Андрей Смирнов
Время чтения: ~15 мин.
Просмотров: 91

Компенсация реактивной мощности в сетях напряжением 6.3-10.5/0,4 кв

Из Википедии — свободной энциклопедии

Виды ВВ конденсаторов

В зависимости от конструктивных особенностей и материала диэлектрика данные устройства бывают керамическими, бумажными, металлизированными, масляными, вакуумными, фазосдвигающими, подстроечными, биполярными.

Керамические изделия

Керамические импульсные конденсаторы – накопители, в которых в качестве диэлектрика используется специальная керамика. В отличие от низковольтных аналогов, такие кондеры работают при напряжении от 0,2 до 50 кВ и частоте тока от 0,5 до 10 кГц. При этом емкость их лежит в диапазоне от 2-2,5 до 25 нф. Используются они в цепях постоянного, переменного или пульсирующего тока, сетевых фильтрах как X/Y конденсаторы, а также высокочастотных схемах для устранения помех, поглощения шумов.

Наиболее часто применяемыми марками данных устройств являются следующие:

  • К75-25 (15);
  • К15-4;
  • К15-5;
  • К15-10;
  • КВИ-3.

Керамический накопитель заряда КВИ-3

Металлизированные и бумажные (плёночные)

Имеющие схожую конструкцию накопители заряда данных видов состоят из:

  • Диэлектрика – конденсаторной бумаги, полимерной пленки из таких материалов, как полипропилен, полиэстер, поликарбонат.
  • Обкладок – фольги или тонкого слоя металла, нанесенного на пленочный полимерный диэлектрик вакуумным напылением.
  • Двух контактов (выводов), припаянных к обкладкам.

Наиболее востребованными среди пленочных металлизированных устройств являются модели с рабочим напряжением 16 и 25 кВ и емкостью 2200 пФ (2,2нФ).

Накопители с бумажным диэлектриком, в отличие пленочных металлизированных аналогов, имеют более низкое рабочее (номинальное) напряжение: от 0,2 до 15 кВ (200-1500 В). Однако при этом их емкость колеблется от 0,1 до 2 мкФ (100000 – 2000000 пФ или 100-2000 нФ). Как и аналоги с керамическим диэлектриком, они способны работать с токами частотой от 50 до 10 000Гц (10кГц).

Применяют пленочные и бумажные высоковольтные конденсаторы в выпрямительных и фильтрующих цепях, электронных умножителях и удвоителях напряжения.

На заметку. В бумажных накопителях заряда допускается отклонение ёмкости накопителя от номинального значения данной характеристики не более, чем на 20%.

Конденсатор мбгч-1

Масляные и вакуумные образцы

Наиболее часто применяемый и востребованный вакуумный высокочастотный конденсатор переменной емкости марки КП 1-4 представляет собой устройство, состоящее из следующих частей:

  • стеклянный баллон, внутри которого путем откачки воздуха создан высокий вакуум;
  • неподвижный цилиндрический электрод;
  • гофрированный подвижный электрод («гармошка»);
  • привод подвижного электрода, под большим усилием перемещающий «гармошку» внутрь неподвижного электрода;
  • круглая ручка и окошко со шкалой для регулировки емкости накопителя.

Емкость данного накопителя колеблется от 10 до 500пФ, рабочее напряжение – до 10кВ. Применяется такое устройство в радиолюбительской передающей аппаратуре в диапазоне частот до 30-80 МГц в качестве контурных, блокировочных, фильтровых, а также разделительных конденсаторов.

Масляный накопитель заряда самой распространенной марки КБГ-МН состоит из:

  • металлического прямоугольного корпуса;
  • скрученного в рулон полимерного или бумажного диэлектрика;
  • обкладок из алюминиевой фольги, разделенных диэлектриком;
  • двух выводов, припаянных к обкладкам и соединенным с контактами на крышке корпуса.

Скрученный рулон из диэлектрика и обкладок находится в специальном масле, заполняющем корпус. Емкость устройства данной марки составляет 0,5 мкф (500нФ), рабочее напряжение – 600 В (0,6кВ).

На заметку. В высоковольтных накопителях заряда достаточно высокое содержание различных драгметаллов: палладия, платины, технического серебра.

Преимущества использования конденсаторных установок

Основными положительными качествами компенсационных систем является отсутствие каких-либо вращающихся частей, небольшие удельные потери активной мощности, возможность подбора любой практически необходимой мощности компенсации, возможность подключения к любой точке сети, простая эксплуатация и монтаж, отсутствие шумов во время работы, относительно низкие капиталовложения.

Конденсаторные установки бывают в двух вариантах:

  • Модульные – используют для компенсирования реактивной мощности в групповых сетях и сетях энергообеспечения на крупных и средних предприятиях.
  • Моноблочные – имеют широкое применение для компенсирования реактивной мощности в групповых сетях на малых предприятиях.

Если предприятие работает, круглые сутки и образование реактивной энергии случается постоянно, то выгодно чтобы конденсаторные установки работали круглые сутки. Но если на производстве, работа распределена неравномерно, предположим, в ночное время нагрузка значительно снижается, необходимо обеспечивать их выключение, так как непрерывная работа может привести к лишнему увеличению напряжения в электросетях.

Таким производствам больше подходят установки с автоматической регулировкой. Они имеют автоматический регулятор, он постоянно следит за значение коэффициента мощности, и, регулирует количество подключенных батарей, что позволяет максимально возмещать её объем.

Срок окупаемости при правильном выборе, может составить от шести месяцев до полутора лет.

Установка диммера

Установка выключателя: схема установки, как подключить провода

Установка электросчетчика в квартире

Установка и монтаж ГРЩ

Установка солнечных батарей

Розетки в ванной: выбор и правила установки

Физика процесса

Переменный ток идет по проводу в обе стороны, в идеале нагрузка должна полностью усвоить и переработать полученную энергию. При рассогласованиях между генератором и потребителем происходит одновременное протекание токов от генератора к нагрузке и от нагрузки к генератору (нагрузка возвращает запасенную ранее энергию). Такие условия возможны только для переменного тока при наличии в цепи любого реактивного элемента, имеющего собственную индуктивность или ёмкость. Индуктивный реактивный элемент стремится сохранить неизменным протекающий через него ток, а ёмкостный — напряжение. Через идеальные резистивные и индуктивные элементы протекает максимальный ток при нулевом напряжении на элементе и, наоборот, максимальное напряжение оказывается приложенным к элементам, имеющим ёмкостной характер, при токе, протекающем через них, близком к нулю.

Значительную часть электрооборудования любого предприятия составляют устройства, обязательным условием нормальной работы которых является создание в них магнитных полей, а именно: трансформаторы, асинхронные двигатели, индукционные печи и прочие устройства, которые можно обобщенно охарактеризовать как «индуктивная нагрузка». Гораздо реже применяются устройства, запасающие энергию, которые можно обобщенно считать ёмкостной нагрузкой.

Поскольку одной из особенностей индуктивности является свойство сохранять неизменным ток, протекающий через неё, то при протекании тока нагрузки появляется фазовый сдвиг между током и напряжением (ток «отстает» от напряжения на фазовый угол). Разные знаки у тока и напряжения на период фазового сдвига, как следствие, приводят к снижению энергии электромагнитных полей индуктивностей, которая восполняется из сети. Для большинства промышленных потребителей это означает следующее: по сетям между источником электроэнергии и потребителем, кроме совершающей полезную работу активной энергии, также протекает реактивная энергия, не совершающая полезной работы. Активная и реактивная энергии составляют полную энергию, при этом доля активной энергии по отношению к полной определяется косинусом угла сдвига фаз между током и напряжением — cosφ. Однако, протекая по кабелям и обмоткам в обратную сторону, реактивный ток снижает в пределах их пропускной способности долю протекающего по ним активного тока, вызывая при этом значительные дополнительные потери в проводниках на нагрев — активные потери. В случае, когда cosφ = 1, вся энергия дойдет до потребителя. В случае cosφ = 0 ток в проводе возрастет вдвое, поскольку одинаковый по величине ток будет протекать в обоих направлениях одновременно. В этом режиме активная мощность нагрузкой не потребляется, за исключением нагрева проводников.

Таким образом, нагрузка принимает и отдает в сеть практически всю энергию, при этом возникает ситуация, в которой потребитель вынужден оплачивать энергию, которая не была использована фактически.
В противоположность индуктивным элементам, ёмкостные элементы (например, конденсаторы) стремятся сохранять неизменным напряжение на своих зажимах, то есть для них ток «опережает» напряжение. Поскольку величина потребляемой электроэнергии никогда не является постоянной и может меняться в существенном диапазоне за достаточно малый промежуток времени, то, соответственно, может изменяться и соотношение активной потребляемой энергии к полной (cosφ). При этом чем меньше активная нагрузка потребителя, тем меньше значение cosφ. Из этого следует, что для компенсации реактивной мощности необходимо оборудование (см. статью Компенсирующие устройства), обеспечивающее регулирование cosφ в зависимости от изменяющихся условий работы оборудования. Плавное регулирование cosφ обеспечивают синхронные двигатели и синхронные компенсаторы, ступенчатое — установки компенсации реактивной мощности (УКРМ), состоящие, как правило, из батарей ёмкостных элементов (конденсаторов), коммутационного оборудования и устройств управления. Принцип работы УКРМ заключается в подключении к сети необходимого в данный момент времени количества конденсаторов для известного мгновенного значения реактивной мощности.

Негативные последствия реактивной энергии

Используя электричество, мы задействуем активную и реактивную энергию. Приносить пользу способна только активная энергия, она всегда преобразуется в блага, в которых нуждаются люди. Реактивная энергия задерживается в сетях, она участвует в создании электромагнитных полей. Такие процессы можно наблюдать в трансформаторах, электродвигателях и других востребованных типах оборудования. Неиспользуемая энергия не исчезает бесследно, она создает дополнительную нагрузку на всю сеть, тем самым провоцируя потери активной энергии. В итоге пользователь получает двойные потери, которых можно было бы избежать, используя регулятор и компенсатор реактивной мощности.

Потери в сетях происходят по различным причинам, но основной проблемой выступает реактивная энергия в проводящих сетях. Компенсация реактивной мощности для владельцев предприятий и представителей ЖКХ в обязательном порядке проводиться с помощью установки регуляторов реактивной мощности, ведь потребление энергии на масштабных объектах доходит до максимального уровня.

Современные подходы к экономии электроэнергии

Современные технологии сокращают потребление электроэнергии в бытовых и промышленных условиях. Компенсация реактивной мощности происходит с помощью передовых устройств данной сферы
УКРМ — компенсаторов и регуляторов реактивной мощности. Компания «РУСЭЛТ» специализируется на производстве техники, которая помогает сократить энергетические затраты.

Проблема нерационального потребления энергии заключается в индуктивном характере напряжения, которое присутствует в промышленных и бытовых сетях.Индуктивные условия приводят к потреблению активной и реактивной энергии, что негативно сказывается на рациональности использования электрики. Пользователя ожидают следующие последствия:

  • большие счета за электроэнергию;
  • снижение в сетях пропускной способности;
  • увеличение мощности трансформаторов;
  • помехи в показателях напряжения;
  • отклонения от нормального качества потребляемой электроэнергии;
  • уменьшение срока службы электрических приборов.

Используя устройство компенсаци реактивной мощности (укрм), потребитель подключает конденсаторы на любых участках электрической сети.

  • Сортировка

Показывать по:

Типы установок компенсации реактивной мощности УКРМ

В компания Хомов электро вы можете купить УКРМ по лучшей цене следующих типов:

УКРМ с фиксированной мощностью

Состоят из конденсаторных модулей и реакторов, размещенных в общей оболочке. Установка компенсации реактивной мощности подключается непосредственно к нагрузкам и работает в длительном режиме, выдавая фиксированную реактивную мощность. Такие батареи подходят для работы с крупными электрическими машинами, работающими с постоянной нагрузкой.

УКРМ с фиксированной мощностью либо жестко подключаются к нагрузке, либо могут отключаться коммутационными аппаратами, установленными в распредустройстве Заказчика.

УКРМ с фиксированной мощностью и коммутационным аппаратом

Конструкция таких УКРМ в целом аналогичная конструкции батарей с фиксированной мощностью, но в их состав введен коммутационный аппарат (разъединитель, контактор или выключатель). Это позволяет подключать их к сети или выводить из работы в любое время.

УКРМ автоматические

Такие установки компенсации реактивной мощности состоят из нескольких ступеней регулирования, включающих в себя конденсаторные модули, реакторы и коммутационные аппараты, размещенные в общей оболочке. Автоматические УКРМ позволяют изменять реактивную мощность в соответствии с текущим состоянием нагрузки.

Управление различными ступенями в зависимости от величины необходимой мощности и контроль состояния системы осуществляются контроллером на базе микропроцессора. Контроллер также выдает информацию, относящуюся к сети, и формирует аварийные сообщения.

Конфигурация УКРМ

Установка компенсации реактивной мощности обычно состоит из вводной ячейки с размещенными в ней выключателем, заземляющим разъединителем, реле защиты и цепями управления. Рядом с ней устанавливаются одна или несколько ячеек, содержащих конденсаторы, реакторы, предохранители и коммутационные аппараты. Батареи могут иметь множество опций и конфигураций, позволяющих соответствовать практически любым требованиям Заказчика.

Защитные устройства УКРМ

В типичной системе могут использоваться следующие защитные устройства:

  • Конденсаторные модули со встроенными предохранителями и разрядными резисторами
  • Защита от небаланса
  • Защита от перегрузки по току и замыкания на землю
  • Защита от повышения и понижения напряжения
  • Дуговая защита с датчиками электрической дуги
  • Оболочки, испытанные на электродинамическую стойкость
  • Контроль температуры внутри ячеек
  • Высоковольтные предохранители с высокой отключающей способностью и индикацией срабатывания
  • Заземляющие разъединители
  • Трансформаторы для быстрого разряда конденсаторов

Коммутационные аппараты УКРМ

Используются коммутационные аппараты, рассчитанные на работу с конденсаторами, такие как разъединители, вакуумные или элегазовые контакторы и выключатели.

Реакторы УКРМ

В зависимости от уровня гармоник в сети, к которой подключается батарея, и необходимого количества ступеней, она может оснащаться токоограничивающими и фильтрующими реакторами (как воздушными, так и с магнитопроводом).

Конденсаторные модули

В зависимости от способа соединения конденсаторов батареи могут быть разделены на две группы. Батареи с однофазными конденсаторными модулями, соединенными в звезду или двойную звезду, имеют мощность до 12 000 квар и рабочее напряжение до 36 кВ. Батареи с трехфазными модулями, соединенными в звезду, имеют мощность до 10 000 квар и рабочее напряжение до 10,5 кВ.

Дополнительные компоненты

Индикаторы напряжения, вентиляторы, кондиционеры и противоконденсационные обогреватели, клеммы заземления, клапаны сброса давления, освещение внутри шкафов, замки с ключом, электрические блокировки, ключевые блокировки, кабельные вводы снизу и сбоку, концевые выключатели дверей.

Установка

Установка конденсаторных батарей шкафного исполнения возможна в любой точке сети. После выполнения измерений, когда известен уровень гармоник, можно выбрать способ компенсации

  • Индивидуальная компенсация: батарея подключается непосредственно к выводам нагрузки
  • Групповая компенсация: батарея подключается к распредсистеме, питающей группу индивидуальных нагрузок
  • Централизованная компенсация: батарея подключается к главным шинам системы электроснабжения, питающей множество индивидуальных нагрузок

Как установка помогает экономить деньги?

Установка КРМ, используется в промышленности, при эксплуатации в тандеме
с электродвигателями, которые и являются основными потребителями реактивной мощности. Если «полезная» энергия тратиться на работу мотора, то реактивная приводит к снижению его эксплуатационных преимуществ. например, увеличивается риск преждевременной поломки, чаще нужны остановки оборудования для охлаждения, что отражается на производительности предприятия.

Без УКРМ пользователь платит и за бесполезную энергию

Реактивная доля электричества «гоняется» по проводам, не принося пользы, а из-за ее избытка возникает перегрев, обеспечивается дополнительная нагрузка на сеть и оборудование. Итог: у пользователя двойная потеря – переплата за нецелевую электроэнергию и повышенный риск поломок электрооснащения. А потери и риски сводятся к минимуму без значительных трат – покупкой и установкой УКРМ, И чем больше мощность потребляемой энергии, тем больше выгод от использования компенсатора.

Преимущества компенсации реактивной мощности

Правильно выполненная компенсация реактивной мощности даёт следующие преимущества:

  • экологические: снижение потребления электроэнергии за счёт повышения эффективности её использования. Снижение потребления приводит к уменьшению выбросов парниковых газов и замедлению истощения ресурсов ископаемого топлива для электростанций;
  • уменьшение расходов на электроэнергию;
  • возможность получения большей мощности от имеющегося источника;
  • снижение тепловых потерь в трансформаторах и оборудовании распределения;
  • уменьшение падения напряжения в длинных кабелях;
  • увеличение срока службы оборудования в связи со снижением электрической нагрузки на кабели и другие электрические компоненты.

Ситуация с компенсацией реактивной мощности в последние годы

Судя по результатам проведенных в 2011-2012 гг. энергетических обследований электрических сетей, по результатам исследований АО «НТЦ ФСК ЕЭС», ситуация с уровнем компенсации реактивной мощности в электрических сетях в последние годы существенно не изменилась, а кое-где ухудшилась. К сожалению, в настоящее время отсутствует полная и достоверная информация о фактической степени компенсации реактивной мощности по стране в целом, по отдельным регионам и уровням напряжения электрических сетей. Но и та ограниченная информация, которой мы располагаем сегодня, свидетельствует о значительных проблемах, которые требуют безотлагательного решения.

В частности, значительное число линий и автотрансформаторов в магистральных электрических сетях 220-500 кВ работает с повышенными перетоками реактивной мощности (tgφ>0,5), что характеризуется табл. 3.

Табл. 3. Количество подстанций и линий электропередачи, работающих с повышенными перетоками реактивной мощности

ОЭС

Количество подстанций и линий электропередачи, шт., работающих с tgφ>0,5

подстанций

линий

Юга

38

280

Северо-Запада

6

19

Центра

70

138

Средней Волги

45

51

Урала

38

78

Наиболее подробный анализ режимов реактивной мощности по данным телеизмерений был проведен в ОЭС Сибири в 2011 году. Из 266 обследованных автотрансформаторов 220-550 кВ на 137 (более 50%) tgφ их нагрузки превышал допустимое значение 0,5.

По нормативным документам ПАО «ФСК ЕЭС» компенсация зарядной мощности ВЛ 500 кВ должна составлять 80-100%. Тем не менее по той же ОЭС Сибири, она составляет 0,67. По отдельным энергосистемам этой ОЭС степень компенсации находится в пределах 0,35-3,95, что видно из табл. 4.

Табл. 4. Степень компенсации реактивной мощности по отдельным энергосистемам ОЭС Сибири

Энергосистема

Отношение мощности компенсирующих устройств (Qку) к зарядной мощности линий (Qзар)

Qку/Qзар, о.е

Алтайская

1,20

Кузбасская

0,35

Новосибирская

0,66

Омская

1,26

Томская

3,95

Западная Сибирь

0,78

Иркутская

0,44

Красноярская

0,48

Хакасская

0,45

Восточная Сибирь

0,46

ОЭС Сибири

0,67

Не лучше ситуация и в других ОЭС. Степень использования установленных в магистральных электрических сетях 220-500 кВ компенсирующих устройств находится в пределах 40-50%.

Отмеченное выше, безусловно, сказывается на уровнях напряжения в электрических сетях. На ряде линий в режимах минимальных нагрузок имеет место избыток реактивной мощности и повышенное напряжение, на ряде перегруженных линий в часы максимума нагрузки наблюдаются пониженное напряжение. И в том и в другом случае это создает трудности при выводе оборудования в ремонт и при ликвидации аварий, а также приводит к дополнительным потерям мощности и электроэнергии в сети.

Недопустимые отклонения напряжения в контрольных точках сети вызваны не только недостаточными степенями компенсации реактивной мощности и использования средств компенсации, но и низкой оснащенностью автотрансформаторов 220-750 кВ средствами автоматического регулирования на трансформаторах (АРНТ) и степенью использования РПН и АРНТ, что видно из табл. 5.

Табл. 5. Оснащенность автотрансформаторов 220-750 кВ устройствами РПН и АРНТ и степень их использования, по состоянию на 2011 г.

Характеристики оснащенности и степени использования

Численное значение для номинального напряжения автотрансформаторов, кВ

220-330

500-750

Общее количество автотрансформаторов (АТ), шт.

1639

306

Число АТ, оборудованных РПН

шт.

1536

277

% от общего кол-ва АТ

94

90

Число РПН, использование которых запрещено руководством

шт.

116

48

% от общего кол-ва АТ

7

16

Общее число не используемых РПН

шт.

640

219

% от общего кол-ва АТ, оборудованных РПН

41

79

Общее число АТ, оборудованных АРНТ

шт.

802

169

% от общего кол-ва АТ

49

55

Общее количество АТ, оборудованных АРНТ и работающих

шт.

81

3

% от общего кол-ва АТ

4,9

1

Из этой таблицы, в частности, следует, что число неиспользуемых РПН от общего количества АТ, оборудованных РПН, составляет в сетях 220-330 кВ – 41%, в сетях 500-750 кВ – 79%. С использованием средств автоматического регулирования напряжения ситуация еще хуже. Только около 50% АТ оборудовано этими средствами, а используется для регулирования напряжения в сетях 220-330 кВ – 4,9%, а в сетях 500-750 кВ – 1% от общего количества АТ.

Повышение коэффициента мощности промышленного предприятия с помощью автоматической конденсаторной батареи

Общий коэффициент мощности современных производств очень низок из-за наличия индуктивных нагрузок, потребляющих реактивную мощность. В первую очередь это относится к промышленным предприятиям с мощными индуктивными нагрузками и большими колебаниями нагрузки, которые имеют очень низкий коэффициент мощности. Такие производства в наибольшей степени выигрывают от внедрения автоматических конденсаторных батарей. Эти батареи обеспечивают повышение коэффициента мощности и более высокий уровень напряжения на нагрузке, а также приводят к снижению начислений за электроэнергию. Кроме того, автоматические конденсаторные батареи позволяют отключать «лишние» конденсаторы в периоды низкой нагрузки и исключить нежелательные перенапряжения. В большинстве случаев потребитель устанавливает конденсаторную батарею, чтобы избежать начисления штрафов в счёте за электроэнергию. Без достаточной проработки это может привести к большому количеству технических проблем. При этом необходимо также учитывать, что конденсаторные батареи предназначены для долговременной эксплуатации.

На большинстве промышленных и коммерческих объектов основная часть электрического оборудования представляет собой индуктивную нагрузку: асинхронные двигатели, индукционные печи, трансформаторы и лампы с ПРА. Проблемы с качеством электроэнергии на промышленных предприятиях растут в связи с увеличением количества двигателей, питаемых от управляемых выпрямителей, а также общего увеличения уровня гармоник и интергармоник. Такие нагрузки являются причиной низкого коэффициента мощности на промышленных предприятиях. Низкий коэффициент мощности свидетельствует о неэффективном использовании электроэнергии и приводит к увеличению общих расходов на энергоснабжение. Эти проблемы решаются при правильном выборе и установке конденсаторов компенсации реактивной мощности.

Установки реактивной мощности – действенный метод уменьшения нагрузки на линии электропередач и электрораспределительные станции, их внедрение способствует повышению надежности всей электросети. Кроме того, установки реактивной мощности эффективно уменьшают перекос фаз, частотные и амплитудные скачки, снижают уровень высокочастотных гармоник.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации