Андрей Смирнов
Время чтения: ~17 мин.
Просмотров: 29

Рабочая программа кружка «основы электроники»

Играем с зарядами и магнитами

После овладения основными законами видимого мира движущихся объектов и скрытого мира работы и энергии можно будет приступать к изучению еще более загадочных объектов. В части V читателю предлагается заглянуть в тайны еще одной части невидимого мира — электричества и магнетизма.

Большая часть физики связана с невидимым окружающим нас миром. Само вещество состоит из частиц, которые переносят электрические заряды, а в самих нас собрано невероятное количество таких зарядов.

При накоплении зарядов мы можем наблюдать такие явления, как статическое электричество и вспышки молний. Движение зарядов проявляется как привычное нам электричество из розетки.

Электричество, как часть физики, проявляется и в молнии, и лампочке. В этой книге показано не только, где проявляется, но и как ведет себя электричество. Кроме того, здесь кратко описываются принципы работы резисторов, конденсаторов и индукторов.

Педагогическая целесообразность

Педагогическая целесообразность данной программы обусловлена возможностью долговременного влияния на формирование личности ребенка, предоставление ему широких возможностей для самовыражения средствами изучения и сборки конструкторов используются подходы ТРИЗ, ученики вместе с преподавателем могут осуществить глубокую модернизацию моделей по самостоятельным эскизам. Использование конструкторов «Эвольвектор» активно способствует: развитию воображения, овладению навыками моделирования и конструирования (изобретательство, инженерная эстетика, пространственная ориентация), формированию абстрактного и логического мышления, изучению свойств материалов и проч.

Следует отметить, что занятия с конструкторами «Эвольвектор» положительно влияют на физическое и психологическое состояние обучающихся. Сборка конструктора развивает мелкую моторику, а управление конструктором требует от детей внимательности, пробуждает познавательный интерес.

Дополнительным преимуществом изучения электроники и робототехники является формирование команды единомышленников и ее участие в конкурсных мероприятиях, что значительно усиливает мотивацию учеников к получению знаний.

Упражнение со скоростью: скользим по радуге

Хотя сила гравитации подробно описывается в главе 6, но здесь мы рассмотрим результат действия этой силы на небольшом примере с векторами в двух измерениях. Представьте себе, что мячик для игры в гольф движется по горизонтальной вершине скалы со скоростью 1,0 м/с и вскоре сорвется с края скалы на высоте 5 метров от поверхности Земли, как показано на рис. 4.11. Насколько далеко улетит мячик и с какой скоростью он столкнется с поверхностью Земли? В этой задаче прежде всего нужно определить время движения мячика.

Приступим к сбору фактов. Нам известно, что компоненты скорости мячика равны (1; 0), и он находится на высоте 5 метров от поверхности Земли. В процессе падения под действием силы тяготения Земли он движется с постоянным ускорением, ​\( g \)​, величина которого равна около 9,8 м/с2.

Итак, как определить, насколько далеко он упадет от края скалы? Один из способов решения этой задачи основан на определении времени движения мячика до столкновения с поверхностью Земли. Поскольку мячик ускоряется только в направлении оси Y (т.е. вертикально вниз), а его компонента скорости по оси X, ​\( v_x \)​, не меняется, то пройденное по горизонтали расстояние до столкновения будет равно ​\( v_xt \)​, где ​\( t \)​ — время движения мячика до столкновения. Сила тяготения ускоряет мячик по вертикали, а значит, перемещение по вертикали (т.е. вдоль оси Y) равно:

В данном случае перемещение по вертикали ​\( s_y \)​ = 5 метров, а ускорение ​\( a_y \)​ = ​\( g \)​ = 9,8 м/с2. Поэтому предыдущее уравнение принимает вид:

Это значит, что время движения мячика до столкновения равно:

Итак, мы вычислили, что мячик будет находиться в полете 1,0 секунды. Отлично, явный прогресс! Поскольку компонента скорости мячика по оси X не изменялась в течение этого времени, то можно легко вычислить расстояние, которое пролетит мячик по горизонтали (т.е. вдоль оси X) за это время:

Подставляем числа и получаем:

Итак, мячик столкнется с поверхностью Земли на расстоянии 1,0 метра по горизонтали.

Теперь можно приступать ко второму вопросу задачи: попробуем определить скорость мячика в момент столкновения с поверхностью Земли. Частично ответ на этот вопрос мы уже знаем, поскольку компонента скорости мячика по оси X не изменялась. Однако по вертикали сила тяготения ускорила мячик по вертикали (т.е. вдоль оси Y), а потому компоненты конечной скорости имеют следующий вид: (1,0; ?). Итак, нам нужно определить величину компоненты скорости мячика по оси Y, обозначенной вопросительным знаком. Воспользуемся следующим соотношением для компоненты скорости по вертикали:

В данном случае начальная скорость ​\( v_{y0} \)​ = 0, постоянное ускорение ​\( a_y=g \)​ и нужно определить только конечную скорость \( v_{y1} \). Поэтому предыдущее уравнение приобретает следующий вид:

Подставляем числа и получаем:

Отрицательный знак здесь обозначает направление вниз вектора \( \mathbf{g} \), т.е. в отрицательном направлении оси Y. Итак, подставляем обновленное значение ускорения и получаем:

Итак, компоненты конечной скорости мячика равны (1,0; -9,8) м/с. Чтобы найти величину вектора скорости (а не его отдельных компонент) в момент столкновения с поверхностью Земли, выполним следующие вычисления:

Триумфальный финал! Мячик пролетит 1,0 метра по горизонтали и столкнется с поверхностью Земли со скоростью 9,9 м/с. Совсем неплохо для начала.

Движение по окружности с постоянной по модулю скоростью

Движение по окружности с постоянной по модулю скоростью – простейший вид криволинейного движения.

Траектория движения – окружность. Вектор скорости направлен по касательной к окружности.
Модуль скорости тела с течением времени не изменяется, а ее направление при движении по окружности в каждой точке изменяется, поэтому движение по окружности – это движение с ускорением.
Ускорение, которое изменяет направление скорости, называется центростремительным.
Центростремительное ускорение направлено по радиусу окружности к ее центру.

Центростремительное ускорение – это ускорение, характеризующее быстроту изменения направления вектора линейной скорости.
Обозначение – ​\( a_{цс} \)​, единицы измерения – ​м/с2​.

Движение тела по окружности с постоянной по модулю скоростью является периодическим движением, т. е. его координата повторяется через равные промежутки времени.Период – это время, за которое тело совершает один полный оборот.
Обозначение – ​\( T \)​, единицы измерения – с.

где ​\( N \)​ – количество оборотов, ​\( t \)​ – время, за которое эти обороты совершены.Частота вращения – это число оборотов за единицу времени.
Обозначение – ​\( \nu \)​, единицы измерения – с–1 (Гц).

Период и частота – взаимно обратные величины:

Линейная скорость – это скорость, с которой тело движется по окружности.
Обозначение – ​\( v \)​, единицы измерения – м/с.
Линейная скорость направлена по касательной к окружности:

Угловая скорость – это физическая величина, равная отношению угла поворота к времени, за которое поворот произошел.
Обозначение – ​\( \omega \)​, единицы измерения – рад/с .

Направление угловой скорости можно определить по правилу правого винта (буравчика).
Если вращательное движение винта совпадает с направлением движения тела по окружности, то поступательное движение винта совпадает с направлением угловой скорости.
Связь различных величин, характеризующих движение по окружности с постоянной по модулю скоростью:

Важно!
При равномерном движении тела по окружности точки, лежащие на радиусе, движутся с одинаковой угловой скоростью, т. к

радиус за одинаковое время поворачивается на одинаковый угол. А вот линейная скорость разных точек радиуса различна в зависимости от того, насколько близко или далеко от центра они располагаются:

Если рассматривать равномерное движение двух сцепленных тел, то в этом случае одинаковыми будут линейные скорости, а угловые скорости тел будут различны в зависимости от радиуса тела:

Когда колесо катится равномерно по дороге, двигаясь относительно нее с линейной скоростью ​\( v_1 \)​, и все точки обода колеса движутся относительно его центра с такой же линейной скоростью \( v_1 \), то относительно дороги мгновенная скорость разных точек колеса различна.

Мгновенная скорость нижней точки ​\( (m) \)​ равна нулю, мгновенная скорость в верхней точке ​\( (n) \)​ равна удвоенной скорости ​\( v_1 \)​, мгновенная скорость точки ​\( (p) \)​, лежащей на горизонтальном радиусе, рассчитывается по теореме Пифагора, а мгновенная скорость в любой другой точке ​\( (c) \)​ – по теореме косинусов.

Подробнее о скорости: что же это такое

Достаточно просто, не так ли? Точнее говоря (физики очень любят точность), скорость равняется изменению положения, деленному на изменение времени. Потому скорость движения вдоль оси X можно выразить следующим образом:

В реальном мире скорость может принимать очень разные формы, некоторые из них описываются в следующих разделах.

Смотрим на спидометр: мгновенная скорость

Итак, у нас уже есть общее представление о скорости. Именно ее измеряет спидометр автомобиля, не так ли? Когда вы катите по прямолинейному шоссе, все, что нужно делать, — всего лишь следить за показаниями спидометра. “Уже 140 километров в час. Пожалуй, сбросим скорость до 120”. Именно так мы часто поступаем в жизни, а иначе говоря, так мы определяем мгновенную скорость.

Движемся постоянно: равномерная скорость

А что если долгое время автомобиль едет со скоростью 120 километров в час? В физике эта скорость называется равномерной (или постоянной), а в жизни она возможна только при движении на абсолютно ровных и прямолинейных дорогах, когда долгое время можно поддерживать движение без изменения скорости.

Равномерное движение с постоянной скоростью является простейшим видом движения, поскольку оно никак не меняется.

Движемся вперед и назад: неравномерное движение

Название этого типа движения говорит само за себя: неравномерное движение означает движение со скоростью, меняющейся со временем. Именно с такой скоростью мы чаще всего сталкиваемся в повседневной жизни. Вот как выглядит уравнение изменения скорости от исходной скорости ​\( v_1 \)​ до конечной скорости ​\( v_0 \)​:

Остальная часть этой главы посвящена ускорению, которое характеризует неравномерность движения.

Жмем на секундомер и определяем среднюю скорость

Выражение со скоростями не так уж неосязаемо, как может показаться. Измерения скорости можно сделать более конкретными. Допустим, что вам хочется совершить путешествие из Нью-Йорка в Лос-Анджелес, которые находятся на расстоянии около 2781 миль друг от друга. Если предположить, на это путешествие ушло 4 суток, то какой была ваша скорость?

Скорость можно найти, если поделить пройденное расстояние на затраченное на это время:

Итак, результат 695,3 получен, но в каких единицах он выражен?

В этом выражении мили делятся на сутки, т.е. результат равен 695,3 милям в сутки. Это не совсем стандартная единица измерений и вполне естественно было бы поинтересоваться: а сколько это миль в час? Для ответа на этот вопрос нужно перевести сутки в часы, как показано в главе 2. Поскольку в сутках 24 часа, то получим следующий результат:

Итак, получен более понятный результат 28,97 миль в час. Смущает лишь столь малая величина скорости, ведь обычно машины едут со скоростью в 2-3 раза быстрее, однако среднюю скорость для всего путешествия мы вычислили, разделив все расстояния на все время, включая время отдыха.

Средняя скорость и неравномерное движение

Средняя скорость отличается от мгновенной, если только вы не движетесь равномерно, когда скорость вообще не меняется. А средняя скорость неравномерного движения, когда все расстояние делится на все время, может отличаться от мгновенной скорости.

Путешествуя из Нью-Йорка в Лос-Анджелес, вам наверняка придется провести несколько ночей в отелях, и во время вашего отдыха мгновенная скорость автомобиля равна 0 миль в час, а средняя скорость — 28,97 миль в час! Дело в том, что средняя скорость получена в результате деления всего расстояния на все время.

Средняя скорость может зависеть от фактически пройденного пути. Допустим, что, путешествуя по штату Огайо, вы решили подвезти попутчика в штат Индиана и погостить у вашей сестры в штате Мичиган. Все путешествие может иметь вид, показанный на рис. 3.3: первые 80 миль — в штат Индиана, а потом 30 миль — в штат Мичиган.

Если ехать со скоростью 55 миль в час, то для преодоления всего пути длиной 80 + 30 = 110 миль потребуется 2 часа. Но если взять расстояние по прямой между начальной и конечной точкой путешествия, которое равно 85,4 миль, то средняя скорость будет равна:

Таким образом, получена средняя скорость для расстояния от начальной до конечной точки путешествия вдоль пунктирной линии. Но если вам нужно определить скорость для каждого из двух отрезков фактически пройденного пути, то нужно измерить длину каждого из двух отрезков и разделить их на время их прохождения.

При движении с равномерной скоростью это можно сделать легко и просто, поскольку в таком случае средняя скорость равняется мгновенной скорости в любой точке пути.

Проблемы энергетики и охрана окружающей среды

Тепловые двигатели широко применяются на транспорте и в энергетике (тепловые и атомные электростанции). Использование тепловых двигателей сильно влияет на состояние биосферы Земли. Можно выделить следующие вредные факторы:

  • при сжигании топлива используется кислород из атмосферы, что приводит к снижению содержания кислорода в воздухе;
  • при сгорании топлива в атмосферу выделяется углекислый газ. Концентрация углекислого газа в атмосфере повышается. Это изменяет прозрачность атмосферы, так как молекулы углекислого газа поглощают инфракрасное излучение, что ведет к повышению температуры (парниковый эффект);
  • при сжигании угля в атмосферу поступают азотные, серные соединения и соединения свинца, вредные для здоровья человека.

Решение проблемы охраны окружающей среды от вредного воздействия предприятий тепловой энергетики требует комплексного подхода. Массовыми загрязнителями при работе тепловых электростанций являются летучая зола, диоксид серы и оксиды азота. Методы сокращения выбросов зависят от свойств топлива и условия его сжижения. Предотвращение загрязнения летучей золой достигается очисткой всего объема продуктов сгорания твердого топлива в высокоэффективных золоуловителях. Сокращение выбросов оксидов азота с продуктами сгорания топлива на тепловых электростанциях, а также в парогазовых и газотурбинных установках обеспечивается, главным образом, технологией сжигания топлива. Уменьшение выброса диоксида серы может быть достигнуто различными методами облагораживания и переработки топлива вне тепловых электростанций либо непосредственно на тепловых электростанциях, а также очисткой дымовых газов.

Контроль за выбросом вредных веществ электростанций осуществляется специальными приборами.

В ряде случаев достаточно эффективным решением вопросов очистки выбросов в атмосферу остается сооружение фильтров-уловителей и дымовых труб. У дымовой трубы два назначения: первое — создавать тягу и тем самым заставлять воздух — обязательный участник процесса горения — в нужном количестве и с должной скоростью входить в топку; второе — отводить продукты горения (вредные газы и имеющиеся в дыме твердые частицы) в верхние слои атмосферы. Благодаря непрерывному турбулентному движению вредные газы и твердые частицы уносятся далеко от источника их возникновения и рассеиваются.

Для рассеивания сернистого ангидрида, содержащегося в дымовых трубах тепловых электростанций, сооружаются дымовые трубы высотой 180, 250 и 320 м. Тепловые электростанции России, работающие на твердом топливе, за год выбрасывают в отвалы около 100 млн т золы и шлаков. Зола и шлаки занимают большие площади земель, неблагоприятно влияют на окружающую среду.

Более половины всех загрязнений создает транспорт. Один из путей решения проблемы защиты окружающей среды заключается в переходе на дизельные двигатели, электродвигатели, повышение КПД.

Алгоритм решения задач раздела «Термодинамика»:

  • выделить систему тел и определить ее тип (замкнутая, адиабатически замкнутая, замкнутая в механическом смысле, незамкнутая);
  • выяснить, как изменяются параметры состояния ​\( (p,V,T) \)​ и внутренняя энергия каждого тела системы при переходе из одного состояния в другое;
  • записать уравнения, связывающие параметры двух состояний системы, формулы для расчета изменения внутренней энергии каждого тела системы при переходе из одного состояния в другое;
  • определить изменение механической энергии системы и работу внешних сил по изменению ее объема;
  • записать формулу первого закона термодинамики или закона сохранения и превращения энергии;
  • решить систему уравнений относительно искомой величины;
  • проверить решение.

Основные формулы раздела «Термодинамика»

Ожидаемые результаты

Личностные:

устанавливать связь между целью учебной деятельности и ее мотивом;

воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;

ответственное отношение к обучению, готовность и способность детей к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;

оценивать усваиваемое содержание учебного материала исходя из личностных ценностей;

ориентация на понимание причин успеха в творческой деятельности;

устанавливать связь между целью деятельности и ее результатом.

Метапредметные:

Познавательные УУД

11 класс

01. Магнитное поле

  • 01. Магнитное поле, его свойства
  • 02. Магнитное поле постоянного электрического тока
  • 03. Действие магнитного поля на проводник с током
  • 04. Действие магнитного поля на движущийся в нем заряд
  • 05. Применение сил Ампера и Лоренца в науке и технике. Амперметр, телеграф, электромагниты, масс-анализаторы

02. Электромагнитная индукция

  • 01. Явление электромагнитной индукции
  • 02. Правило Ленца. Закон электромагнитной индукции
  • 03. Вихревое электрическое поле
  • 04. Движение проводника в магнитном поле
  • 05. Самоиндукция. Индуктивность
  • 06. Энергия магнитного поля
  • 07. Генерация электрического тока
  • 08. Передача электроэнергии на расстояние
  • 09. Трансформатор
  • 10. Электромагнитное поле

03. Электромагнитные колебания и волны

  • 01. Свободные электромагнитные колебания в контуре
  • 02. Вынужденные электромагнитные колебания. Электромагнитные колебания в контуре — источник радиоволн
  • 03. Теория Максвелла
  • 04. Электромагнитные волны. Опыты Г. Герца. Изобретение радио А. Поповым
  • 05. Принцип радиотелефонной связи. Простейший радиоприемник. Радиолокация. Понятие о телевидении. Развитие средств связи
  • 06. Шкала электромагнитных волн низкочастотные излучения и радиоволны вплоть до инфракрасного излучения. Общие свойства волн

04. Оптика

  • 01. Законы геометрической оптики
  • 02. Практическая работа по теме Определение показателя преломления стекла
  • 03. Построение изображения в линзах
  • 04. Решение задач по теме Формула тонкой линзы
  • 05. Световые волны. Интерференция
  • 06. Световые волны. Интерференция
  • 07. Поляризация света
  • 08. Дифракция света
  • 09. Дифракция. Поляризация
  • 10. Цвет. Дисперсия
  • 11. Решение задач по теме Оптика

05. Квантовая физика

  • 01. Квантовая гипотеза Планка
  • 02. Формула Эйнштейна для фотоэффекта. Применение фотоэффекта
  • 03. Опыты А.Столетова. Явление фотоэффекта

07. Атомная физика

  • 01. Трудности планетарной модели атома Резерфорда. Модель водородоподобного атома Н. Бора
  • 02. Применение постулатов Н.Бора для объяснения линейчатых спектров атомов. Спектральный анализ.
  • 03. Решение задач по теме Модель атома Н. Бора
  • 04. Гипотеза де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм микромира
  • 05. Решение задач на основное уравнение корпускулярно-волнового дуализма микромира
  • 06. Соотношение неопределенностей Гейзенберга. Два пути развития квантовой механики
  • 07. Физические основы работы лазеров. Применение лазеров

08. Физика атомного ядра

  • 01. Естественная радиоактивность открытие Беккереля. Состав и свойства радиоактивных излучений
  • 02. Закон радиоактивного распада. Правила смещения при радиоактивном распаде
  • 03. Строение атомного ядра. Ядерные силы. Дефект массы и энергия связи ядра. Удельная энергия связи ядер
  • 04. Ядерные реакции. Выделение и поглощение энергии при ядерных реакциях. Термоядерные реакции синтеза лёгких ядер
  • 05. Деление ядер урана. Цепные ядерные реакции. Ядерный реактор. Перспективы развития ядерной энергетики
  • 06. Биологическое действие радиоактивных излучений. Экспозиционная и поглощенная дозы излучения. Методы
  • 07. Элементарные частицы. Античастицы. Кварки
  • 08. Единая физическая картина мира. Физика и научно-технический прогресс

09. Поготовка к ЕГЭ

  • 01. Система физических знаний. Структура заданий ЕГЭ по физике
  • 02. Основные понятия кинематики. Скорость. Средняя скорость. Относительная скорость. Сложение перемещений и скоростей
  • 03. Решение задач повышенной сложности на равномерное движение
  • 04. Ускорение. Нормальная и тангенциальная составляющие ускорения
  • 05. Графический способ описания движений
  • 06. Задачи на движение с ускорением свободного падения
  • 07. Задачи повышенной сложности на равнопеременное движение
  • 08. Равномерное движение по окружности
  • 09. Равнопеременное движение. Законы и уравнения
  • 10. Уравнения кинематики прямолинейного движения тела с ускорением свободного падения

10. Динамика

  • 01. Динамика. Основные понятия и модели
  • 02. Силы в механике
  • 03. Второй закон Ньютона для инерциальных и неинерциальных систем отсчета
  • 04. Решение задач на движение тел по наклонной плоскости
  • 05. Решение задач на движение системы связанных тел
  • 06. Решение задач на движение по окружности в том числе и на поворотах
  • 07. Решение задач повышенной сложности на движение в ИСО
  • 08. Закон всемирного тяготения. Движение планет и спутников
  • 09. Решение задач повышенной сложности на движение в НСО
  • 10. Решение задач на равнопеременное движение в проекциях на координатные оси

Литература

9 класс

01. Законы взаимодействия и движения тел

  • 01. Материальная точка. Система отсчета
  • 02. Перемещение
  • 03. Определение координаты движущегося тела
  • 04. Перемещение при прямолинейном равномерном движении
  • 05. Прямолинейное равноускоренное движение. Ускорение
  • 06. Скорость прямолинейного равноускоренного движения. График скорости
  • 07. Перемещение при прямолинейном равноускоренном движении
  • 08. Перемещение тела при прямолинейном равноускоренном движении без начальной скорости
  • 09. Лабораторная работа 1. Исследование равноускоренного движения без начальной скорости
  • 10. Решение задач на определение ускорения, мгновенной скорости и перемещения при равноускоренном прямолинейном движении
  • 11. Решение задач по теме Прямолинейное равномерное и неравномерное движение
  • 12. Относительность движения
  • 13. Инерциальные системы отсчета. Первый закон Ньютона
  • 14. Второй закон Ньютона
  • 15. Третий закон Ньютона
  • 16. Свободное падение тел
  • 17. Движение тела, брошенного вертикально вверх
  • 18. Лабораторная работа 2 Исследование свободного падения тел
  • 19. Законы всемирного тяготения
  • 20. Ускорение свободного падения на Земле и других небесных телах
  • 21. Прямолинейное и криволинейное движение. Движение тела по окружности с постоянной по модулю скоростью
  • 22. Решение задач
  • 23. Искусственные спутники Земли
  • 24. Импульс. Закон сохранения импульса
  • 25. Реактивное движение. Значение работ К.Э. Циолковского
  • 26. Решение задач
  • 27. Решение задач на тему Законы взаимодействия и движения тел

02. Механические колебания и волны. Звук

  • 01. Колебательное движение и его характеристики. Свободные и вынужденные колебания
  • 02. Колебательное движение. Свободные колебания. Колебательные системы
  • 03. Динамика колебательного движения
  • 04. Лабораторная работа по теме Измерение ускорения свободного падения с помощью математического маятника
  • 05. Длина волны. Скорость распространения волны
  • 06. Звуковые волны
  • 07. Отражение волн. Звуковой резонанс
  • 08. Величины, характеризующие колебательное движение
  • 09. Лабораторная работа 3. Исследование зависимости периода и частоты свободных колебаний математического маятника от его длины
  • 10. Кинетическая энергия. Потенциальная энергия. Примеры решения задач
  • 11. Закон сохранения механической энергии
  • 12. Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания
  • 13. Распространение колебаний в упругой среде. Продольные и поперечные волны
  • 14. Длина волны. Скорость распространения волн
  • 15. Источники звука. Звуковые колебания. Высота, тембр, громкость
  • 16. Скорость звука. Отражение звука. Эхо
  • 17. Решение задач по теме Механические колебания и волны. Звук

03. Электромагнитные явления

  • 01. Магнитное поле и его графическое изображение. Неоднородное и однородное магнитное поле
  • 02. Направление тока и направление линий его магнитного поля
  • 03. Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки
  • 04. Индукция магнитного поля
  • 05. Магнитный поток
  • 06. Явление электромагнитной индукции
  • 07. Лабораторная работа 4. Изучение явления электромагнитной индукции
  • 08. Получение переменного электрического тока
  • 09. Электромагнитное поле
  • 10. Электромагнитные волны
  • 11. Электромагнитная природа света
  • 12. Вариант контрольной работы по теме Электромагнитные явления

04. Строение атома и атомного ядра. Использование энергии атомных ядер

  • 01. Радиоактивность как свидетельство сложного строения атомов
  • 02. Модели атомов. Опыт Резерфорда
  • 03. Радиоактивные превращения атомных ядер
  • 04. Экспериментальные методы исследования частиц
  • 05. Открытие протона. Открытие нейтрона.
  • 06. Состав атомного ядра. Массовое число.Зарядовое число. Ядерные силы
  • 07. Энергия связи. Дефект масс
  • 08. Деление ядер урана. Цепная реакция
  • 09. Ядерный реактор
  • 10. Атомная энергетика
  • 11. Биологическое действие радиации
  • 12. Термоядерная реакция
  • 13. Контрольная работа по теме Строение атома и атомного ядра. Использование энергии атомных ядер
  • 14. Обобщение темы
Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации