Андрей Смирнов
Время чтения: ~21 мин.
Просмотров: 0

Магнитное поле

Сила Лоренца

Сила Лоренца – сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.

Формула для нахождения силы Лоренца:

где ​\( q \)​ – заряд частицы, ​\( v \)​ – скорость частицы, ​\( B \)​ – модуль вектора магнитной индукции, ​\( \alpha \)​ – угол между вектором скорости частицы и вектором магнитной индукции.

Направление силы Лоренца определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ​\( B_\perp \)​ входила в ладонь, а четыре вытянутых пальца указывали направление скорости положительно заряженной частицы, то отогнутый на 90° большой палец покажет направление силы Лоренца.

Если заряд частицы отрицательный, то направление силы изменяется на противоположное.

Важно!
Если вектор скорости сонаправлен с вектором магнитной индукции, то частица движется равномерно и прямолинейно. В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы

В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы.

Если вектор скорости перпендикулярен вектору магнитной индукции, то частица движется по окружности, радиус которой равен:

где ​\( m \)​ – масса частицы, ​\( v \)​ – скорость частицы, ​\( B \)​ – модуль вектора магнитной индукции, ​\( q \)​ – заряд частицы.

В этом случае сила Лоренца играет роль центростремительной и ее работа равна нулю. Период (частота) обращения частицы не зависит от радиуса окружности и скорости частицы. Формула для вычисления периода обращения частицы:

Угловая скорость движения заряженной частицы:

Важно!
Сила Лоренца не меняет кинетическую энергию частицы и модуль ее скорости. Под действием силы Лоренца изменяется направление скорости частицы

Если вектор скорости направлен под углом ​\( \alpha \)​ (0° < \( \alpha \) < 90°) к вектору магнитной индукции, то частица движется по винтовой линии.

В этом случае вектор скорости частицы можно представить как сумму двух векторов скорости, один из которых, ​\( \vec{v}_2 \)​, параллелен вектору \( \vec{B} \), а другой, \( \vec{v}_1 \), – перпендикулярен ему. Вектор \( \vec{v}_1 \) не меняется ни по модулю, ни по направлению. Вектор \( \vec{v}_2 \) меняется по направлению. Сила Лоренца будет сообщать движущейся частице ускорение, перпендикулярное вектору скорости \( \vec{v}_1 \). Частица будет двигаться по окружности. Период обращения частицы по окружности – ​\( T \)​.

Таким образом, на равномерное движение вдоль линии индукции будет накладываться движение по окружности в плоскости, перпендикулярной вектору \( \vec{B} \). Частица движется по винтовой линии с шагом ​\( h=v_2T \)​.

Важно!
Если частица движется в электрическом и магнитном полях, то полная сила Лоренца равна:

Особенности движения заряженной частицы в магнитном поле используются в масс-спектрометрах – устройствах для измерения масс заряженных частиц; ускорителях частиц; для термоизоляции плазмы в установках «Токамак».

Алгоритм решения задач о действии магнитного (и электрического) поля на заряженные частицы:

  • сделать чертеж, указать на нем силовые линии магнитного (и электрического) поля, нарисовать вектор начальной скорости частицы и отметить знак ее заряда;
  • изобразить силы, действующие на заряженную частицу;
  • определить вид траектории частицы;
  • разложить силы, действующие на заряженную частицу, вдоль направления магнитного поля и по направлению, ему перпендикулярному;
  • составить основное уравнение динамики материальной точки по каждому из направлений разложения сил;
  • выразить силы через величины, от которых они зависят;
  • решить полученную систему уравнений относительно неизвестной величины;
  • решение проверить.

Гистерезис ферромагнетиков

Еще одной особенностью ферромагнетиков является наличие петли гистерезиса, которая является основополагающим свойством ферромагнетиков.

Для понимания процесса намагничивания ферромагнетика изобразим зависимость индукции В от напряженности Н магнитного поля, где красным цветом выделим основную кривую намагничивания. Данная зависимость довольно неопределенна, так как зависит от предыдущего намагничивания ферромагнетика.

Возьмём образец ферромагнитного вещества, которое не подвергалось намагничиванию (точка 0) и поместим его в магнитное поле, напряженность Н которого начнем увеличивать, то есть зависимость будет соответствовать кривой 0 – 1, пока не будет достигнуто магнитное насыщение (точка 1). Дальнейшее увеличение напряженности не имеет смысла, потому как намагниченность J практически не увеличивается, а магнитная индукция увеличивается пропорционально напряженности Н. Если же начинать уменьшать напряженность, то зависимость В(Н) будет соответствовать кривой 1 – 2 – 3, при этом когда напряженность магнитного поля упадёт до нуля (точка 2), то магнитная индукция не упадёт до нуля, а будет равна некоторому значению Br, которое называется остаточной индукцией, а намагничивание будет иметь значение Jr, называемое остаточным намагничиванием.

Для того чтобы снять остаточное намагничивание и уменьшить остаточную индукцию Br до нуля, необходимо создать магнитное поле, противоположное полю, вызвавшему намагничивание, причем напряженность размагничивающего поля должна составлять Нс, называемая коэрцитивной силой. При дальнейшем росте напряженности магнитного поля, которое противоположно первоначальному полю, происходит насыщение ферромагнетика (точка 4).

Таким образом, при действии на ферромагнетик переменного магнитного поля зависимость индукции от напряженности будет соответствовать кривой 1 – 2 – 3 – 4 – 5 – 6 – 1, которая называется петлёй гистерезиса. Таких петель для ферромагнетика может быть множество (пунктирные кривые), называемые частными циклами. Однако, если при максимальных значениях напряженности магнитного поля происходит насыщение, то получается максимальная петля гистерезиса (сплошная кривая).

Так как магнитная проницаемость μr ферромагнетиков имеет довольно сложную зависимость от напряженности магнитного поля, поэтому нормируются два параметра магнитной проницаемости:

μн – начальная магнитная проницаемость соответствует напряженности Н = 0;

μmax – максимальная магнитная проницаемость достигается в магнитном поле при приближении магнитного насыщения.

Таким образом, у ферромагнетиков величины Br, Нс и μнmax) являются основными характеристиками, влияющими на выбор вещества в конкретном случае.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Примечания

  1. Действительно, для иллюстрации рассмотрим выражение для так называемой плотности энергии поля в среде wsubst{\displaystyle w_{subst}} для сравнительно простого случая линейной связи намагниченности напряженности магнитного поля M=χH.{\displaystyle \mathbf {M} =\chi \mathbf {H} .} Тогда wsubst=12H⋅B{\displaystyle w_{subst}={\frac {1}{2}}\mathbf {H} \cdot \mathbf {B} } (используем здесь СИ) раскрывается как
    12(1μB−M)⋅B=12μB2−12M⋅B,{\displaystyle {\frac {1}{2}}({\frac {1}{\mu _{0}}}\mathbf {B} -\mathbf {M} )\cdot \mathbf {B} ={\frac {1}{2\mu _{0}}}\mathbf {B} ^{2}-{\frac {1}{2}}\mathbf {M} \cdot \mathbf {B} ,}

    где первый член — энергия магнитного поля в чистом виде, поскольку второй — совершенно очевидно энергия взаимодействия поля со средой — например с магнитными диполями парамагнетика.

Физический смысл

В вакууме (или в отсутствие среды, способной к магнитной поляризации, а также в случаях, когда последняя пренебрежима) напряжённость магнитного поля (Н) совпадает с вектором магнитной индукции (B) с точностью до коэффициента, равного 1 в СГС и μ{\displaystyle \mu _{0}} в СИ.

В магнетиках (магнитных средах) напряжённость магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как, например, в системе СИ, что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».

Например, если поле создаётся катушкой с током, в которую вставлен железный сердечник, то напряжённость магнитного поля H внутри сердечника совпадает (в СГС точно, а в СИ — с точностью до постоянного размерного коэффициента) с вектором магнитной индукции B поля, которое было бы создано этой катушкой при отсутствии сердечника. B в принципе может быть рассчитан исходя из геометрии катушки и тока в ней, без всякой дополнительной информации о материале сердечника и его магнитных свойствах.

При этом надо иметь в виду, что более фундаментальной характеристикой магнитного поля является вектор магнитной индукции B. Именно он определяет силу действия магнитного поля на движущиеся заряженные частицы и токи, а также может быть непосредственно измерен, в то время как напряжённость магнитного поля H можно рассматривать скорее как вспомогательную величину (хотя рассчитать её, по крайней мере, в статическом случае, проще, в чём состоит её ценность: ведь H создает так называемые свободные токи, которые сравнительно легко непосредственно измерить, а трудно измеримые связанные токи — то есть токи молекулярные и т. п. — учитывать не надо).

Правда, в обычно используемое выражение для энергии магнитного поля (в среде) B и H входят почти равноправно, но надо иметь в виду, что в эту энергию включена и энергия, затраченная на поляризацию среды, а не только энергия собственно поля. Энергия магнитного поля как такового выражается только через фундаментальную величину B. Тем не менее видно, что величина H феноменологическая и тут весьма удобна.

Физический смысл

В вакууме (или в отсутствие среды, способной к магнитной поляризации, а также в случаях, когда последняя пренебрежима) напряжённость магнитного поля (Н) совпадает с вектором магнитной индукции (B) с точностью до коэффициента, равного 1 в СГС и μ{\displaystyle \mu _{0}} в СИ.

В магнетиках (магнитных средах) напряжённость магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как, например, в системе СИ, что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».

Например, если поле создаётся катушкой с током, в которую вставлен железный сердечник, то напряжённость магнитного поля H внутри сердечника совпадает (в СГС точно, а в СИ — с точностью до постоянного размерного коэффициента) с вектором B, который был бы создан этой катушкой при отсутствии сердечника и который в принципе может быть рассчитан исходя из геометрии катушки и тока в ней, без всякой дополнительной информации о материале сердечника и его магнитных свойствах.

При этом надо иметь в виду, что более фундаментальной характеристикой магнитного поля является вектор магнитной индукции B. Именно он определяет силу действия магнитного поля на движущиеся заряженные частицы и токи, а также может быть непосредственно измерен, в то время как напряжённость магнитного поля H можно рассматривать скорее как вспомогательную величину (хотя рассчитать её, по крайней мере, в статическом случае, проще, в чём и состоит её ценность: ведь H создают так называемые свободные токи, которые сравнительно легко непосредственно измерить, а трудно измеримые связанные токи — то есть токи молекулярные и т. п. — учитывать не надо).

Правда, в обычно используемое выражение для энергии магнитного поля (в среде) B и H входят почти равноправно, но надо иметь в виду, что в эту энергию включена и энергия, затраченная на поляризацию среды, а не только энергия собственно поля. Энергия магнитного поля как такового выражается только через фундаментальную величину B. Тем не менее видно, что величина H феноменологически и тут весьма удобна.

Примечания

  1. Для иллюстрации раскроем выражение для плотности энергии поля в среде wsubst{\displaystyle w_{subst}} в случае линейной связи намагниченности от напряженности магнитного поля M=χH.{\displaystyle \mathbf {M} =\chi \mathbf {H} .} В системе СИwsubst=12H⋅B=12(1μB−M)⋅B=12μB2−12M⋅B,{\displaystyle w_{subst}={\frac {1}{2}}\mathbf {H} \cdot \mathbf {B} ={\frac {1}{2}}({\frac {1}{\mu _{0}}}\mathbf {B} -\mathbf {M} )\cdot \mathbf {B} ={\frac {1}{2\mu _{0}}}\mathbf {B} ^{2}-{\frac {1}{2}}\mathbf {M} \cdot \mathbf {B} ,}где первый член — энергия магнитного поля, второй — энергия взаимодействия поля со средой (например, с магнитными диполями парамагнетика).

Виды и частота проверок

Проверочные мероприятия принято разделять на виды:

  1. Плановая проверка (другое название — сезонная). Проводится согласно заранее определенному графику.
  2. Внеочередная проверка. Осуществляется в случае наступления непредвиденных событий (например, выход системы из строя).
  3. Пусковое и вводное испытание защиты.

Плановые испытания

Порядок проведения планового тестирования регулируется нормами, установленными в инструкции РД-34.22.121-87. Проверки регламентируются положениями ПУЭ (правила устройства электроустановок) и ПТЭЭП (правила технической эксплуатации электроустановок потребителей). Для защитных устройств наружной установки правила указаны в пункте 1.14 РД-34.22.121-87.

В соответствии с указанными нормативами все охраняемые объекты делятся на категории. Исходя из установленной для здания или сооружения категории устанавливается периодичность обследования системы защиты от молнии. К примеру, для зданий первой и второй категории испытания следует проводить каждый год до наступления сезона гроз. Третья категория касается объектов, подвергающихся незначительной опасности. В данном случае проверки следует проводить каждые три года.

Внеочередные испытания

Проверки вне запланированного графика осуществляют в следующих случаях:

  1. Внесение в конструкционные элементы любых изменений, изначально не заложенных в проектную документацию.
  2. По завершению ремонтных работ, реконструкции здания.
  3. В случае возникновения крупных аварий, катастроф или стихийных бедствий.

Пусковые и вводные испытания

Проводятся при сдаче защищаемого здания заказчику. Пусковое тестирование осуществляется сразу после окончания основных работ по строительству или по ранее согласованному графику реконструкции объекта.

Результаты проверки фиксируются документально. На основании заключения начинается эксплуатация системы.

23)Условия для h и b на границе раздела двух изотропных магнетиков :

Рассмотрим
поведение линий векторов магнитной
индукции и напряжённости магнитного
поля при переходе через границу раздела
двух магнетиков.

Представим
себе две однородные, изотропные
полубесконечные среды с магнитными
проницаемостями
и,
имеющие плоскую горизонтальную границу
раздела. Пусть оба магнетика находятся
в однородном внешнем магнитном поле.
Чтобы понять, как происходит преломление
линий векторов магнитной индукциии
напряжённости магнитного полячерез
эту границу, рассмотрим проекции этих
векторов на саму границу и на направление,
перпендикулярное границе и назовём их
касательными и нормальными составляющими,
соответственно.

Пусть
и
нормальные составляющие векторов
магнитной индукции и напряжённости
магнитного поля, аи
касательные составляющие тех же векторов
в верхней среде, имеющей магнитную
проницаемость.
Аналогичные величины в нижней среде,
имеющей магнитную проницаемость,
обозначим.

Представим
себе, что линии вектора
преломляются
при переходе через границу раздела так,
как показано на рис. 1. Рассмотрим при
этом преломление пока только одной
силовой линии.

Поместим
на границе раздела воображаемую
цилиндрическую поверхность с высотой
h
значительно меньшей радиусов оснований
S1
и S2,
лежащих по обе стороны от границы раздела
и параллельных ей. На рисунке также
показана нормаль
к
границе раздела и к обоим основаниям.

Запишем
теорему Гаусса для магнитной индукции:

или
,

где
S
─ замкнутая поверхность, состоящая из
боковой поверхности и оснований цилиндра.

Этот
круговой интеграл можно разбить на 3
интеграла, каждый из которых равен
потоку через верхнее и нижнее основания
и боковую поверхность

.

Здесь
и
нормальные составляющие векторов
магнитной индукции в верхнем и нижнем
магнетиках, соответственно,
среднее значение проекции вектора
магнитной индукции на нормаль к боковой
поверхности.

Поскольку
оба магнетика помещены в однородное
внешнее магнитное поле, то все интегралы
можно заменить соответствующими
произведениями:

.

Как
и в предыдущей формуле, здесь первая
составляющая магнитного потока
положительна,
так как силовые линии выходят из
поверхности,
а вторая составляющая
отрицательна, так как силовые линии
входят в поверхность(вектораиспроектированы
на одну и ту же нормаль). Третьей
составляющей ─можно
пренебречь, так как высота цилиндра
выбрана очень малой по сравнению с
радиусами оснований, т. е., если,
то.

Учитывая,
что
,
получим:

.
(1)

Используя
связь магнитной индукции и напряжённости
магнитного поля

,
(2)

и,
применяя её для первого и второго
магнетиков в формуле (1), получим:

.

Отсюда
следует

.
(3)

Примечания

  1. Действительно, для иллюстрации рассмотрим выражение для так называемой плотности энергии поля в среде wsubst{\displaystyle w_{subst}} для сравнительно простого случая линейной связи намагниченности напряженности магнитного поля M=χH.{\displaystyle \mathbf {M} =\chi \mathbf {H} .} Тогда wsubst=12H⋅B{\displaystyle w_{subst}={\frac {1}{2}}\mathbf {H} \cdot \mathbf {B} } (используем здесь СИ) раскрывается как
    12(1μB−M)⋅B=12μB2−12M⋅B,{\displaystyle {\frac {1}{2}}({\frac {1}{\mu _{0}}}\mathbf {B} -\mathbf {M} )\cdot \mathbf {B} ={\frac {1}{2\mu _{0}}}\mathbf {B} ^{2}-{\frac {1}{2}}\mathbf {M} \cdot \mathbf {B} ,}

    где первый член — энергия магнитного поля в чистом виде, поскольку второй — совершенно очевидно энергия взаимодействия поля со средой — например с магнитными диполями парамагнетика.

Физический смысл

В вакууме (или в отсутствие среды, способной к магнитной поляризации, а также в случаях, когда последняя пренебрежима) напряжённость магнитного поля (Н) совпадает с вектором магнитной индукции (B) с точностью до коэффициента, равного 1 в СГС и μ{\displaystyle \mu _{0}} в СИ.

В магнетиках (магнитных средах) напряжённость магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как, например, в системе СИ, что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».

Например, если поле создаётся катушкой с током, в которую вставлен железный сердечник, то напряжённость магнитного поля H внутри сердечника совпадает (в СГС точно, а в СИ — с точностью до постоянного размерного коэффициента) с вектором B, который был бы создан этой катушкой при отсутствии сердечника и который в принципе может быть рассчитан исходя из геометрии катушки и тока в ней, без всякой дополнительной информации о материале сердечника и его магнитных свойствах.

При этом надо иметь в виду, что более фундаментальной характеристикой магнитного поля является вектор магнитной индукции B. Именно он определяет силу действия магнитного поля на движущиеся заряженные частицы и токи, а также может быть непосредственно измерен, в то время как напряжённость магнитного поля H можно рассматривать скорее как вспомогательную величину (хотя рассчитать её, по крайней мере, в статическом случае, проще, в чём и состоит её ценность: ведь H создают так называемые свободные токи, которые сравнительно легко непосредственно измерить, а трудно измеримые связанные токи — то есть токи молекулярные и т. п. — учитывать не надо).

Правда, в обычно используемое выражение для энергии магнитного поля (в среде) B и H входят почти равноправно, но надо иметь в виду, что в эту энергию включена и энергия, затраченная на поляризацию среды, а не только энергия собственно поля. Энергия магнитного поля как такового выражается только через фундаментальную величину B. Тем не менее видно, что величина H феноменологически и тут весьма удобна.

Физический смысл

В вакууме (или в отсутствие среды, способной к магнитной поляризации, а также в случаях, когда последняя пренебрежима) напряжённость магнитного поля (Н) совпадает с вектором магнитной индукции (B) с точностью до коэффициента, равного 1 в СГС и μ{\displaystyle \mu _{0}} в СИ.

В магнетиках (магнитных средах) напряжённость магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как, например, в системе СИ, что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».

Например, если поле создаётся катушкой с током, в которую вставлен железный сердечник, то напряжённость магнитного поля H внутри сердечника совпадает (в СГС точно, а в СИ — с точностью до постоянного размерного коэффициента) с вектором магнитной индукции B поля, которое было бы создано этой катушкой при отсутствии сердечника. B в принципе может быть рассчитан исходя из геометрии катушки и тока в ней, без всякой дополнительной информации о материале сердечника и его магнитных свойствах.

При этом надо иметь в виду, что более фундаментальной характеристикой магнитного поля является вектор магнитной индукции B. Именно он определяет силу действия магнитного поля на движущиеся заряженные частицы и токи, а также может быть непосредственно измерен, в то время как напряжённость магнитного поля H можно рассматривать скорее как вспомогательную величину (хотя рассчитать её, по крайней мере, в статическом случае, проще, в чём состоит её ценность: ведь H создает так называемые свободные токи, которые сравнительно легко непосредственно измерить, а трудно измеримые связанные токи — то есть токи молекулярные и т. п. — учитывать не надо).

Правда, в обычно используемое выражение для энергии магнитного поля (в среде) B и H входят почти равноправно, но надо иметь в виду, что в эту энергию включена и энергия, затраченная на поляризацию среды, а не только энергия собственно поля. Энергия магнитного поля как такового выражается только через фундаментальную величину B. Тем не менее видно, что величина H феноменологическая и тут весьма удобна.

Примечания

  1. // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1992. — Т. 3. — С. 246. — 672 с. — 48 000 экз. — ISBN 5-85270-019-3.
  2. Для любой частицы её электрический заряд постоянен. Измениться он может только если от частицы что-то заряженное отделится или если к ней что-то заряженное присоединится.
  3. Иногда его значения могут оказываться и одинаковыми в разных точках пространства; если E→{\displaystyle {\vec {E}}} одинаков всюду в пространстве (или в какой-то области), говорят об однородном электрическом поле — это частный, наиболее простой, случай электрического поля; в реальности электрическое поле может быть однородным лишь приближённо, то есть различия E→{\displaystyle {\vec {E}}} в разных точках пространства есть, но иногда они небольшие и ими можно пренебречь в рамках некоторого приближения.
  4. Электромагнитное поле может быть выражено и по-другому, например через электромагнитный потенциал или в несколько иной математической записи (в которой вектор напряжённости электрического поля вместе с вектором магнитной индукции входит в тензор электромагнитного поля), однако все эти способы записи тесно связаны между собой, таким образом, утверждение о том, что поле E→{\displaystyle {\vec {E}}} — одна из основных составляющих электромагнитного поля, не утрачивает смысла.
  5. Хотя исторически многие из них были открыты раньше.

Примечания

  1. Действительно, для иллюстрации рассмотрим выражение для так называемой плотности энергии поля в среде wsubst{\displaystyle w_{subst}} для сравнительно простого случая линейной связи намагниченности напряженности магнитного поля M=χH.{\displaystyle \mathbf {M} =\chi \mathbf {H} .} Тогда wsubst=12H⋅B{\displaystyle w_{subst}={\frac {1}{2}}\mathbf {H} \cdot \mathbf {B} } (используем здесь СИ) раскрывается как
    12(1μB−M)⋅B=12μB2−12M⋅B,{\displaystyle {\frac {1}{2}}({\frac {1}{\mu _{0}}}\mathbf {B} -\mathbf {M} )\cdot \mathbf {B} ={\frac {1}{2\mu _{0}}}\mathbf {B} ^{2}-{\frac {1}{2}}\mathbf {M} \cdot \mathbf {B} ,}

    где первый член — энергия магнитного поля в чистом виде, поскольку второй — совершенно очевидно энергия взаимодействия поля со средой — например с магнитными диполями парамагнетика.

Примечания

  1. Для иллюстрации раскроем выражение для плотности энергии поля в среде wsubst{\displaystyle w_{subst}} в случае линейной связи намагниченности от напряженности магнитного поля M=χH.{\displaystyle \mathbf {M} =\chi \mathbf {H} .} В системе СИwsubst=12H⋅B=12(1μB−M)⋅B=12μB2−12M⋅B,{\displaystyle w_{subst}={\frac {1}{2}}\mathbf {H} \cdot \mathbf {B} ={\frac {1}{2}}({\frac {1}{\mu _{0}}}\mathbf {B} -\mathbf {M} )\cdot \mathbf {B} ={\frac {1}{2\mu _{0}}}\mathbf {B} ^{2}-{\frac {1}{2}}\mathbf {M} \cdot \mathbf {B} ,}где первый член — энергия магнитного поля, второй — энергия взаимодействия поля со средой (например, с магнитными диполями парамагнетика).

Примеры на определение напряженности магнитного поля

Пример 1. Имеется катушка с количеством витков 100 и имеющая длину 10 см. Необходимо обеспечить заданное значение напряженности магнитного поля в 5000А/м. Какой силы ток должен протекать по катушке?

Решение: согласно определению, намагничивающая сила катушки равна Н = I×ω/ L. А произведение Н×I дает намагничивающую силу. Отсюда можно вывести значение силы тока, которое равно: 5000А/м*0,1м = сила тока * количество витков. Решая простую пропорцию, получаем, что сила тока в данной задаче должна быть равна 5А.

Пример 2. В катушке 2000 витков, через нее протекает ток силой в 5 Ампер. Чему равна намагничивающаяся сила катушки?

Решение: простая формула дает ответ: н.с.= I×ω. Таким образом н.с = 2000×5 = 10000 ампер-витков.

Пример 3.

Как определить напряженность магнитного поля прямого электрического провода на расстоянии 5 см? Сила тока, текущего через провод, равна 30 А.

В этом примере нам также пригодится формула

H∙l = I∙ω.

В случае прямого провода количество витков катушки будет равно 1, а длина l = 2∙π∙r.

Отсюда можно вывести, что

Н = 30/(2*3,14*0,02) = 238,85 А/м.

Эти и подобные задачи легко можно решить при помощи базового курса школьной физики. Решение таких несложных примеров поможет понять качественную суть электромагнитных процессов в окружающей нас природе.

Магнитная индукция

Определение напряженности магнитного поля было бы неполным без понятия «магнитная индукция». Эта величина объясняет, какую работу способно производить данное магнитное поле. Чем сильнее магнитное поле, тем больше работы оно может производить, тем больше значение его магнитной индукции.

В физике магнитная индукция обозначается литерой Ḇ. Наглядно ее можно изобразить в виде плотности магнитных силовых линий, приходящихся на единицу площади поверхности, которая расположена перперндикулярно к измеряемому магнитному полю. В настоящее время магнитная индукция измеряется в Теслах.

Физический смысл

В вакууме (или в отсутствие среды, способной к магнитной поляризации, а также в случаях, когда последняя пренебрежима) напряжённость магнитного поля (Н) совпадает с вектором магнитной индукции (B) с точностью до коэффициента, равного 1 в СГС и μ{\displaystyle \mu _{0}} в СИ.

В магнетиках (магнитных средах) напряжённость магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как, например, в системе СИ, что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».

Например, если поле создаётся катушкой с током, в которую вставлен железный сердечник, то напряжённость магнитного поля H внутри сердечника совпадает (в СГС точно, а в СИ — с точностью до постоянного размерного коэффициента) с вектором B, который был бы создан этой катушкой при отсутствии сердечника и который в принципе может быть рассчитан исходя из геометрии катушки и тока в ней, без всякой дополнительной информации о материале сердечника и его магнитных свойствах.

При этом надо иметь в виду, что более фундаментальной характеристикой магнитного поля является вектор магнитной индукции B. Именно он определяет силу действия магнитного поля на движущиеся заряженные частицы и токи, а также может быть непосредственно измерен, в то время как напряжённость магнитного поля H можно рассматривать скорее как вспомогательную величину (хотя рассчитать её, по крайней мере, в статическом случае, проще, в чём и состоит её ценность: ведь H создают так называемые свободные токи, которые сравнительно легко непосредственно измерить, а трудно измеримые связанные токи — то есть токи молекулярные и т. п. — учитывать не надо).

Правда, в обычно используемое выражение для энергии магнитного поля (в среде) B и H входят почти равноправно, но надо иметь в виду, что в эту энергию включена и энергия, затраченная на поляризацию среды, а не только энергия собственно поля. Энергия магнитного поля как такового выражается только через фундаментальную величину B. Тем не менее видно, что величина H феноменологически и тут весьма удобна.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации