Андрей Смирнов
Время чтения: ~19 мин.
Просмотров: 0

Кварцевый резонатор

Микропроцессорные кварцевые часы

Мы не можем закончить статью по кварцевым генераторам, не упомянув кое-что о микропроцессорных кварцевых часах. Практически все микропроцессоры, микроконтроллеры, PIC и процессоры, как правило, используют кварцевый генератор в качестве устройства определения частоты, чтобы генерировать их синхроимпульс, потому что, как мы уже знаем, кварцевые генераторы обеспечивают высочайшую точность и стабильность частоты по сравнению с резистором-конденсатором (RC) или индуктор-конденсатор, (LC) генераторы.

Тактовая частота процессора определяет, насколько быстро процессор может работать и обрабатывать данные с помощью микропроцессора, PIC или микроконтроллера с тактовой частотой 1 МГц, что означает, что он может обрабатывать данные внутренне один миллион раз в секунду за каждый тактовый цикл. Как правило, все, что нужно для получения тактовой формы сигнала микропроцессора, — это кристалл и два керамических конденсатора со значениями в диапазоне от 15 до 33 пФ, как показано ниже.

Принцип работы кварцевого резонатора

Работает прибор на основе пьезоэффекта, проявляющегося на пластинке из кварца, причем низкотемпературного. Элемент вырезают из цельного кристалла кварца, соблюдая задаваемый угол. Последний определяет электрохимические параметры резонатора.

Пластинки с обеих сторон покрывают слоем серебра (подходит платина, никель, золото). Затем их прочно фиксируют в корпусе, который герметизируется. Устройство представляет колебательную систему, которая обладает собственной резонансной частотой.

Когда электроды подвергаются переменному напряжению, пластинка из кварца, обладающая пьезоэлектрическим свойством, изгибается, сжимается, сдвигается (зависит от типа обработки кристалла). Одновременно в ней появляется противо-ЭДС, как это происходит в катушке индуктивности, находящейся в колебательном контуре.

Когда подается напряжение с частотой, совпадающей с собственными колебаниями пластинки, то в устройстве наблюдается резонанс. Одновременно:

  • у элемента из кварца увеличивается амплитуда колебаний;
  • сильно уменьшается сопротивления резонатора.

Энергия, которая необходима для поддержания колебаний, в случае равенства частот низкая.

Литература

Смагин А. Г., Ярославский М. И. Пьезоэлектричество кварца и кварцевые резонаторы. — М.: «Энергия», 1970. — 488 с. — 6000 экз.

Альтшуллер Г. Б. Кварцевая стабилизация частоты. — М.: «Связь», 1974. — 272 с. — 5600 экз.

Андросова В. Г., Банков В. Н., Дикиджи А. Н. и др. Справочник по кварцевым резонаторам / Под ред. П. Г. Позднякова. — Связь, 1978. — 288 с. — 15 000 экз.

Глюкман Л. И. Пьезоэлектрические кварцевые резонаторы. — 3-е изд., перераб. и доп. — М.: Радио и связь, 1981. — 232 с. — 10 000 экз.

Зеленка И. Пьезоэлектрические резонаторы на объёмных и поверхностных акустических волнах: Материалы, технология, конструкция, применение: Пер. с чешск. — М.: Мир, 1990. — 584 с. — 4050 экз. — ISBN 5-03-001086-6.

Ладик А. И., Сташкевич А. И. Изделия электронной техники. Пьезоэлектрические и электромеханические приборы: Справочник. — М.: Радио и связь, 1993. — 104 с. — 3000 экз. — ISBN 5-256-01145-6, ISBN 5-256-00588-X.

Принцип действия

На пластинку, тонкий цилиндр, кольцо или брусок, вырезанные из кристалла кварца с определённой ориентацией относительно кристаллографических осей монокристалла нанесены 2 или более электродов — проводящие металлические полоски, выполненные напылением в вакууме или вжиганием плёнки металла на заданные поверхности кристалла.

Резонатор механически крепится в узлах рабочей моды колебаний, чтобы снизить потери колебательной энергии через крепление кристалла. Для иных мод колебаний узлы собственных колебаний расположены в иных местах кристалла и поэтому иные моды колебаний подавлены. Для рабочей моды колебаний кристалл имеет некоторую собственную резонансную частоту механических колебаний, причем на этой частоте добротность механического резонатора очень высока.

При подаче напряжения на электроды благодаря обратному пьезоэлектрическому эффекту происходит изгиб, сжатие или сдвиг в зависимости от того, каким образом вырезан кристалл относительно кристаллографических осей, конфигурации возбуждающих электродов и расположения точек крепления.

Собственные колебания кристалла в результате пьезоэлектрического эффекта наводят на электродах дополнительную ЭДС и поэтому кварцевый резонатор электрически ведёт себя подобно резонансной цепи, — колебательному контуру, составленному из конденсаторов, индуктивности и резистора, причем добротность этой эквивалентной электрической цепи очень велика и близка к добротности собственных механических колебаний кристалла.

Если частота подаваемого напряжения равна или близка к частоте собственных механических колебаний пластинки, затраты энергии на поддержание колебаний пластинки оказываются намного ниже, нежели при большом отличии частоты. Это тоже соответствует поведению электрического колебательного контура.

Применение

Одним из самых популярных видов резонаторов являются резонаторы, применяемые в часовых схемах и таймерах. Резонансная частота часовых резонаторов составляет 32 768 Гц; будучи поделённой на 15-разрядном , она даёт интервал времени в 1 секунду.

Применяются в генераторах с фиксированной частотой, где необходима высокая стабильность частоты. В частности, в опорных генераторах синтезаторов частот и в трансиверных радиостанциях для формирования DSB-сигнала на промежуточной частоте и детектирования SSB или телеграфного сигнала.

Также применяются в кварцевых полосовых фильтрах промежуточной частоты супергетеродинных приёмников. Такие фильтры могут выполняться по лестничной или дифференциальной схеме и отличаются очень высокой добротностью и стабильностью по сравнению с LC-фильтрами.

По типу корпуса кварцевые резонаторы могут быть выводные для объёмного монтажа (стандартные и цилиндрические) и для поверхностного монтажа (SMD).

Качество схемы, в которую входят кварцевые резонаторы, определяют такие параметры, как допуск по частоте (отклонение частоты), стабильность частоты, нагрузочная ёмкость, старение.

Преимущества

  • Достижение намного бо́льших значений добротности (104—106) эквивалентного колебательного контура, нежели любым другим способом.
  • Малые размеры устройства (вплоть до долей миллиметра).
  • Высокая температурная стабильность.
  • Большая долговечность.
  • Лучшая технологичность.
  • Построение качественных каскадных фильтров без необходимости их ручной настройки.

Недостатки

Чрезвычайно узкий диапазон подстройки частоты внешними элементами. На практике для многодиапазонных систем эта проблема решается построением синтезаторов частот различной степени сложности.

Как проверить кварцевый резонатор

Проблемы с небольшими приборами возникают, если они получают сильный удар. Такое происходит при падении устройств, содержащих в конструкции резонаторы. Последние выходят со строя и требуют замены по тем же параметрам.

Проверка резонатора на работоспособность требует наличия тестера. Его собирают по схеме на основе транзистора КТ3102, 5 конденсаторов и 2 резисторов (устройство подобно кварцевому генератору, собранному на транзисторе).

Прибор необходимо в подключаемых соединениях, подключениях подключить к базе транзистора и отрицательному полюсу, защищая установкой защитного конденсатора. Питание схемы включения постоянное – 9В. Плюс подключают на вход транзистора, к его выходу – через конденсатор – частотомер, который фиксирует частотные параметры резонатора.

Схемой пользуются при настройке контура колебаний. Когда резонатор исправный, он при подключении выдает колебания, которые приводят к появлению переменного напряжения на эмиттере транзистора. Причем частота напряжения совпадает с аналогичной характеристикой резонатора.

Прибор неисправен, если частотомер не фиксирует возникновение частоты или определяет наличие частоты, но она – либо намного отличается от номинала, либо при нагреве корпуса паяльником сильно изменяется.

Кварцевый резонатор как проверить? Проверка кварцевых резонаторов

Колебаниям уделяется одна из важнейших ролей в современном мире. Так, даже существует так именуемая теория струн, которая утверждает, что всё вокруг нас — это просто волны. Но есть и другие варианты использования данных познаний, и одна из их — это кварцевый резонатор

Так бывает, что неважно какая техника временами выходит из строя, и они здесь не исключение. Как убедиться, что после негативного инцидента она всё ещё работает как следует?

Применение

С развитием радиоэлектроники КР нашли своё применение в таких приборах, как:

  • кварцевые часы работают на основе эффекта кварцевого резонанса, что позволяет им функционировать с максимальной точностью;
  • различные измерительные устройства, оснащённые кварцевыми резонаторами, являются высокоточными приборами;
  • морские эхолоты, благодаря кварцевым резонаторам, определяют местонахождение различных объектов на большой глубине под водой (рельеф дна, отмели и разные крупные и мелкие предметы);
  • опорные генераторы;
  • радиостанции;
  • полосовые фильтры радиоприёмников.

Преимущества

Кварцевые резонаторы обладают непревзойдённой точностью метрологических параметров. Высокая эффективность работы вызвала повсеместную замену аналоговых приборов на кварцевые устройства.

Дополнительная информация. Появление нового материала такого, как графен, может в будущем совершенно изменить конструкцию резонатора.

Чрезвычайно устойчивый осциллятор с использованием атомного резонанса рубидия, контролируемый частотой микроволнового перехода атомов Rb87 в его основном энергетическом состоянии.

Основные вопросы, на которые нужно ответить при выборе генератора, включают в себя:

  1. Какая точность или воспроизводимость частоты необходима для правильной работы системы?
  2. Как долго должна поддерживаться эта точность, т. Е. Будет ли генератор калиброваться или периодически заменяться, или генератор должен поддерживать требуемую точность в течение всего срока службы системы?
  3. Доступна ли достаточная мощность, или генератор должен работать от батарей?
  4. Какое время прогрева допустимо?
  5. Каковы экстремальные условия окружающей среды, в которых должен работать генератор?
  6. Каково требование краткосрочной стабильности (фазовый шум)?
  7. Какое ограничение по размеру?

Что касается второго вопроса, какие затраты должны быть минимизированы: первоначальная стоимость приобретения или стоимость жизненного цикла? Часто стоимость повторной калибровки намного выше, чем дополнительная стоимость генератора, который может обеспечить жизнь без калибровки. Лучший генератор также может позволить упростить конструкцию системы.

Частота генератора является еще одним важным фактором, поскольку выбор может оказать существенное влияние как на стоимость, так и на производительность. При прочих равных условиях генератор стандартной частоты, такой как 5 МГц или 10 МГц, для которого производители имеют хорошо зарекомендовавшие себя конструкции, будет стоить дешевле, чем одна из необычных частот, например 8,34289 МГц. Более того, для кристаллов со сдвигом по толщине, таких как AT-разрез и SC-разрез, чем ниже частота, тем ниже старение . Поскольку на частотах значительно ниже 5 МГц кристаллы со сдвигом толщины становятся слишком большими для экономичного производства, и поскольку все генераторы с наивысшей стабильностью используют сдвиговые кристаллы толщины, частота серийно выпускаемого генератора с самой высокой стабильностью составляет 5 МГц. Такие генераторы также будут иметь самую низкую способность фазового шума близко к несущей. На рынке также есть несколько отличных генераторов на 10 МГц; однако генераторы с гораздо более высокой частотой, чем 10 МГц, имеют значительно более высокие скорости старения и уровни фазового шума вблизи несущей, чем генераторы с частотой 5 МГц. Для самого низкого фазового шума вдали от несущей, где отношение сигнал / шум определяет уровень шума, высокочастотные кристаллы (например, 100 МГц) могут обеспечивать более низкий шум, поскольку такие кристаллы могут выдерживать более высокие уровни возбуждения, тем самым обеспечивая более высокие уровни сигнала , Генераторы с гораздо более высокой частотой, чем 10 МГц, имеют значительно более высокие скорости старения и уровни фазового шума вблизи несущей, чем генераторы с частотой 5 МГц. Для самого низкого фазового шума вдали от несущей, где отношение сигнал / шум определяет уровень шума, высокочастотные кристаллы (например, 100 МГц) могут обеспечивать более низкий шум, поскольку такие кристаллы могут выдерживать более высокие уровни возбуждения, тем самым обеспечивая более высокие уровни сигнала , Генераторы с гораздо более высокой частотой, чем 10 МГц, имеют значительно более высокие скорости старения и уровни фазового шума вблизи несущей, чем генераторы с частотой 5 МГц. Для самого низкого фазового шума вдали от несущей, где отношение сигнал / шум определяет уровень шума, высокочастотные кристаллы (например, 100 МГц) могут обеспечивать более низкий шум, поскольку такие кристаллы могут выдерживать более высокие уровни возбуждения, тем самым обеспечивая более высокие уровни сигнала ,

Где монтировать

Главную заземляющую шину разрешается монтировать на стенах, не пряча и не запирая, только в том случае, если доступ к ней ограничен. Это могут быть специализированные электропомещения, куда заходят по пропускам или куда имеют доступ только электрики. В домах, где живет много людей, и куда может зайти любой человек, запрещается делать открытую установку, чтобы никто посторонний не мог вмешаться в работу, и вывести из строя устройство. В этом случае оно должна монтироваться в специальный шкафчик с замком. На шкафчике наклеивают или рисуют знак заземления.

Если в здании несколько отдельных вводов электросети, то надо устанавливать шину для каждого распределителя. Только так можно добиться заземления всех приборов. Главную шину также монтируют возле подстанций, встроенных в здание. Совокупность заземляющих устройств соединяют проводником для уравнения потенциалов. Сечение проводника делают минимум вполовину меньше сечения PE или PEN. За эталон берется провод, сечение которого наибольшее.

Это интересно: Изолирующая штанга: во всех подробностях

Способ № 1

Здесь транзистор КТ368 играет роль генератора. Его частота определяется кварцевым резонатором. Когда поступает питание, то генератор начинает работать. Он создаёт импульсы, которые равны частоте его основного резонанса. Их последовательность проходит через конденсатор, который обозначен как С3 (100р). Он фильтрует постоянную составляющую, а затем сам импульс передаёт на аналоговый частотомер, который построен на двух диодах Д9Б и таких пассивных элементах: конденсаторе С4 (1n), резисторе R3 (100к) и микроамперметре. Все остальные элементы служат для стабильности работы схемы и чтобы ничего не перегорело. Зависимо от установленной частоты может меняться напряжение, которое есть на конденсаторе С4. Это довольно приблизительный способ и его преимущество – легкость. И, соответственно, чем выше напряжение, тем большая частота резонатора. Но существуют определённые ограничения: пробовать её на данной схеме следует только в тех случаях, если она находится в приблизительных рамках от трех до десяти МГц. Проверка кварцевых резонаторов, что выходит за грань этих значений, обычно не подпадает под любительскую радиоэлектронику, но далее будет рассмотрен чертеж, у которого диапазон — 1-10 МГц.

Применение

Одним из самых популярных видов резонаторов являются резонаторы, применяемые в часовых схемах и таймерах. Резонансная частота часовых резонаторов составляет 32 768 Гц; будучи поделённой на 15-разрядном , она даёт интервал времени в 1 секунду.

Применяются в генераторах с фиксированной частотой, где необходима высокая стабильность частоты. В частности, в опорных генераторах синтезаторов частот и в трансиверных радиостанциях для формирования DSB-сигнала на промежуточной частоте и детектирования SSB или телеграфного сигнала.

Также применяются в кварцевых полосовых фильтрах промежуточной частоты супергетеродинных приёмников. Такие фильтры могут выполняться по лестничной или дифференциальной схеме и отличаются очень высокой добротностью и стабильностью по сравнению с LC-фильтрами.

По типу корпуса кварцевые резонаторы могут быть выводные для объёмного монтажа (стандартные и цилиндрические) и для поверхностного монтажа (SMD).

Качество схемы, в которую входят кварцевые резонаторы, определяют такие параметры, как допуск по частоте (отклонение частоты), стабильность частоты, нагрузочная ёмкость, старение.

Преимущества

  • Достижение намного бо́льших значений добротности (104—106) эквивалентного колебательного контура, нежели любым другим способом.
  • Малые размеры устройства (вплоть до долей миллиметра).
  • Высокая температурная стабильность.
  • Большая долговечность.
  • Лучшая технологичность.
  • Построение качественных каскадных фильтров без необходимости их ручной настройки.

Недостатки

Чрезвычайно узкий диапазон подстройки частоты внешними элементами. На практике для многодиапазонных систем эта проблема решается построением синтезаторов частот различной степени сложности.

Схема измерителя кварцев

За основу устройства взяты два генератора CD74HC4060 (74HC4060 не было в магазине, но судя по даташиту они ещё «круче»), один работает на низкой частоте, второй на высокой. Самыми низкочастотными какие у меня были, оказались часовые кварцы, а самым высокочастотным оказался негармониковый кварц на 30 МГц. Генераторы из-за их склонности к самовозбуждению было решено переключать просто коммутируя напряжение питания, о чём индицируют соответствующие светодиоды. После генераторов установил повторитель на логике. Возможно вместо резисторов R6 и R7 лучше установить конденсаторы (сам я не проверял).

Как оказалось, в устройстве запускаются не только кварцы, но и всякие фильтры о двух и более ногах, которые с успехом и были подключены в соответствующие разъёмы. Один «двуногий» похожий на керамический конденсатор запустился на 4 МГЦ, который после был с успехом применён вместо кварцевого резонатора.

На снимках видно, что применены два вида разъёмов для проверки радиодеталей. Первый сделан из частей панелек – для выводных деталей, а второй представляет фрагмент платы приклеенный и припаянный к дорожкам через соответствующие отверстия — для SMD кварцевых резонаторов. Для вывода информации применён упрощённый частотомер на микроконтроллере PIC16F628 или PIC16F628A, который автоматически переключает предел измерения, то есть на индикаторе частота будет или в кГц или в МГц.

Свойства кварцевого резонатора

Превосходит ранее существовавшие аналоги, что делает прибор незаменимым во многих электронных схемах и объясняет сферу использования устройства. Это подтверждается тем, что за первое десятилетие с момента изобретения в США (не считая другие страны) выпущено больше 100 тыс. штук приборов.

Среди положительных свойств кварцевых резонаторов, объясняющих популярность, востребованность устройств:

  • хорошая добротность, значения которой — 104-106 — превышают параметры ранее использовавшихся аналогов (имеют добротность 300);
  • небольшие габариты, которые могут измеряться долями миллиметра;
  • устойчивость к температуре, ее колебаниям;
  • долгий срок службы;
  • простота изготовления;
  • возможность построения каскадных фильтров высокого качества без использования ручной настройки.

Кварцевые резонаторы имеют и недостатки:

  • внешние элементы позволяют подстраивать частоту в узком диапазоне;
  • обладают хрупкой конструкцией;
  • не переносят чрезмерного нагрева.

Свойства кварцевого резонатора

Превосходит ранее существовавшие аналоги, что делает прибор незаменимым во многих электронных схемах и объясняет сферу использования устройства. Это подтверждается тем, что за первое десятилетие с момента изобретения в США (не считая другие страны) выпущено больше 100 тыс. штук приборов.

Среди положительных свойств кварцевых резонаторов, объясняющих популярность, востребованность устройств:

  • хорошая добротность, значения которой – 104-106 – превышают параметры ранее использовавшихся аналогов (имеют добротность 300);
  • небольшие габариты, которые могут измеряться долями миллиметра;
  • устойчивость к температуре, ее колебаниям;
  • долгий срок службы;
  • простота изготовления;
  • возможность построения каскадных фильтров высокого качества без использования ручной настройки.

Кварцевые резонаторы имеют и недостатки:

  • внешние элементы позволяют подстраивать частоту в узком диапазоне;
  • обладают хрупкой конструкцией;
  • не переносят чрезмерного нагрева.

Принцип работы кварцевого резонатора

Работает прибор на основе пьезоэффекта, проявляющегося на пластинке из кварца, причем низкотемпературного. Элемент вырезают из цельного кристалла кварца, соблюдая задаваемый угол. Последний определяет электрохимические параметры резонатора.

Пластинки с обеих сторон покрывают слоем серебра (подходит платина, никель, золото). Затем их прочно фиксируют в корпусе, который герметизируется. Устройство представляет колебательную систему, которая обладает собственной резонансной частотой.

Когда электроды подвергаются переменному напряжению, пластинка из кварца, обладающая пьезоэлектрическим свойством, изгибается, сжимается, сдвигается (зависит от типа обработки кристалла). Одновременно в ней появляется противо-ЭДС, как это происходит в катушке индуктивности, находящейся в колебательном контуре.

Когда подается напряжение с частотой, совпадающей с собственными колебаниями пластинки, то в устройстве наблюдается резонанс. Одновременно:

  • у элемента из кварца увеличивается амплитуда колебаний;
  • сильно уменьшается сопротивления резонатора.

Энергия, которая необходима для поддержания колебаний, в случае равенства частот низкая.

Как проверить кварцевый резонатор

Проблемы с небольшими приборами возникают, если они получают сильный удар. Такое происходит при падении устройств, содержащих в конструкции резонаторы. Последние выходят со строя и требуют замены по тем же параметрам.

Проверка резонатора на работоспособность требует наличия тестера. Его собирают по схеме на основе транзистора КТ3102, 5 конденсаторов и 2 резисторов (устройство подобно кварцевому генератору, собранному на транзисторе).

Прибор необходимо в подключаемых соединениях, подключениях подключить к базе транзистора и отрицательному полюсу, защищая установкой защитного конденсатора. Питание схемы включения постоянное – 9В. Плюс подключают на вход транзистора, к его выходу – через конденсатор – частотомер, который фиксирует частотные параметры резонатора.

Схемой пользуются при настройке контура колебаний. Когда резонатор исправный, он при подключении выдает колебания, которые приводят к появлению переменного напряжения на эмиттере транзистора. Причем частота напряжения совпадает с аналогичной характеристикой резонатора.

Прибор неисправен, если частотомер не фиксирует возникновение частоты или определяет наличие частоты, но она – либо намного отличается от номинала, либо при нагреве корпуса паяльником сильно изменяется.

Кварцевый резонатор как проверить? Проверка кварцевых резонаторов

Колебаниям уделяется одна из важнейших ролей в современном мире. Так, даже существует так именуемая теория струн, которая утверждает, что всё вокруг нас — это просто волны. Но есть и другие варианты использования данных познаний, и одна из их — это кварцевый резонатор

Так бывает, что неважно какая техника временами выходит из строя, и они здесь не исключение. Как убедиться, что после негативного инцидента она всё ещё работает как следует?

Настройка прибора

При настройке кнопкой S1 включить режим НЧ (загорится светодиод VD1) и воткнув в соответствующий разъём кварцевый резонатор на 32768Гц (желательно с материнской платы компьютера) подстроечным конденсатором С11 установить на индикаторе частоту 32768Гц. Резистором R8 устанавливается максимальная чувствительность. Все файлы — платы, прошивки, даташиты на используемые радиоэлементы и другое, скачайте в архиве . Автор проекта — nefedot

Обсудить статью ПРИБОР ДЛЯ ПРОВЕРКИ ЧАСТОТЫ КВАРЦЕВ

Кварцевые резонаторы, как и большинство других радиокомпонентов, желательно проверить на работоспособность перед их использованием в радиолюбительской практике. Одна из простейших схем такого пробника была опубликована в чешском радиолюбительском журнале. Схема пробника предельно проста в повторении, поэтому представляет интерес для широкого круга радиолюбителей.

Кварцевые резонаторы относятся к простейшим радиокомпонентам, но у радиолюбителей практически нет приборов для их проверки перед использованием. Это подчас приводит к недоразумениям. Внешне никаких повреждений кварцевый резонатор может не иметь, а в схеме не работает. Причин этому может быть много

В частности, одна из них — падение резонатора из-за неосторожного обращения. Произвести первичную проверку кварцевых резонаторов еще до их использования поможет простая конструкция, описанная в

Проверяемый кварцевый резонатор подключается к контактам К2 (рис.1). На транзисторе Т1 выполнен широкодиапазонный генератор. Он рассчитан на проверку кварцев, рабочая частота которых находится в диапазоне 1…50 МГц. Несколько изменив параметры некоторых радиокомпонентов схемы, в частности. С2 и СЗ. можно проверять и другие кварцы.

В том случае, если кварцевый резонатор работоспособен. на эмиттере транзистора Т1 присутствует высокочастотное переменное напряжение. Диодами D1, D2 оно выпрямляется, сглаживается конденсатором С5 и подается на базу ключевого транзистора Т2, отпирая его. При этом светится светодиод LD1.

Кварцевый резонатор является электронным прибором, построенным на пьезоэффекте, а также механическом резонансе. Применяется радиостанциями, где задает несущую частоту, в часах и таймерах, фиксируя в них интервал в 1 секунду.

Что это такое, и зачем он нужен

Прибор является источником, обеспечивающим гармонические колебания высокой точности. Имеет, при сравнении с аналогами, большую эффективность работы, стабильные параметры.

Первые образцы современных устройств появились на радиостанциях в 1920-1930 гг. как элементы, имеющие стабильную работу, способные задавать несущую частоту. Они:

  • пришли на смену кристальным резонаторам, работавшим на сегнетовой соли, появившимся в 1917 в результате изобретения Александра М. Николсона и отличавшимся нестабильностью;
  • заменили использовавшуюся ранее схему с катушкой и конденсатором, которая не отличалась большой добротностью (до 300) и зависела от температурных изменений.

Чуть позже кварцевые резонаторы стали составной частью таймеров, часов. Электронные компоненты с собственной резонансной частотой 32768 Гц, которая в двоичном 15-разрядном счетчике задает временной промежуток равный 1 секунде.

Приборы используются сегодня в:

  • кварцевых часах, обеспечивая им точность работы независимо от температуры окружающей среды;
  • измерительных приборах, гарантируя им высокую точность показателей;
  • морских эхолотах, которые применяются при исследованиях и создании карт дна, фиксации рифов, отмелей, поиска объектов, находящихся в воде;
  • схемах, соответствующих опорным генераторам, синтезирующим частоты;
  • схемах, применяемых при волновом указании SSB или сигнала телеграфа;
  • радиостанциях с DSB-сигналом с промежуточной частотой;
  • полосовых фильтрах приемников супергетеродинного типа, которые более стабильны и добротны, чем LC-фильтры.

Устройства изготавливаются с разными корпусами. Делятся на выводные, применяемые в объемном монтаже, и SMD, используемые в поверхностном монтаже.

Их работа зависит от надежности схемы включения, влияющей на:

  • отклонение частоты от необходимого значения, стабильность параметра;
  • темп старения прибора;
  • нагрузочную емкость.

Watch this video on YouTube

Генератор Пирса

Другая распространенная конструкция кварцевого генератора — это модель Пирса. Генератор Пирса очень похож по конструкции на предыдущий генератор Колпитца и хорошо подходит для реализации схем кварцевого генератора, использующих кристалл как часть его цепи обратной связи.

Генератор Пирса — это, прежде всего, последовательный резонансно настроенный контур (в отличие от параллельного резонансного контура генератора Колпитца), который использует JFET для своего основного усилительного устройства, поскольку полевые транзисторы обеспечивают очень высокие входные импедансы с кристаллом, подключенным между стоком и затвором через конденсатор C1, так как показано ниже.

В этой простой схеме кристалл определяет частоту колебаний и работает на своей последовательной резонансной частоте, что дает путь с низким импедансом между выходом и входом. При резонансе наблюдается сдвиг фазы на 180 o , что делает обратную связь положительной. Амплитуда выходной синусоидальной волны ограничена максимальным диапазоном напряжения на выводе стока.

Резистор R1 управляет величиной обратной связи и возбуждением кристалла, в то время как напряжение на радиочастотном дросселе RFC меняется в течение каждого цикла. Большинство цифровых часов и таймеров используют генератор Пирса в той или иной форме, поскольку он может быть реализован с использованием минимума компонентов.

Наряду с использованием транзисторов и полевых транзисторов, мы также можем создать простой базовый параллельный резонансный кварцевый генератор, аналогичный по работе генератору Пирса, с использованием КМОП-инвертора в качестве элемента усиления. Основной кварцевый генератор состоит из одного инвертирующего логического элемента триггера Шмитта, такого как TTL 74HC19 или CMOS 40106, 4049, индуктивного кристалла и двух конденсаторов. Эти два конденсатора определяют величину емкости нагрузки кристаллов. Последовательный резистор помогает ограничить ток возбуждения в кристалле, а также изолирует выход инвертора от комплексного сопротивления, образованного конденсаторно-кристаллической сетью.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации