Андрей Смирнов
Время чтения: ~20 мин.
Просмотров: 0

Как пользоваться макетной платой (breadboard)

Виды макетных плат

Далее мы рассмотрим все виды макетных плат.

Толстый картон

В прежние времена, когда с доступностью некоторых видов товаров были проблемы, умельцами использовался толстый картон как один из самых простых, недорогих и быстрых способов для проверки схемы. Достаточно было проделать отверстия в куске картона под конкретные радиоэлементы и установить. Далее припаять выводы деталей друг к другу либо при помощи провода согласно схеме.

Такой вид макета, помимо его простоты, имеет массу недостатков: высокая вероятность замыкания, риски неправильного соединения элементов, возможность прожечь картон. Да и с точки зрения эстетики такой макет явно не лидер.

Самодельные макетные платы

Макетную плату из фольгированного текстолита можно изготовить самостоятельно. Для этого используется режущий инструмент – как правило резец. С его помощью на отрезке текстолита подходящего размера прорезаются канавки, образуя тем самым небольшие квадратики на фольгированной стороне. После чего она покрывается припоем.

Ряд контактов при необходимости можно соединить между собой припоем благодаря небольшому расстоянию между ними и создать дорожку. В результате образуется надёжный проводник, который не выглядит при этом убого. В случае успешной проверки устройства на работоспособность прототип можно оставить в исходном виде и использовать как готовое устройство.

Одноразовые макетные платы

На сегодняшний день в продаже имеется целый ряд разнообразных макетных плат: любых форм, размеров и цветов. Одно- и двухсторонние.

Шаг между отверстиями подобран таким образом, чтобы в них без проблем размещались радиодетали и микросхемы различных форм-факторов. Это придаёт удобство и упрощает сборку для проверки устройства. Стоимость подобных макетных плат, как правило, невысока.

При обилии преимуществ у такого рода макетных плат имеется существенный недостаток: при повторном использовании оловянные пятачки могут сорваться с платы, что приводит к её непригодности.

Беспаечные макетные платы

Следующим поколением макетных плат можно назвать беспаечные (контактные, зажимные, цанговые) макетные платы.

Они ещё проще в обращении, надёжнее и долговечнее предыдущих. Соответственно, и цена на них отличается в большую сторону.

Беспаечные макетные платы отличаются простотой и удобством установки деталей, а также соединением нескольких плат между собой. Существуют ограничения по диаметру контактов радиодеталей и проводов от 0,4 мм до 0,7 мм. С помощью мультиметра можно определить ряды дорожек, расположенных на одном проводнике. На случай создания прототипа с большим количеством узлов, предусмотрена возможность соединения нескольких макетных плат между собой с помощью специальных креплений на торцах.

При создании разветвлённой схемы с высокочастотными узлами, существует риск возникновения помех и наводок по причине паразитных параметров радиодеталей. Для уменьшения негативных последствий, т. к. «масса» (общий провод) подсоединяется к пластине из металла на обратной стороне макетной платы. Обычно общим проводом служит минус, либо он имеет название GND (ground — от англ. земля). Металлическая пластина может идти в комплекте с макетной платой как в закреплённом, так и в незакреплённом варианте, что потребует её установки при необходимости.

Для соединения радиодеталей на данной макетной плате, а также для соединения нескольких макетных плат между собой используются специальные соединительные провода – джамперы (jump — от англ. прыгать). Купить джамперы.

Для установки джампера требуется подогнать его по длине, зачистить от изоляции, подогнуть под 90° и вставить в отверстия.

Рассмотрим пример создания элементарной схемы: включение LED светодиода посредством кнопки на макетной плате.

На лабораторном блоке питания установить напряжение 5 вольт, подключить клеммы и нажать на кнопку. При нажатии светодиод загорается, что говорит о работоспособности прототипа.

1 Описаниемакетной платы

Видов макетных плат существует множество. Они различаются количеством выводов, количеством шин, конфигурацией. Но устроены все они по одному принципу. Макетная плата состоит из пластикового основания со множеством отверстий, расположенных обычно со стандартным шагом 2,54 мм. С таким же шагом обычно располагаются ножки у выводных микросхем. Отверстия нужны для того, чтобы вставлять в них выводы радиоэлементов или соединительные провода. Типичный вид макетной платы представлен на рисунке.

Различные виды макетных плат (breadboard)

Своё английское название – breadboard («доска для хлеба») – такой вид плат получил из-за сравнения с доской для нарезки хлеба: она подходит для быстрого «приготовления» несложных схем.

Также существуют макетные платы под пайку. Отличаются они тем, что сделаны обычно из стеклотекстолита, а их металлизированные площадки хорошо подходят для пайки проводов и выводных радиоэлементов к ним. В этой статье мы не рассматриваем такие платы.

Как пользоваться макетной платой

Пользоваться макетной платой достаточно просто. При создании схемы в отверстия на пластиковом корпусе вставляются необходимые элементы – конденсаторы, резисторы, различные индикаторы, светодиоды и т.д. Ширина разъемов позволяет подключать к контактам проводники с сечением от 0,4 до 0,7 мм.


Схема подключения светодиода к монтажной плате

Например, вам нужно соединить между собой два элемента – светодиод и резистор. Для этого вы берете ножку первого элементам (светодиода) и вставляете ее, например, в ряд номер 2. Вторую ножку вы вставляете в другой ряд. Например, 3. Если вставите ножку в тот же ряд, схема работать не будет, т.к. обе ножки через общую рельсу будут соединены железным проводником. Будет короткое замыкание. Ток пойдет через место соединения напрямую, минуя светодиод. Никакой пользы от этого не будет.


Подключение светодиода к макетной плате. Размещаем светодиод в удобном месте. Главное, для каждой ножки – свой ряд

Если вы воткнете контакт в соседний ряд, то между ними не будет замыкания, т.к. соседние ряды не связаны между собой проводниками (ведь связаны только 5 контактов в одном ряду)

В какой именно ряд вы воткнете ножку – не важно. Главное, что не в тот же, что у первой ножки

Для удобства в реальных схемах вторую ножку размещают не в соседнем ряду, а в любом другом, чуть подальше от первого. Нужно выбирать место монтажа с учетом размеров самого светодиода, чтобы не выгибать сильно контакты.

Итак, светодиод мы закрепили – он устойчиво стоит двумя ногами в рядах 2 и 3. Давайте теперь подключим к этой схеме резистор. Мы возьмем одну ножку резистора и вставим в тот же ряд, что одна из ножек светодиода. Например, в ряд номер 3 – в любое место

В одном ряду 5 контактов, не важно, в какой из контактов мы попадем, главное, что в этом же ряду! Затем вторую ножку резистора вставим в другой ряд, например, в седьмой


Подключение светодиода и резистора к макетной плате. Соединяем одни ножки элементов

Получится, что ножки в 3 ряду встретятся друг с другом через внутренне соединение и будут связаны, как будто мы спаяли или скрутили их. И между ними с удовольствием пойдет ток, ведь он любит металлическое соединение.

У нас остались одна ножка у светодиода и одна ножка у резистора. Ножку светодиода мы должны соединить с платой ардуино. Если это длинная ножка, то соединяем ее с 13 пином. Если короткая, то с пином GND. В нашем случае, мы соединим короткую ножку во втором ряду с разъемом GND на плате Ардуино. Для этого мы берем провод “папа-папа” и втыкаем его в ряд, где находится наша свободная ножка. У нас это ряд 2 (вторая ножка светодиода уже связана в ряду 3 с резистором)

Опять-таки не важно, куда именно мы воткнем провод, главное, что во втором ряду – в том, где уже ждет ножка светодиода. Вторую часть провода мы соединяем с платой Arduino


Пример подключения светодиода и резистора к макетной плате. Идем к GND

Точно так же мы соединяем оставшуюся часть схемы – вторую часть резистора через проводник ведем к другому разъему Ардуино. В нашем случае с ряда 7 мы тянем проводник к 13 пину ардуино. Получится, что длинная ножка светодиода идет к плюсу – к 13 пину. А короткая у нас уже давно соединена с землей – GND.

Все, схема собрана. И после включения питания ток пойдет так (схематически): через источник внутри Ардуино дойдет до 13 пина, через красный проводник дойдет до макетной платы, пройдет через сопротивление, потом через светодиод, потом через черный провод вернется в ардуино. Схема в итоге получилась без разрывов, рабочая.

Еще одним примером создания прототипа схемы с использованием макетной платы может стать такой вариант реализации:

Для ее сборки необходимо взять:

  • Макетную плату (breadboard);
  • провода для соединения;
  • 1 светодиод;
  • тактовую кнопку;
  • резистор с номинальным сопротивлением 330 Ом;
  • батарейку типа «Крона» на 9В.

Плюс батарейки подключается к плюсовой шине, а минус к отрицательной. Если схема собрана правильно, то при нажатии на кнопку будет обеспечиваться загорание светодиода.

Еще несколько примеров:


Пример схемы с макетной платой


Пример схемы с макетной платой

Макетная плата в электронных схемах

Редко какой реальный проект Arduino содержит менее 5-10 элементов схемы, соединенных между собой. Даже в простой хорошо всем известной схеме маячка применяются 2 элемента, светодиод и резистор, которые надо как-то соединять друг с другом. И тут как раз и встает вопрос о том, каким способом это сделать.


Макетная плата без пайки

На сегодняшний момент существуют следующие основные способы монтажа, которыми используются в электронике и робототехнике на этапе создания  прототипов:

  • Пайка. Для этого применяют специальные платы с отверстиями, в которые вставляются детали и соединяются друг с другом пайкой (с использованием паяльника) и перемычками.
  • Cкрутка. По данной технологии контактные соединения устройств объединяются с макетной платой при помощи обмотки чистого провода к штыревому контакту.
  • Плата для монтажа без пайки. Английский вариант названия беспаечной макетной платы – breadboard.
  • Можно еще деражть контакты руками или зубами, склеивать клеем-пистолетом, скреплять изолентой или скотчем. В этой статье мы такие экзотические варианты не рассматриваем.


Макетная плата для монтажа с пайкой

Самым современным вариантом для создания прототипов является беспаечная макетная плата, которая обладает несомненными преимуществами:

  • Возможность проводить отладочные работы большое количество раз, изменяя модификацию схем и способы подключения устройств;
  • Возможность соединения нескольких плат в одну большую, что позволяет работать с более сложными и большими проектами;
  • Простота и быстрота создания прототипов;
  • Долговечность и надежность.


Макетная плата

Конечно, есть у этого варианта монтажа и недостатки:

  • В реальных проектах соединения у платы не будут столь же надежны, как при пайке. Любая вибрация будет потихоньку ослаблять контакты и это обязательно со временем приведет к неожиданным проблемам. Поэтому в реальных проектах используют другие виды монтажа элементов.
  • Внешний вид проектов с лапшой в виде проводов над бескрайними белыми пространствами платы нельзя назвать профессиональным и эстетичным. Хотят такой вид всегда завораживает зрителей и формирует у проекта имидж чего-то “жутко сложного, раз столько проводов”.
  • Плата с таким видом монтажа всегда будет занимать больше места за счет нависающих проводов. Значит, для нее нужен корпус больших объемов с фиксацией и защитой от вибрации.
  • Стоимость макетной платы. Пусть платы и не являются дорогими устройствами, но все равно вам нужно будет их приобрести дополнительно к микроконтроллеру и другим элементам. К счастью, сегодня на рынке есть большое количество недорогих вариантов и готовых наборов с монтажными платами в комплекте. Некоторые варианты можно найти в следующем разделе нашей статьи.

Не смотря на некоторые недостатки, альтернативных вариантов по простоте и доступности для монтажа первых схем у начинающих практически нет. Сегодня можно встретить огромное количество проектов, в которых все элементы размещены именно на макетной плате. Почти все примеры из учебников по основам робототехники и Ардуино используют этот вариант монтажа. Поэтому рекомендуем вам обязательно познакомиться с этим конструктивным элементом поближе.

Исторический экскурс

В начале 1960 создание прототипов микросхем выглядело примерно так:

На платформе устанавливались металлические стойки, на которые наматывались проводники. Процесс прототипирования был достаточно длительным и сложным. Но человечество не стоит на месте и был придуман более элегантный подход: Беспечные монтажные платы — breadboards!

Если знать, что bread переводится как хлеб, а board — доска, то одна из ассоциаций, которая может возникнуть при упоминании слова breadboard — это деревянная подставка, на которой нарезают хлеб (как на рисунке ниже). В принципе, вы недалеки от истины.

Так откуда появилось это название — breadboard? Много лет назад, когда электронные компоненты были большими и неуклюжими, многие «самодельщики» в своих «гаражах» собирали схемы с использованием подставок для нарезки хлеба (пример показан на рисунке ниже).

Постепенно электронные компоненты становились меньше и получилось свести прототипирование к использованию более ли менее стандартных проводников, коннекторов и микросхем. Подход несколько изменился, но название перекочевало.

Breadboard — это беспаечная монтажная плата. Это отличная платформа для разработки прототипов или временных электросхем, с использованием которой вам не понадобится паяльник и все связанные с этим проблемы и затраты времени на распайку.

Прототипирование (prototyping) — это процесс разработки и тестирования модели вашего будущего устройства. Если вы не знаете как будет себя вести ваше устройство при определенных заданных условиях, лучше сначала создать прототип и проверить его работоспособность.

Беспаечные монтажные платы используют как для создания простеньких электросхем, так и для сложных прототипов.

Еще одна сфера применения breadbord»ов — проверка новых деталей и компонентов — например, микросхем (ICs).

Как уже упоминалось выше, созданная вами электросхема вполне может меняться и в этом основное преимущество использования беспаечных монтажных плат. Например, в любой момент вы можете включить в схему дополнительный светодиод, который будет реагировать на те или иные условия в вашей цепи. На рисунке ниже показан пример электросхемы для проверки работоспособности чипа Atmega, который используется в платах Arduino Uno.

Макетная плата

Как пользоваться таким изобретением? Для начала проясним терминологическую составляющую. Макетная плата – это универсальная заготовка, которая используется, чтобы собирать и моделировать прототипы электронных устройств. Их можно поделить на два типа:

  1. Те, где используется пайка.
  2. Те, где пайки нет.

Во время создания прототипов электронных приборов каждому приходится встречаться с несколькими проблемами:

  1. Макетная плата должна быть сконструирована с нуля, а затем изготовлена. При допущении ошибки её придется переделывать.
  2. Создавать единственный экземпляр, как правило, не выгодно.
  3. Если схема выполнена на микросхемах низкой степени интеграции и аналоговых элементах, то сделать её легче будет навесным монтажом. Но микропроцессорные устройства сделать подобным образом будет очень сложно.

В наименее выгодном положении начинающие радиолюбители: поскольку у них ещё нет навыков проектирования схем, то им приходится оперировать «методом тыка». Поэтому на данный момент выпускается широкий диапазон различных макетных плат, где проведены разные короткие дорожки, и человеку останется только соединить детали, чтобы получить необходимую схему.

Связанные материалы

Ремингтон — отстой!!! Покупайте наше!…
Знаете, есть пули с цельнометаллической оболочкой и прочими убийственными причиндалами. С ними…

Баширов С.Р. Баширов А.С. Современные интегральные усилители…
М.: Эксмо, 2008, 174 стр с илл. В книге рассмотрены конструкции узлов современных усилителей….

Энциклопедия электронных схем. Том 7. Часть I. Граф Р., Шиитс В….
Энциклопедия электронных схем. Том 7. Часть I. Граф Р., Шиитс В. Издательство: ДМК Пресс Год…

Спутниковое телевидение. Всё, что вы хотели знать, но стеснялись спросить….
Ну наконец-то и я снова решил засветиться. Правда не по звуку, но думаю, что многим моя статья…

Современные радиотехнические конструкции. Маленькие помощники. М. Г. Майоров…
Издательство: Солон-Пресс Год издания: 2004 Страниц: 192 В этой книге рассмотрен ряд устройств,…

О монтаже сигнальных цепей в ламповом усилителе. Борьба с фоном, заземление…
ГЕННАДИЙ СЕМЕНОВИЧ ГЕНДИН, «ВЫСОКОКАЧЕСТВЕННЫЕ ЛАМПОВЫЕ УСИЛИТЕЛИ ЗВУКОВОЙ ЧАСТОТЫ» От правильности…

Определение ёмкости конденсатора по цифровой маркировке из трёх знаков…
Цифровая маркировка используется уже довольно давно. На малогабаритных конденсаторах чаще всего она…

Караоке-ревербератор на PT2399 из подножных материалов…
Жил да был один раздолбай и тунеядец. Маленько на гитаре брынькал, иногда примочки для неё пытался…

Схемы приводов от Сергея (ddssu) в формате Splan (дополнение к статьям)…
На портале есть две интересные статьи одного автора по приводам: 1. УНИВЕРСАЛЬНЫЙ ПРИВОД С СИСТЕМОЙ…

Современные усилители на микросхемах. Баширов С.Р….
Современные усилители на микросхемах. Баширов С.Р. В данном издании рассмотрены конструкции узлов…

Электронные усилители. Г. С. Рамм…
Электронные усилители. Г. С. Рамм, 1966г. Ламповые и полупроводниковые усилители рассматриваются с…

Виды макетных плат

Толстый картон

Давным-давно, когда еще вас не было даже и в планах, наши дедушки, а может быть и бабушки, мало ли :-), использовали толстый картон. Это самый быстрый и дешевый способ проверки схем. В картоне прорезались дырочки под выводы радиоэлементов и с другой стороны они соединялись с помощью проводов и других элементов, если те не влезали на лицевую сторону. Выглядело это примерно как-то так: 

А – типа лицевая сторона, В – обратная сторона.

Все бы хорошо, но приходилось паять выводы, смотреть, чтобы ничего нигде не замкнуло, да и пока “лепишь” эту схемку можно даже ненароком растеряться :-).  Да и не красиво как-то.

Самодельные макетные платы

Эти времена я еще застал на радиокружке. Тогда мы делали макетные платы сами. Брали острый резец и нарезали квадратики на фольгированном текстолите. Далее покрывали их припоем.

Если надо где-то было соединить дорожки, мы просто делали перемычки между квадратиками каплей припоя. Получалось качественно и красиво. Если было лень перепаивать радиоэлементы на нормально-разведенную плату с дорожками, просто оставляли как есть и пользовались устройством.

Одноразовые макетные платы

Производители все-таки это дело “чухнули”, или как говорится в экономике, спрос рождает предложение. Стали появляться готовые макетные платки односторонние и даже двухсторонние  на любой размер и вкус.

Кстати, их можно найти на Али сразу целым набором.

Отверстия очень удобно подобраны по размерам  выводов микросхем, а также других радиоэлементов. Поэтому очень удобно на таких макетных платах собирать и проверять радиоэлектронное устройство. Да и стоят они недорого.

Обратная сторона таких макетных плат уже с готовыми устройствами будет выглядеть приблизительно вот так:

В чем же минусы этих макетных плат? Лучше все-таки их использовать единожды, так как при многоразовом использовании у них могут отлетать пятачки, что приведет к ее непригодности.

Беспаечные макетные платы

Прогресс шагает своим уверенным шагом по нашему миру, и вот на рынке появились беспаечные макетные платы.

Стоят они чуть подороже, чем простые одноразовые макетные платы, но честно говоря, оно того стоит.

Они очень удобны в плане установки деталей, а также их связи между собой. В такие макетные платы можно вставлять провода не более, чем 0,7 мм и не менее, чем 0,4 мм в диаметре. Чтобы узнать, какие отверстия и дорожки между собой звонятся, проверяем все это дело мультиметром. Для конструирования больших схем (вдруг вы будете разрабатывать какой-нибудь блок управления адронным коллайдером) можно добавлять такие же макетные платы впритык. Для этого есть специальные ушки. Одно движение, и макетная плата станет чуток больше.

 

Если Вы собираете крупногабаритную схему и в ней присутствуют высокие частоты, то могут возникнуть помехи и различного рода наводки, так как все радиоэлементы обладают паразитными параметрами. Поэтому, чтобы схемка работала как полагается, общий провод соединяют с металлической пластиной сзади макетной платки. Общий провод на схеме может быть или минусом или назван  как GND, что в сокращенном английском варианте означает “земля”. Кстати,  у меня макетная плата шла с этой  железной пластиной в комплекте. Я просто приклеил ее к задней части макетной платы.

 

Ну какая же макетная плата может быть без соединительных проводов? Соединительные провода, или джамперы (от английского – прыгать), нужны для соединения радиодеталей на самой макетной плате.

Чуть позже с Алиэкспресса я купил вот такие джамперы. Они намного удобнее, чем проволочные:

Здесь все просто, берем джампер и вставляем его легким движением руки

Давайте соберем простейшую схемку включения светодиода через кнопочку на макетной плате

Вот так она будет выглядеть

Выставляем на Блоке питания  5 Вольт и нажимаем на кнопочку. Светодиод загорается ярко-зеленым цветом. Значит схема работоспособная, и мы ее можем использовать по своему усмотрению.

Назначение и устройство

Макетная плата для сборки без пайки позволяет произвести монтаж электрической схемы и запустить ее без использования паяльника. При этом можно проверить все параметры и характеристики будущего устройства, подключив к плате измерительные и контрольные приборы.

Макетная плата представляет собой пластину из полимерного материала, являющегося диэлектриком. На пластине в определенном порядке просверлены монтажные отверстия, в которые должны вставляться выводы деталей – компонентов будущего устройства.

Отверстия допускают подключение выводов диаметром 0,4-0,7 мм. Расположены они на плате, как правило, с шагом 2,54 мм.

Чтобы смоделировать соединения выводов компонентов между собой, макетка имеет специальные токопроводящие пластины, в определенном порядке соединяющие отверстия.

Как правило, эти соединения осуществляются группами вдоль платы по ее длинным сторонам. Таких рядов может быть два-три. Эти контактные группы используются как шины для подключения питания.

Между продольными рядами отверстия соединяются пластинами в группы по пять. Эти пластины расположены в направлении поперек платы.

Около отверстий в местах будущих контактов токопроводящие пластины имеют конструктивные особенности, позволяющие зажимать и прочно удерживать выводы деталей, обеспечивая при этом наличие электрического контакта. В этом и есть смысл монтажа без пайки.

Макетные платы, выпускаемые промышленным способом и приобретенные в торговой сети, как правило, имеют схему расположения контактов и токопроводящих связей между отверстиями.

6Подготовка платык травлению

Вынимаем заготовку из воды и просушиваем. Если где-то дорожки получились не очень чёткими, можно сделать их ярче тонким маркером для CD или, например, лаком для ногтей (смотря чем вы собираетесь травить плату).

Подготовка платы к травлению

Нужно добиться, чтобы все дорожки были чёткими, ровными и яркими. Это зависит от:

  • равномерности и достаточности прогрева заготовки утюгом;
  • аккуратности при снятии бумаги;
  • качества подготовки поверхности текстолита;
  • удачного подбора бумаги.

Поэкспериментируйте с разными видами бумаги, разным временем нагрева, разными видами очистки поверхности стеклотекстолита, чтобы найти наиболее оптимальный по качеству вариант. Подобрав приемлемое сочетание этих условий, в дальнейшем вы сможете быстрее и качественнее изготавливать печатные платы дома.

Монтажная плата своими руками

Здравствуйте, дорогие читатели блога. Сейчас на улице замечательная погода, а у меня прекрасное настроение. Сегодня я хочу вам рассказать о том, как можно изготовить качественные печатные платы в домашних условиях.

Не спорю, что в сети информации на эту тему очень много и, наверное, на каждом радиолюбительском сайте есть описание ЛУТовской технологии. Но из всех этих вариантов я выбрал один, который позволяет мне делать действительно качественные печатные платы не уступающие заводским. В этом варианте нет каких-либо тонкостей способных повлиять на результат. Именно этим методом я хочу с вами поделиться.

Вообще метод изготовления печатных плат с помощью лазерного утюга не сложен. Его суть заключается в способе нанесения защитного рисунка на фольгированный текстолит.

В нашем случае защитный рисунок мы сначала с помощью принтера выводим на фотобумагу, глянцевую ее сторону. Затем в результате нагрева утюгом, размягченный тонер прижаривается к поверхности текстолита. Подробности сего действа читайте далее…

Для изготовления платы по технологии ЛУТ нам понадобится: фольгированный текстолит (одно- или двухсторонний) лазерный принтер утюг ножницы по металлу глянцевая фотобумага (Lomond) растворитель (ацетон, спирт, бензин и т.д.) наждачная бумага (с мелким абразивом, нулевка вполне подойдет) сверлилка (обычно моторчик с цанговым патроном) зубная щетка (очень нужная вещь, не только для здоровья зубов) хлорное железо собственно сам рисунок платы нарисованный в Sprint-Layout

Берем в руки ножницы по металлу и вырезаем кусок текстолита по размеру нашей будущей печатной платы. Раньше я резал текстолит ножовкой по металлу, но это, оказалось, по сравнению с ножницами не так удобно, да и пыль текстолитовая очень докучала.

Полученную заготовку печатной платы хорошенько шкурим наждачной бумагой – нулевкой до появления равномерного зеркального блеска. Затем смачиваем кусочек ткани ацетоном, спиртом или каким еще растворителем, тщательно протираем и обезжириваем нашу плату.

Наша задача очистить нашу плату от окислов и “потных рук”. Само собой после этого стараемся руками нашу плату не трогать.

Подготовка рисунка печатной платы и перенос на текстолит.

Нарисованный заранее рисунок печатной платы, мы распечатываем на фотобумагу. Причем в принтере отключаем режим экономии тонера, а рисунок выводим на глянцевой стороне фотобумаги.

Теперь достаем из-под стола утюг и включаем в сеть, пускай нагревается. Свежераспечатанный лист бумаги ложим на текстолит рисунком вниз и начинаем проглаживать утюгом. С фотобумагой, в отличие от кальки, подложки от самоклейки церемониться не нужно, “елозим” утюгом до начала пожелтения бумаги.

Выводы

Макетные платы  breadboard оптимальны для создания прототипов и цифровых схем не очень высокой сложности. В своей практике их часто используют как новички, познающие основы схемотехники, так и опытные профессионалы ввиду простоты монтажа и достаточно высокого качества соединения рабочих контактов. С помощью таких плат можно быстро и без лишней пайки создать прототип, протестировать его и затем уже собрать устройство с более надежным вариантом соединения.

Несмотря на большое количество плюсов, у макетных плат есть и минусы. Они не позволяют сделать надежное устройство, эксплуатируемое в сложных условиях. Они не предназначены для сборки аналоговых схем, с высокой чувствительностью к величине сопротивления, т.к. сопротивление в месте контакта завсит от многих факторов и может меняться. Платы нельзя подключать к линии с высоким напряжением. Наконец, такие платы тоже стоят денег – монтажные платы с пайкой обойдутся дешевле.

В любом случае, для первых проектов у ардуинщика каких-то альтернатив нет. Кроме того, подключение макетной платы способствует развитию абстрактного мышления – а это  никогда не бывает лишним.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации