Андрей Смирнов
Время чтения: ~14 мин.
Просмотров: 1

Электричество в быту. 8-й класс

Методы производства электроэнергии: преимущества и недостатки

Современная электроэнергетика предлагает немало способов по выработке электроэнергии. Условно их можно разделить на две большие категории: классические и альтернативные.

К классическим методам относятся все привычные способы получения энергии. Чаще всего они требуют использования дополнительных ресурсов, таких, как нефть, уголь или газ. Иными словами, применяются невозобновляемые источники.

К классическим способам добычи энергии относятся:

  1. ГЭС. Огромная производительность и дешевизна.  При этом нарушается баланс окружающей среды, в случае прорыва риск большого количества человеческих жертв.
  2. АЭС. Относительная экологичность, эффективность. К проблемам можно отнести утилизацию отходов, уязвимость, катастрофические последствия при аварии.
  3. ТЭС. Менее опасна, чем ГЭС или АЭС. Сильно загрязняет окружающую среду, потребляет много ресурсов.

Важно упомянуть, что, несмотря на распространенное убеждение о вреде и радиоактивном излучении АЭС, именно ТЭС выбрасывают в атмосферу больше всего радиоактивных веществ – продуктов переработки угля. Подобные выбросы в отличие от отходов АЭС распадаются в атмосфере со временем, но до этого момента они оказывают вредоносное воздействие на всю территорию

Альтернативные методы подразумевают использование возобновляемых природных ресурсов. К ним относится:

  1. Солнечная. Самое перспективное, хотя и недостаточно развитое направление. Наибольшую трудность составляет проектирование максимально эффективных солнечных батарей.
  2. Ветряная. Наиболее освоенный способ. Современные ветряные мельницы могут самостоятельно подстраиваться под условия для достижения максимальной эффективности.
  3. Энергия приливов и отливов. Несмотря на свою непопулярность, данный способ является эффективным.

В большинстве случаев наибольшее затруднение вызывают лишь вопросы внедрения данных технологий и достаточно высокая стоимость такой электроэнергии.

Солнечные космические электростанции.

Получать и использовать «чистую» солнечную энергию на поверхности  Земли мешает атмосфера, поэтому появляются проекты размещения  солнечных электростанций в космосе, на околоземной орбите. У таких станций  есть несколько достоинств: невесомость позволяет создать  многокилометровые конструкции, которые необходимы для получения энергии; преобразование одного вида энергии в другой неизбежно сопровождается  выделением тепла, и сброс его в космос позволит предотвратить опасное перегревание земной атмосферы.

К проектированию солнечных космических электростанций (СКЭС) конструкторы приступили ещё в конце 60-ых годов 20-ого века. Было предложено несколько вариантов транспортировки энергии из космоса на Землю, но наиболее рациональным было признано предложение использовать её  на месте выработки, для этого необходимо перенести основных потребителей электроэнергии (металлургия, машиностроение, химическая промышленность) на спутник Земли Луну или астероиды. Любой вариант СКЭС предполагает, что это колоссальное сооружение, причём не одно. Даже самая маленькая СКЭС должна весить десятки тысяч тонн. Современные средства выведения в состоянии доставить на низкую – опорную орбиту необходимое количество блоков, узлов и панелей солнечных батарей.

Строительство солнечных космических электростанций сейчас кажется фантастикой, но в скором времени, возможно, появится  первая СКЭС, которая даст начало новому уровню развития энергетики.

Электрическая тема. Все документы

Электромонтаж своими руками — Электронный курс

Техника безопасности
Необходимый инструмент
Чтение проекта
Укладка проводки и самые простые расключения
Сложные расключения
Заземление
Выбор автоматов
Щит управления
Итоги

Из рассылки

Короткое замыкание
Автоматы защиты
Защита от токовой утечки
Как расключать распределительный электрощит
Серия рассылок: «Умные устройства». 1. Диммер- что это такое и как можно использовать
Серия рассылок: «Умные устройства». 2. Блок защиты, датчик движения, таймер отключения и еще кое-что
Как управлять включением/выключением электропотребителей из 2-х, 3-х, 4-х, … мест. Реализация: двухпроводная система с применением бистабильного реле
Как защитить бытовую технику от перенапряжений и индустриальных помех в сети электропитания. Стабилизация напряжения.
Автоматизация водоснабжения в частном доме
Включение потребителей (например, нагревательные установки) по заданной временнОй программе
Включение света, звукового извещателя или видеокамеры при появлении движущегося объекта в зоне действия датчика
Защита галогенных ламп и ламп накаливания от перегорания, продление их службы в несколько раз
Включение/выключение света (и не только) в зависимости от времени суток (сумерки/рассвет)
Отключение питания от потребителя в случае превышения потребляемой мощности. Защита от несанкционированного подключения к питающей сети
Отключение от электропитания неприоритетной цепи
Как имитировать присутствие человека в помещении путем включения/выключения света через случайные промежутки времени
Контроль и поддержание заданной температуры в помещении
Как заставить работать вентилятор в санузле после отключения освещения на установленный отрезок времени

Статьи на «электрическую тему»

Ввод кабеля в здание
Установка светильников, выключателей, розеток
Как нужно делать проходы для проводки через стены и перекрытия?
Выбор и установка счетчика электроэнергии
Как построить молниеотвод?

Монтаж электропроводки

Монтаж выключателей, штепсельных розеток и светильников
Монтаж осветительных электроустановок. Основные сведения
Монтаж электропроводки в трубах
Монтаж электропроводки в подвалах, гаражах и мастерских
Монтаж электропроводки в подвалах
Монтаж электропроводки в чердачных помещениях
Монтаж электропроводки плоскими проводами
Прокладка проводов на роликах
Устройство проходов через стены, пересечения проводок
Монтаж скрытых электропроводок
Монтаж тросовых электропроводок
Монтаж открытых электропроводок
Монтаж наружных электропроводок
Виды контактных соединений. Часть 7
Виды контактных соединений. Часть 6
Виды контактных соединений. Часть 5
Виды контактных соединений. Часть 4
Виды контактных соединений. Часть 3
Виды контактных соединений. Часть 2
Виды контактных соединений. Часть 1
Монтаж контактных соединений — общие требования
Механизмы для электромонтажных работ
Изоляция кабелей
Монтаж электропроводок
Определение сечения жил проводов
Правила эксплуатации электропроводок
Выбор сечения кабеля в зависимости от нагрузки
Провод с одинарной изоляцией
Кабели для силовой электропроводки (2)
Кабели для силовой электропроводки (1)
Про провода и кабели
Как расключать распределительный электрощит

Заземление, зануление

Про заземление, зануление в вопросах и ответах
Монтаж вертикальных заземлителей
Искусственные заземлители
Естественные заземлители
Заземляющие устройства
Защитные заземления электроустановок

Электробезопасность

Какие факторы влияют на исход поражения электрическим током
Что такое электрические травмы?
Смерть человека от электрического тока
Действие электрического тока на организм человека

Про электричество. Разное

Соединительные кабельные муфты Raychem
Включение в однофазную сеть трехфазного электродвигателя
Как производится выбор плавких вставок предохранителей
Как измерить частоту вращения электрических машин
Маркировка выводных концов машин постоянного тока
Как осуществляется пуск двигателя постоянного тока
Как высушить изоляцию обмоток электродвигателя
Межвитковое замыкание в обмотках электрических машин
Обрыв стержней короткозамкнутых роторов электродвигателей
Как определить мощность электродвигателя
Как увеличить срок службы ламп накаливания
Изменение параметров 3-х фазного асинхронного двигателя
Приборы осветительных электроустановок
Электрические источники света
Световые величины
ИБП для загородного жилья
Пара слов про силовой электрощит

Передача электроэнергии на расстояние с помощью резонансной однопроводной системы:

Одной из наиболее  актуальных проблем современной  энергетики является  передача электроэнергии на расстояние с низкими экономическими затратами и обеспечение энергосбережения.

На практике для передачи электрической энергии на большие расстояния, как правило,  используют трехфазные системы, для реализации которых требуется применение не менее 4 проводов, которой присуще следующие существенные недостатки:

– большие потери электрической энергии в проводах, так называемые джоулевые потери,

– необходимость использования промежуточных трансформаторных подстанций, компенсирующие потери энергии в проводах,

– возникновение аварий вследствие короткого замыкания проводов, в том числе из-за опасных погодных явлений (сильный ветер, наледь на проводах и др.),

– большой расход цветных металлов,

– большие экономические затраты на прокладку трехфазных электрических сетей (несколько миллионов рублей на 1 км).

Отмеченные выше недостатки  могут быть устранены за счет применения резонансной однопроводной системы передачи электрической энергии, основанной на идеях Н. Теслы, доработанной с учетом современного развития науки и техники. В настоящее время технология резонансной однопроводной системы передачи электрической энергии получили свое развитие.

Резонансная однопроводная волноводная система передачи электрической энергии на повышенной частоте 1-100 кГц не использует активный ток проводимости в замкнутой цепи. В резонансной волноводной однопроводниковой линии нет замкнутого контура, нет бегущих волн тока и напряжения, а есть стоячие (стационарные) волны реактивного емкостного тока и напряжения со сдвигом фаз 90°. При этом из-за отсутствия активного тока и наличия узла тока в линии отпадает необходимость и потребность в создании в такой линии режима высокотемпературной проводимости, а джоулевы потери становятся незначительными в связи с отсутствием замкнутых активных токов проводимости в линии и незначительными величинами незамкнутого емкостного тока вблизи узлов стационарных волн тока в линии.

Предлагаемая технология основана на использовании двух резонансных контуров с частотой 0,5-50 кГц и однопроводной линии между контурами (см. Рисунок 1) с напряжением линии 1-100 кВ при работе в режиме резонанса напряжений.

Провод линии является направляющим каналом, вдоль которого движется электромагнитная энергия. Энергия электромагнитного поля распределена вокруг проводника линии.

 

Рис. 1. Электрическая схема резонансной однопроводной системы передачи электроэнергии

1 – генератор повышенной частоты; 2 – резонансный контур повышающего трансформатора; 3 – однопроводная линия; 4 – резонансный контур понижающего трансформатора; 5 – выпрямитель; 6 – преобразователь.

Как показывают расчеты и проведенные эксперименты при таком способе передачи электрической энергии, потери в проводах практически отсутствуют (в сотни раз меньше, чем при  традиционном способе передачи электрической энергии) и  данная технология безопасна для окружающей природной среды и человека.

Для согласования обычной системы электроснабжения с предлагаемой системой разработаны согласующие устройства и преобразователи, которые устанавливаются в начале и в конце однопроводной линии и позволяют использовать на входе и выходе стандартное электрооборудование переменного или постоянного тока.

В настоящее время отработана технология передачи электроэнергии мощностью до 100 кВт. Передача электроэнергии большей мощности требует применение электронных приборов (транзисторов, тиристоров, диодов и др.) повышенной мощности и надежности. Необходимо проведение дополнительных исследований для решения задачи  энергообеспечения объектов, потребляющих  электроэнергию мощностью свыше 100 кВт.

Электричество. И друг, и враг

Зависимость человечества от электроэнергии из года в год возрастает. Даже незначительные отключения ее доставляют массу проблем. В случае масштабных перебоев альтернативных источников энергии не хватит для полноценного обеспечения городов и промышленных объектов.

Энергетика создает одну из основ современной цивилизации и все более активно загрязняет окружающую среду. Меняется климат Земли, что может привести к глобальной катастрофе. Пока ученые ищут выход из создавшейся ситуации, каждый человек может оказать помощь в безопасном и рациональном использовании электроэнергии.

Экономия и бережное расходование любых ресурсов, в том числе и электричества, необходимы. Любой потребитель, включающий в доме свет, знает, сколько усилий потрачено на то, чтобы сделать жизнь безопасней, удобней и легче. Культура потребления энергии означает грамотное ее использование. В первую очередь это соблюдение техники безопасности.

Невозможно существование современного мира без электричества. Это факт, не требующий подтверждения. Если вдруг оно исчезнет, цивилизация будет разрушена. Поэтому у человечества нет другого пути, кроме дальнейшего развития энергетической отрасли.

Как получают электроэнергию

Производство электроэнергии осуществляется из других ее видов при помощи специальных устройств. Например, из кинетической. Для этого применяют генератор – прибор, преобразующий механическую работу в электрическую энергию.

Другие существующие способы ее получения — это, например, преобразование излучения светового диапазона фотоэлементами или солнечной батареей. Или производство электроэнергии путем химической реакции. Или использование потенциала радиоактивного распада либо теплоносителя.

Вырабатывают ее на электростанциях, которые бывают гидравлическими, атомными, тепловыми, солнечными, ветряными, геотермальными и проч. В основном все они работают по одной схеме — благодаря энергии первичного носителя определенным устройством вырабатывается механическая (энергия вращения), передаваемая затем в специальный генератор, где и вырабатывается электроток.

Простые схемы

Существуют довольно простые схемы, которые помогут создать устройство, способное осуществлять получение и накопление электрической энергии, которая содержится в воздухе. Этому способствует наличие в современном мире множество сетей, линий электропередач, которые способствуют ионизации воздушного пространства.

  • Это одна из самых простейших схем, благодаря которой можно соорудить устройство для получения электроэнергии из воздуха своими руками. В принципе, ничего сложного в этом нет. Земля может послужить основанием, в то время когда антенной может выступать металлическая пластина, которая помещена над землёй. Это позволяет устройству накопить содержащийся электрический потенциал в воздухе, который впоследствии может быть использован.
  • Следует помнить, что создание такого простого устройства своими руками даже по такой несложной схеме, может быть сопряжено с определёнными рисками. Дело в том, что при работе такого устройства создаётся принцип молнии, что может представлять определённую опасность при работе с таким прибором.

Создать устройство, получающее электричество из воздуха, можно и своими руками, используя лишь довольно простую схему. Также существуют различные видео, которые смогут стать той необходимой инструкцией для пользователя.

К сожалению, создать мощный прибор своими руками весьма непросто. Более сложные устройства предполагают использование более серьёзных схем, что иногда существенно затрудняет создание такого прибора.

Можно попытаться создать более сложный прибор. В интернете приведены более сложные схемы, а также видеоинструкции.

Добыча из воздуха

В атмосфере также присутствуют волны от поля планеты. Оказывается, электричество можно добыть из воздуха своими силами, не применяя сверхсложные устройства.

Некоторые способы следующие:

  • грозовые батареи используют свойство электрического потенциала накапливаться;
  • ветрогенератор преобразовывает в электричество силу ветра, работая долгое время;
  • ионизатор (люстра Чижевского) — популярный бытовой прибор;
  • генератор TPU (тороидального) электричества Стивена Марка;
  • генератор Капанадзе — бестопливный энергетический источник.

Рассмотрим подробно некоторые из устройств.

Ветрогенераторы

Установка в единственном числе ограниченно обеспечивает нужды электропитания. Поэтому приходится добавлять генераторы, если нужно обеспечить энергией крупное предприятие. В Европе существуют целые поля с ветряными установками, абсолютно не наносящими вреда природе.

Стоит отметить: недостатком может считаться невозможность рассчитать заранее величины напряжения и тока. Следовательно, нельзя сказать, сколько накопится электричества, так как действие ветра не всегда предсказуемо.

Грозовые батареи

Схема прибора включает лишь антенну из металла и заземление, не имея сложных преобразовывающих и накапливающих компонентов.

Между частями прибора появляется потенциал, который затем накапливается. Воздействие природной стихии не подлежит точному предварительному расчету и данная величина также непредсказуема.

Важно знать: это свойство довольно опасно при реализации схемы своими руками, так как создавшийся контур притягивает молнии с напряжением до 2000 Вольт.

Тороидальный генератор С. Марка

Генератор TPU (тороидальный) может питать бытовые приборы.

Конструкция состоит из трех катушек: внутренней, внешней и управляющей. Он действует из-за появляющихся резонансных частот и магнитного вихря, способствующих образованию тока. Правильно составив схему, подобный прибор можно сделать самому.

Генератор Капанадзе

Генератор Капанадзе — бестопливное устройство, являющееся примером новых технологий.

Запуск осуществляется от аккумулятора, но дальнейшая работа продолжается автономно. В корпусе осуществляется концентрация энергии, добываемая из пространства, динамики эфира. Технология запатентована и не разглашается. Это практически новая теория электричества и распространения волн, когда энергия передается от одной частицы среды к другой.

1.2 Гидроэлектростанции

Гидроэлектрическая
станция, гидроэлектростанция (ГЭС),
комплекс сооружений и оборудования,
посредством которых энергия потока
воды преобразуется в электрическую
энергию. ГЭС состоит из последовательной
цепи гидротехнических сооружений,
обеспечивающих необходимую концентрацию
потока воды и создание напора, и
энергетического оборудования,
преобразующего энергию движущейся под
напором воды в механическую энергию
вращения которая, в свою очередь,
преобразуется в электрическую энергию.

По схеме
использования водных ресурсов и
концентрации напоров ГЭС обычно
подразделяют на русловые, приплотинные,
деривационные с напорной и безнапорной
деривацией, смешанные, гидроаккумулирующие
и приливные. В русловых и приплотинных
ГЭС напор воды создаётся плотиной,
перегораживающей реку и поднимающей
уровень воды в верхнем бьефе. При этом
неизбежно некоторое затопление долины
реки. В случае сооружения двух плотин
на том же участке реки площадь затопления
уменьшается. На равнинных реках наибольшая
экономически допустимая площадь
затопления ограничивает высоту плотины.
Русловые и приплотинные ГЭС строят и
на равнинных многоводных реках и на
горных реках, в узких сжатых долинах.

Важнейшая
особенность гидроэнергетических
ресурсов по сравнению с топливно-энергетическими
ресурсами — их непрерывная возобновляемость.

Физика

Производство электрической энергии

В настоящее время в нашей стране большая часть электроэнергии производится на мощных электростанциях, на которых в электрическую энергию преобразуется какой-либо другой вид энергии.

В зависимости от вида энергии, которая преобразуется в электрическую, различают три основных типа электростанций: тепловые, гидро- и атомные электростанции.

На тепловых электростанциях источником энергии служит топливо: уголь, газ, нефть, мазут, горючие сланцы. Роторы электрических генераторов приводятся во вращение паровыми и газовыми турбинами или двигателями внутреннего сгорания. Наиболее экономичными являются крупные тепловые паротурбинные электростанции (ТЭС).

На тепловых паротурбинных электростанциях (рис. 3.35) в паровых котлах 1 химическая энергия топлива превращается в энергию пара 2. В турбинах 3 энергия пара преобразуется в механическую, а затем в генераторе 4, имеющем общий вал с турбиной, превращается в электрическую. От генератора энергия направляется на шины распределительного устройства станции. Отработанный пар из турбины поступает в конденсатор 5, который охлаждается проточной водой 6, и конденсат 7 в виде горячей дистиллированной воды возвращается в котел. Такие станции принято называть тепловыми конденсационными станциями.

Рис. 3.35

Тепловые конденсационные электростанции большой мощности обычно располагаются недалеко от источников топлива и крупных водоемов.

Коэффициент полезного действия ТЭС достигает 40%. Причем большая часть энергии теряется вместе с горячим отработанным паром. Специальные тепловые электростанции, так называемые теплоэлектроцентрали (ТЭЦ), позволяют значительную часть энергии отработавшего пара использовать для отопления и технологических процессов в промышленных предприятиях, а также для бытовых нужд (отопление, горячее водоснабжение). В результате КПД ТЭЦ достигает 60—70%. В настояш;ее время в нашей стране ТЭЦ дают около 40% всей производимой электроэнергии.

На гидроэлектростанциях (ГЭС) энергия движущейся воды в гидротурбине превращается в механическую, а затем в генераторе преобразуется в электрическую (рис. 3.36. Цифрами обозначены: 1 — генератор; 2 — трансформатор; 3 — турбина; 4 — лопатки направляющего аппарата). Мощность станции зависит от создаваемой плотиной разности уровней воды (напора) и от массы воды, проходящей через турбины в секунду (расхода воды). Гидроэлектростанции дают около 20% всей вырабатываемой в нашей стране электроэнергии.

Рис. 3.36

На атомных электростанциях (АЭС) технология производства электрической энергии почти такая же, как и на ТЭС. Разница состоит в том, что на АЭС энергию для преобразования воды в пар дает ядерный реактор.

Кроме мощных электростанций, находящихся в районах сосредоточения энергетических ресурсов (полноводные реки, природные запасы энергии в виде дешевых углей, торфа и т. д.), имеется группа станций местного значения. Они располагаются в непосредственной близости к потребителям. К ним относятся ТЭЦ, станции промышленных предприятий, городские, сельскохозяйственные, ветровые, передвижные и т. д.

Использование электроэнергии

Главным потребителем электроэнергии в нашей стране является промышленность, на долю которой приходится около 70% производимой электроэнергии. На фабриках и заводах, в шахтах и рудниках электродвигатели приводят в движение станки и различные механизмы. Около трети электроэнергии, потребляемой промышленностью, используется для технологических целей (электросварка, электрический нагрев и плавление металлов, электролиз и т. п.).

Исключительно важное значение имеет применение электрической энергии в сельском хозяйстве. Здесь электроэнергия используется для освещения, приведения в действие различных машин, а также аппаратов, применяемых для механической дойки, стрижки овец, пастеризации молока, приготовления кормов, на птицеводческих фермах и т

д. и т. п.

Современное строительство немыслимо без использования электроэнергии, прежде всего, для приведения в действие подъемных механизмов и для электросварки.

Крупным потребителем электрической энергии является транспорт: железнодорожный и городской (метро, троллейбус, трамвай).

Без электроэнергии не будет работать телефонная и телеграфная связь, радио,телевидение.

Электрическая энергия используется в автоматике и вычислительной технике. О применении электроэнергии для освещения жилищ, предприятий, учреждений, уличного освещения, а также в быту (электроплиты, холодильники, стиральные мап1ины, пылесосы, электробритвы и другие электробытовые приборы) знает каждый.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации