинейный проводник электрического тока в пространстве вокруг него возникает магнитное поле, силовые линии которого представляют собой окружности с центром на оси проводника. При этом величина магнитного поля пропорциональна силе тока, текущего в проводнике, и обратно пропорциональна расстоянию до проводника:

B=2icr,{\displaystyle B={\frac {2i}{cr}},}

где B — модуль вектора индукции магнитного поля, i — сила тока, r — расстояние от точки наблюдения до проводника, c — скорость света (здесь использована запись в гауссовой системе единиц).

При помещении в магнитное поле вещества, имеющего ненулевой магнитный момент (магнита), на него начинает действовать момент силы Лоренца, пропорциональный индукции магнитного поля и величине магнитного момента, а также синусу угла между их векторами:

M=Bpmsin⁡α,{\displaystyle M=Bp_{m}\sin \alpha ,}

где M — модуль вектора момента сил, действующих на магнитный момент, pm{\displaystyle p_{m}} — величина магнитного момента, α{\displaystyle \alpha } — угол между векторами B→{\displaystyle {\vec {B}}} и p→m.{\displaystyle {\vec {p}}_{m}.}

Момент сил стремится выстроить магнитную стрелку параллельно направлению вектора магнитной индукции, то есть перпендикулярно проводнику с током. Этот эффект тем сильнее, чем выше сила тока в проводнике и чем больше сила магнита. На практике действию магнитной силы противостоят силы трения в точке крепления магнитной стрелки, поэтому эффект может быть слабо выражен.

Объяснение опыта

Согласно современным представлениям, при протекании через прямолинейный проводник электрического тока в пространстве вокруг него возникает магнитное поле, силовые линии которого представляют собой окружности с центром на оси проводника. При этом величина магнитного поля пропорциональна силе тока, текущего в проводнике, и обратно пропорциональна расстоянию до проводника:

B=2icr,{\displaystyle B={\frac {2i}{cr}},}

где B — модуль вектора индукции магнитного поля, i — сила тока, r — расстояние от точки наблюдения до проводника, c — скорость света (здесь использована запись в гауссовой системе единиц).

При помещении в магнитное поле вещества, имеющего ненулевой магнитный момент (магнита), на него начинает действовать момент силы Лоренца, пропорциональный индукции магнитного поля и величине магнитного момента, а также синусу угла между их векторами:

M=Bpmsin⁡α,{\displaystyle M=Bp_{m}\sin \alpha ,}

где M — модуль вектора момента сил, действующих на магнитный момент, pm{\displaystyle p_{m}} — величина магнитного момента, α{\displaystyle \alpha } — угол между векторами B→{\displaystyle {\vec {B}}} и p→m.{\displaystyle {\vec {p}}_{m}.}

Момент сил стремится выстроить магнитную стрелку параллельно направлению вектора магнитной индукции, то есть перпендикулярно проводнику с током. Этот эффект тем сильнее, чем выше сила тока в проводнике и чем больше сила магнита. На практике действию магнитной силы противостоят силы трения в точке крепления магнитной стрелки, поэтому эффект может быть слабо выражен.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. На рисунке показано, как установилась магнитная стрелка между полюсами двух одинаковых магнитов. Укажите полюса магнитов, обращённые к стрелке.

1) 1 — S, 2 — N
2) 1 — А, 2 — N
3) 1 — S, 2 — S
4) 1 — N, 2 — S

2. Па рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью магнитной стрелки и железных опилок. Каким полюсам полосовых магнитов соответствуют области 1 и 2?

1) 1 — северному полюсу; 2 — южному
2) 1 — южному; 2 — северному полюсу
3) и 1, и 2 — северному полюсу
4) и 1, и 2 — южному полюсу

3. При прохождении электрического тока по проводнику магнитная стрелка, находящаяся рядом, расположена перпендикулярно проводнику. При изменении направления тока на противоположное. Стрелка

1) повернётся на 90°
2) повернётся на 180°
3) повернётся на 90° или на 180° в зависимости от значения силы тока
4) не изменит свое положение

4. Проводник, по которому протекает электрический ток, расположен перпендикулярно плоскости чертежа (см. рисунок). Расположение какой из магнитных стрелок, взаимодействующих с магнитным полем проводника с током, показано правильно?

1) 1
2) 2
3) 3
4) 4

5. Из проводника сделали кольцо и по нему пустили электрический ток. Ток направлен против часовой стрелки (см. рисунок). Как направлен вектор магнитной индукции в центре кольца?

1) вправо
2) влево
3) на нас из-за плоскости чертежа
4) от нас за плоскость чертежа

6. По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах железного сердечника катушки

1) образуются магнитные полюса — на конце 1 — северный полюс, на конце 2 — южный
2) образуются магнитные полюса — на конце 1 — южный полюс, на конце 2 — северный
3) скапливаются электрические заряды: на конце 1 — отрицательный заряд, на конце 2 — положительный
4) скапливаются электрические заряды: на конце 1 — положительный заряд, на конце 2 — отрицательный

7. Два параллельно расположенных проводника подключили параллельно к источнику тока.

Направление электрического тока и взаимодействие проводников верно изображены на рисунке

8. В однородном магнитном поле на проводник с током, расположенный перпендикулярно плоскости чертежа (см. рисунок), действует сила, направленная

9. Сила, действующая на проводник с током, который находится в магнитном поле между полюсами магнита направлена

10. На рисунке изображён проводник с током, помещённый в магнитное поле. Стрелка указывает направление тока в проводнике. Вектор магнитной индукции направлен перпендикулярно плоскости рисунка к нам. Как направлена сила, действующая на проводник с током?

11. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.

1) Вокруг неподвижных зарядов существует магнитное поле.
2) Вокруг неподвижных зарядов существует электростатическое поле.
3) Если разрезать магнит на две части, то у одной части будет только северный полюс, а у другой — только южный.
4) Магнитное поле существует вокруг движущихся зарядов.
5) Магнитная стрелка, находящаяся около проводника с током, всегда поворачивается вокруг своей оси.

12. Электрическая схема содержит источник тока, проводник АВ, ключ и реостат. Проводник АВ помещён между полюсами постоянного магнита (см. рисунок).

Используя рисунок, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) При перемещении ползунка реостата влево сила Ампера, действующая на проводник АВ, увеличится.
2) При замкнутом ключе проводник будет выталкиваться из области магнита вправо.
3) При замкнутом ключе электрический ток в проводнике имеет направление от точки В к точке А.
4) Магнитные линии поля постоянного магнита в области расположения проводника АВ направлены вертикально вниз.
5) Электрический ток, протекающий в проводнике АВ, создаёт однородное магнитное поле.

Часть 2

13. Участок проводника длиной 0,1 м находится в магнитном поле индукцией 50 мТл. Сила тока, протекающего по проводнику, 10 А. Какую работу совершает сила ампера при перемещении проводника на 8 см в направлении своего действия? Проводник расположен перпендикулярно линиям магнитной индукции.

Генератор Фарадея

На основе своего открытия электромагнитной индукции ученый создал первую модель генератора электрического тока, который преобразовывал энергию механического вращения в электричество.

Основными элементами данного генератора стали:

  • Медный диск большой массы.
  • Сильный магнит.

Диск совершал вращения между полюсами магнита. Ось и край диска Фарадей соединил с гальванометром. Приводя диск во вращение, он увидел, что стрелка гальванометра отклоняется.

Индукционный ток получался очень слабым, но предложенный принцип в дальнейшем был положен в основу создания мощных генераторов.

«Электромагнитная индукция»

Электромагнитная индукция — это явление, которое заключается в возникновении электрического тока в замкнутом проводнике в результате изменения магнитного поля, в котором он находится. Это явление открыл английский физик М. Фарадей в 1831 г. Суть его можно пояснить несколькими простыми опытами.

Описанный в опытах Фарадея принцип получения переменного тока используется в индукционных генераторах, вырабатывающих электрическую энергию на тепловых или гидроэлектростанциях. Сопротивление вращению ротора генератора, возникающее при взаимодействии индукционного тока с магнитным полем, преодолевается за счет работы паровой или гидротурбины, вращающей ротор. Такие генераторы преобразуют механическую энергию в энергию электрического тока.

Вихревые токи, или токи Фуко

Если массивный проводник поместить в переменное магнитное поле, то в этом проводнике благодаря явлению электромагнитной индукции возникают вихревые индукционные токи, называемые токами Фуко.

Вихревые токи возникают также при движении массивного проводника в постоянном, но неоднородном в пространстве магнитном поле. Токи Фуко имеют такое направление, что действующая на них в магнитном поле сила тормозит движение проводника. Маятник в виде сплошной металлической пластинки из немагнитного материала, совершающий колебания между полюсами электромагнита, резко останавливается при включении магнитного поля.

Во многих случаях нагревание, вызываемое токами Фуко, оказывается вредным, и с ним приходится бороться. Сердечники трансформаторов, роторы электродвигателей набирают из отдельных железных пластин, разделенных слоями изолятора, препятствующего развитию больших индукционных токов, а сами пластины изготовляют из сплавов, имеющих высокое удельное сопротивление.

Электромагнитное поле

Электрическое поле, созданное неподвижными зарядами, является статическим и действует на заряды. Постоянный ток вызывает появление постоянного во времени магнитного поля, действующего на движущиеся заряды и токи. Электрическое и магнитное поля существуют в этом случае независимо друг от друга.

Явление электромагнитной индукции демонстрирует взаимодействие этих полей, наблюдаемое в веществах, в которых есть свободные заряды, т. е. в проводниках. Переменное магнитное поле создает переменное электрическое поле, которое, действуя на свободные заряды, создает электрический ток. Этот ток, будучи переменным, в свою очередь порождает переменное магнитное поле, создающее электрическое поле в том же проводнике, и т. д.

Совокупность переменного электрического и переменного магнитного полей, порождающих друг друга, называется электромагнитным полем. Оно может существовать и в среде, где нет свободных зарядов, и распространяется в пространстве в виде электромагнитной волны.

Классическая электродинамика — одно из высших достижений человеческого разума. Она оказала огромное влияние на последующее развитие человеческой цивилизации, предсказав существование электромагнитных волн. Это привело в дальнейшем к созданию радио, телевидения, телекоммуникационных систем, спутниковых средств навигации, а также компьютеров, промышленных и бытовых роботов и прочих атрибутов современной жизни.

Краеугольным камнем теории Максвелла явилось утверждение, что источником магнитного поля может служить одно только переменное электрическое поле, подобно тому, как источником электрического поля, создающим в проводнике индукционный ток, служит переменное магнитное поле. Наличие проводника при этом не обязательно — электрическое поле возникает и в пустом пространстве. Линии переменного электрического поля, аналогично линиям магнитного поля, замкнуты. Электрическое и магнитное поля электромагнитной волны равноправны.

Электромагнитная индукция в схемах и таблицах

(Явление электромагнитной индукции, опыты Фарадея, правило Ленца, закон электромагнитной индукции, вихревое электрическое поле, самоиндукция, индуктивность, энергия магнитного поля тока)

Дополнительные материалы по теме:

Конспект урока по физике в 11 классе «Электромагнитная индукция».

Следующая тема: «».

Объяснение опыта

Согласно современным представлениям, при протекании через прямолинейный проводник электрического тока в пространстве вокруг него возникает магнитное поле, силовые линии которого представляют собой окружности с центром на оси проводника. При этом величина магнитного поля пропорциональна силе тока, текущего в проводнике, и обратно пропорциональна расстоянию до проводника:

B=2icr,{\displaystyle B={\frac {2i}{cr}},}

где B — модуль вектора индукции магнитного поля, i — сила тока, r — расстояние от точки наблюдения до проводника, c — скорость света (здесь использована запись в гауссовой системе единиц).

При помещении в магнитное поле вещества, имеющего ненулевой магнитный момент (магнита), на него начинает действовать момент силы Лоренца, пропорциональный индукции магнитного поля и величине магнитного момента, а также синусу угла между их векторами:

M=Bpmsin⁡α,{\displaystyle M=Bp_{m}\sin \alpha ,}

где M — модуль вектора момента сил, действующих на магнитный момент, pm{\displaystyle p_{m}} — величина магнитного момента, α{\displaystyle \alpha } — угол между векторами B→{\displaystyle {\vec {B}}} и p→m.{\displaystyle {\vec {p}}_{m}.}

Момент сил стремится выстроить магнитную стрелку параллельно направлению вектора магнитной индукции, то есть перпендикулярно проводнику с током. Этот эффект тем сильнее, чем выше сила тока в проводнике и чем больше сила магнита. На практике действию магнитной силы противостоят силы трения в точке крепления магнитной стрелки, поэтому эффект может быть слабо выражен.

Магнитное поле

а)

б)

Рис.
12.2

Опыт
показывает, что вращающий момент сил
зависит как от свойств поля в данной
точке, так и от величины и ориентации
магнитного момента контура: если угол

между
и направлением поля равен нулю, то и=
0 (положение равновесия контура в поле),
если=,
тоМ=Mmax.
Внося в одну и ту же точку поля различные
пробные контуры, обнаружим, что Mmax
Р
m, однако
отношение Мmax
/ Рm
не зависит от свойств контура и может
служить количественной
силовой характеристикой магнитного
поля
в данной
точке. Эта величина называетсявектором
магнитной индукции
.

Его модуль равен отношению

(12.2)

Направление
вектора

совпадает с направлением вектора
контура в его устойчивом положении
равновесия в поле.

Таким
образом, согласно формуле (12.2), магнитная
индукция
в данной точке однородного магнитного
поля численно равна максимальному
вращающему моменту сил, действующему
на пробный контур с единичным магнитным
моментом.

Единица
магнитной индукции в системе СИ — тесла
(Т):

1
Т
=

Аналогично
электрическому, стационарное магнитное
поле можно наглядно изображать с помощью
линий магнитной
индукции
– силовых линий.
.
Касательная к силовой линии в каждой
ее точке показывает направление вектора


в этой точке. Густота силовых линий
,

пропорциональна величине индукции поля
в данной области (как и для электростатического
поля): в местах увеличения

силовые линии сгущаются, в местах
ослабления – разрежаются. В однородном
магнитном поле силовые линии вектора


имеют вид системы прямых линий,
равноотстоящих друг от друга.

Определить
вид линий вектора

можно по ориентации в разных точках
поля магнитной стрелки или пробного
контура с током. Линии

можно также «проявить» при помощи
железных опилок. Опыт показывает, что
силовые линии
вектора
магнитного поля всегда замкнуты
(нигде
не прерываются)
и охватывают токи

– это их отличительная особенность по
сравнению с силовыми линиями
электростатического поля, которые
начинаются на положительных и заканчиваются
на отрицательных зарядах.

Рис. 12.3

Направление
линий индукции определяется правилом
правого буравчика (см. рис. 12.3): если
ввинчивать буравчик по направлению
линий тока в проводнике, то направление
движения рукоятки буравчика укажет
направление линий магнитной индукции.

Из опыта Фарадея:

Представим
себе, что виток соленоида все меньше и
меньше – сходится в точку – и мы получаем
закон, связывающий изменение магнитного
поля и изменение электрического поля
в любой момент времени в любой точке
пространства. – Это один из принципиальных
шагов к уравнениям Максвелла.

Так же можно
рассмотреть и другую
основу
теории поля
,
опирающуюся на опыт Эрстеда:

Стягивая витки
магнитных силовых линий к точке, мы
получаем – изменяющееся электрическое
поле порождает изменяющееся магнитное
поле в точке в любой момент времени.

Это как бы два
полушага, дающие один шаг – он дает
связь между изменениями магнитных и
электрических полей в любой точке
пространства в любой момент времени.

Но понадобился
еще один шаг, сделанный Максвеллом.

Согласно опыту
Фарадея необходим проводник для
обнаружения электрического поля, а в
опыте Эрстеда необходимо магнитный
полюс – игла для обнаружения магнитного
поля.

Теория идей
Максвелла идет дальше этих экспериментальных
фактов.

Электрическое
и магнитное поля согласно воззрениям
Максвелла должны быть чем – то реальным.
Электрическое поле создается изменяющимся
магнитным полем совершенно независимо
от того, есть ли проводник или нет.
Магнитное поле создается изменяющимся
электрическим полем независимо от того
есть ли магнитная стрелка или нет.

Таким образом,
к уравнениям Максвелла приводят два
шага:

Первый шаг:
В опыте Эрстеда круговые линии магнитного
поля, замыкающиеся вокруг тока и
изменяющегося электрического поля,
должны быть стянуты к точке.

В опыте Фарадея
круговые линии электрического поля,
замыкающиеся вокруг изменяющегося
магнитного поля, должны быть стянуты к
точке.

Второй шаг:
Трактовка поля как реального объекта.

В основу теории
поля. (В точке – дифференциальная форма).

Уравнения
Максвелла описали структуру
электромагнитного поля. Арена этих
законов – все пространство (о едином
электромагнитном поле).

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сферев инвестиционной

Другие изобретения

Объясняя возникновение вихревых движений, возникающих в результате электрического конфликта, Эрстед пришел к убеждению, что они связаны с группой явлений, получивших название поляризация света. В сфере его интересов были жидкости и газы, чью упругость он изучал экспериментально. Ученому удалось сконструировать пьезометр – специальное устройство для измерения объема элементов, находящихся под воздействием гидростатического давления. Сегодня прибор используется для получения точных сведений об объемной упругости веществ, а также изучения фазовых переходов и других физико-химических процессов.

В то время пьезометр внешне был обычным сосудом, заполненным подвергавшейся изучению жидкостью, который погружался открытым концом в ртуть, расположенную на дне резервуара высокого давления. В процессе увеличения давления надо ртутью она начинала перемещаться в сосуд с изучаемой жидкостью. Величина подъема ртути, которая зависела от давления и степени сжимаемости жидкости определялась при рассмотрении в стеклянном пьезометре.

Также Эрстед всерьез интересовался проблемами акустики и намеревался доказать возможность возникновения электрических эффектов за счет воздуха. В 1825 году ему удалось получить чистый алюминий, однако сообщение об этом было опубликовано в малоизвестном издании, и пальма первенства в этом вопросе отошла к Фридриху Велеру.

Ханс Эрстед проводил огромную просветительскую работу. Он стоял у истоков общества по распространению естествознания, с 1829 года в течение многих лет возглавлял политехническую школу в Копенгагене. В 1830 году ученый был избран почетным членом Петербургской академии наук.

Ханс Эрстед ушел из жизни 9 марта 1851 года. Похороны ученого проходили ночью. Попрощаться с ним пришло огромное число людей, среди которых были представители королевской семьи, коллеги, чиновники. В своей стране он стал национальным героем, чья личность была известна каждому датчанину. Многие воспринимали уход из жизни великого физика как личную потерю и благодарили его за то, что он смог приоткрыть некоторые тайны нашего мира.

Объяснение опыта

Согласно современным представлениям, при протекании через прямолинейный проводник электрического тока в пространстве вокруг него возникает магнитное поле, силовые линии которого представляют собой окружности с центром на оси проводника. При этом величина магнитного поля пропорциональна силе тока, текущего в проводнике, и обратно пропорциональна расстоянию до проводника:

B=2icr,{\displaystyle B={\frac {2i}{cr}},}

где B — модуль вектора индукции магнитного поля, i — сила тока, r — расстояние от точки наблюдения до проводника, c — скорость света (здесь использована запись в гауссовой системе единиц).

При помещении в магнитное поле вещества, имеющего ненулевой магнитный момент (магнита), на него начинает действовать момент силы Лоренца, пропорциональный индукции магнитного поля и величине магнитного момента, а также синусу угла между их векторами:

M=Bpmsin⁡α,{\displaystyle M=Bp_{m}\sin \alpha ,}

где M — модуль вектора момента сил, действующих на магнитный момент, pm{\displaystyle p_{m}} — величина магнитного момента, α{\displaystyle \alpha } — угол между векторами B→{\displaystyle {\vec {B}}} и p→m.{\displaystyle {\vec {p}}_{m}.}

Момент сил стремится выстроить магнитную стрелку параллельно направлению вектора магнитной индукции, то есть перпендикулярно проводнику с током. Этот эффект тем сильнее, чем выше сила тока в проводнике и чем больше сила магнита. На практике действию магнитной силы противостоят силы трения в точке крепления магнитной стрелки, поэтому эффект может быть слабо выражен.

Ответов: 2

Опыт Эрстеда позволяет сделать вывод о том, что электрический ток, всегда сопровождается магнитным полем. При разомкнутой цепи стрелка при приближении магнита отклоняется, при удалении магнита — стрелка возвращается в с исходное состояние. При замыкании цепи -стрелка снова отклоняется.

Вывод — электрический ток оказывает такое же воздействие на стрелку, что и магнит. Поэтому, не смотря на то, что все все ответы отражают суть эксперимента, наиболее верным будет B).

Вроде бы все три ответа соответствуют результатам опыта. Ответ а) фактически и есть результат, который наблюдал Эрстед.

Ответ б) почти повторяет ответ а), то есть это самый простой, прямой вывод из опыта.

А вот ответ в) и есть наиболее верный, так как он раскрывает причину отклонения стрелки.

Итак, известный опыт Эрстеда свидетельствует о существовании вокруг проводника с током магнитного поля.

Объяснение опыта [ править | править код ]

Согласно современным представлениям, при протекании через прямолинейный проводник электрического тока в пространстве вокруг него возникает магнитное поле, силовые линии которого представляют собой окружности с центром на оси проводника. При этом величина магнитного поля пропорциональна силе тока, текущего в проводнике, и обратно пропорциональна расстоянию до проводника :

B = 2 i c r , <displaystyle B=<frac <2i>>,>

где B — модуль вектора индукции магнитного поля, i — сила тока, r — расстояние от точки наблюдения до проводника, c — скорость света (здесь использована запись в гауссовой системе единиц).

При помещении в магнитное поле вещества, имеющего ненулевой магнитный момент (магнита), на него начинает действовать момент силы Лоренца, пропорциональный индукции магнитного поля и величине магнитного момента, а также синусу угла между их векторами :

M = B p m sin ⁡ α , <displaystyle M=Bp_sin alpha ,>

где M — модуль вектора момента сил, действующих на магнитный момент, p m <displaystyle p_> — величина магнитного момента, α <displaystyle alpha > — угол между векторами B → <displaystyle <vec >> и p → m . <displaystyle <vec

>_.>

Момент сил стремится выстроить магнитную стрелку параллельно направлению вектора магнитной индукции, то есть перпендикулярно проводнику с током. Этот эффект тем сильнее, чем выше сила тока в проводнике и чем больше сила магнита. На практике действию магнитной силы противостоят силы трения в точке крепления магнитной стрелки, поэтому эффект может быть слабо выражен.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации