Андрей Смирнов
Время чтения: ~20 мин.
Просмотров: 63

Что такое статическое электричество

Схема защиты на основе RC-звена

Простейший из вариантов защиты — использование обычного RC-звена. Схема такой защиты применительно к буферному ОУ представлена на рис. 5, а его преимущества и недостатки сведены в таблице 2.

Таблица 2. Преимущества и недостатки защиты аналогового входного каскада путем использования RC­-звена

Преимущества

Недостатки

Дешевизна

(затраты примерно 5 центов)

R1 генерирует тепловые шумы

Малая занимаемая площадь на печатной плате

RC­-цепь ограничивает

скорость приема данных

Малый ток утечки

Необходимость тщательного выбора конденсатора

Недостаточная устойчивость к повторяющимся воздействиям

Соображения по выбору элементов защиты:

  • Резистор R1 должен быть устойчивым к импульсным воздействиям, то есть толстопленочным резистором, — это необходимо, чтобы он не мог быстро выйти из строя при переходных процессах высокого напряжения.
  • Шум напряжения, генерируемый резистором R1, пропорционален квадратному корню из сопротивления резистора — это важный фактор, который следует учитывать, если система должна иметь низкий уровень шума.
  • Конденсатор C1 должен быть керамическим, типоразмера не менее 0805, это требуется, чтобы избежать его механической деформации при воздействии импульса перенапряжения и, соответственно, его растрескивания или полного механического разрушения.
  • Конденсатор C1 должен быть выполнен как минимум из диэлектрика X5R (в идеале C0G/NP0), так как для поддержания предсказуемой емкости важен низкий температурный коэффициент емкости.
  • Конденсатор C1 должен иметь как можно меньшие эквивалентные последовательные индуктивность (equivalent series inductance, ESL) и сопротивление (equivalent series resistance, ESR), чтобы он мог эффективно поглощать импульс воздействия.
  • Конденсатор С1 в выбранном варианте исполнения корпуса должен иметь как можно более высокое номинальное рабочее напряжение (минимум 100 В).
  • Конденсатор C1 включен перед резистором R1, потому что он создает емкостный делитель с конденсатором 150 пФ (рис. 5), который разряжает сигнал генератора ESD в нашу систему, а задача конденсатора C1 — поглотить эту энергию или ее большую часть.

Рис. 5. Защита входа с помощью фильтра нижних частот на аналоговом входе

Хотя данный метод защиты аналоговых входных каскадов не одобрен производителями конденсаторов, он продемонстрировал свою эффективность в течение сотен испытаний усилителей. Однако профиль тестирования на устойчивость к контактному разряду статического электричества (показанный на рис. 1) был испытан только на ограниченном ряде конденсаторов (табл

4), поэтому, если используются конденсаторы других типов, крайне важно уточнить, как они справляются с воздействиями импульсов перенапряжения, например, путем измерения емкости и последовательного сопротивления до и после воздействия. После снятия импульса перенапряжения конденсатор должен сохранять свою емкость и не иметь критических токов утечки для напряжения постоянного тока

Библиография

Электростатика. Защита электронных устройств от электростатических явлений. Руководство пользователя

(МЭК 61340-5-2:2007)

МЭК 60749-26

Приборы полупроводниковые. Методы механических и климатических испытаний. Часть 26. Испытание чувствительности к электростатическому разряду. Модель человеческого тела

(IEC 60749-26)

(Semiconductor devices — Mechanical and climatic test methods — Part 26: Electrostatic discharge (ESD) sensitivity testing — Human body model (HBM)

МЭК/ТС 60479-1

Воздействие тока на людей и домашних животных. Часть 1. Общие положения

(IEC/TS 60479-1)

(Effects of current on human beings and livestock — Part 1: General aspects)

МЭК/ТС 60479-2

Воздействие тока на людей. Часть 2: Специальные аспекты

(IEC/TS 60479-2)

(Effects of current on human beings and livestock — Part 2: Special aspects)

МЭК 60364

Электрические установки зданий

(IEC 60364)

(Electrical installations of buildings)

МЭК 61340-4-6

Электростатика. Часть 4-6: Методы испытаний для прикладных задач Антистатические браслеты.

(IEC 61340-4-6)

(Standard test methods for specific applications — Wrist straps)

МЭК 61340-4-3

Электростатика. Часть 4-3. Методы испытаний для прикладных задач. Обувь

(IEC 61340-4-3)

(Standard test methods for specific applications — Footwear)

МЭК 61340-4-5

Электростатика. Часть 4-5. Методы испытаний для прикладных задач. Методы оценки электростатических свойств обуви, напольного покрытия в комбинации с человеком.

(IEC 61340-4-5)

(Standard test methods for specific applications — Methods for characterizing the electrostatic protection of footwear and flooring in combination)

МЭК 61340-2-3

Электростатика. Часть 2-3. Методы определения электрического сопротивления твердых плоских материалов, используемых с целью предотвращения накопления электростатического заряда

(IEC 61340-2-3)

(Methods of test for determining the resistance and resistivity of solid planar materials used to avoid electrostatic charge accumulation)

МЭК 61340-4-1

Электростатика. Часть 4-1. Методы испытаний для прикладных задач. Электростатические характеристики напольных покрытий и системы полов

(IEC 61340-4-1)

(Standard test methods for specific applications — Section 1: Electrostatic behavior of floor coverings and installed floors)

МЭК 61340-4-7

Электростатика. Часть 4-7. Методы испытаний для прикладных задач. Ионизация

(IEC 61340-4-7)

(Standard test methods for specific application — Ionization)

МЭК 61340-4-9

Электростатика. Часть 4-9. Методы испытаний для прикладных задач. Одежда

(IEC 61340-4-9)

(Standard test methods for specific application — Garments)

МЭК 61340-4-8

Электростатика. Часть 4-8. Методы испытаний для прикладных задач. Экранирование разрядов. Пакеты

(IEC 61340-4-8)

(Standard test methods for specific applications — Discharge shielding — Bags)

Ключевые слова: электростатика, разряд, компонент, ЭСР-управление

Уменьшение интенсивности зарядов

Мероприятия направлены на обеспечение безопасности технологических процессов:

  • согласно действующим ГОСТам на производстве обеспечивается контроль скорости перемещаемого по трубам сырья;
  • перед переработкой рабочие газы и жидкости должны быть очищены от примесей и посторонних взвесей;
  • в процессах переработки и транспортировки недопустимо разбрызгивание жидкостей и газов;
  • на производстве, где невозможно организовать естественное стекание статических зарядов, применяют закрытые транспортные системы (при пневмотранспортировке жидкостей, продувке оборудования).

Заземление электроприборов и токоведущих частей:

  • согласно ПУЭ, действующим ГОСТам и СНиП, ЗУ электроустановок допускается объединять с заземляющими приспособлениями от статических зарядов;
  • сопротивление ЗУ для защиты от статического электричества не должно быть больше 100 Ом;
  • все электропроводящие поверхности и токоведущие части оборудования должны иметь качественное зануление;
  • пневмотрубопроводы, вентиляционные шахты должны образовывать единую цепь, присоединенную к заземлителям через каждые 40 м, минимальное количество точек – 2 шт;
  • в обязательном порядке отдельным ЗУ к общему контуру подключают аппараты, на поверхностях (внутри) которых может образовываться заряд: дробилки, распылители и др.;
  • крупногабаритная тара подлежит заземлению корпуса в двух противоположных точках по ГОСТу;
  • цистерны во время налива (слива) газов должны быть присоединены к ЗУ, которые, в свою очередь, должны располагаться вне взрывоопасных зон; разгерметизацию люков цистерн производят после присоединения корпуса к контуру заземления;

Заземление приборов с целью защиты человека от поражения электрическим током

шланги, через которые наливаются сжиженные газы и жидкости, должны быть обвиты медными проволоками или тросами, диаметром не менее 4 мм. Проводник должен быть соединен одной стороной с краем шланга, а другим – к заземленной части существующего контура.

Снятие зарядов с твердых поверхностей

Процесс состоит в нейтрализации зарядов  ионизацией воздуха вблизи технологического процесса. Согласно действующим ГОСТам, для этого применяют нейтрализаторы:

  • во взрывоопасных цехах устанавливают радиоизотопные нейтрализаторы;
  • для производства гигиенической продукции запрещено применение радиоизотопных нейтрализаторов, в таких случаях целесообразно применение индукционных или высоковольтных нейтрализаторов;
  • если невозможно использовать индукционные нейтрализаторы, целесообразно применить нейтрализационные устройства скользящего разряда;
  • если оборудование имеет сложные геометрические формы, и невозможно обеспечить отвод заряда стандартными методами, используют аэродинамические нейтрализаторы, посредством которых принудительно впрыскиваются ионы в необходимое пространство.

Заряды в  газовых смесях

  • для обеспечения безопасных условий, согласно действующим ГОСТам технологических процессов, необходимо применять предварительно очищенные от твердых частиц газы;
  • оборудование должно иметь качественную герметизацию;
  • недопустимо присутствие в газовых смесях металлических частиц и мелких деталей.

Снятие заряда с сыпучих материалов

  • Согласно действующим ГОСТам, перерабатывать сыпучие материалы необходимо в металлических емкостях, или токопроводящих неметаллических.
  • Порошкообразное сырье допускается транспортировать в схожих по составу трубопроводах (если это полимеры, то трубы должны быть из полиэтилена).
  • В производственных помещениях влажность воздуха должна составлять не менее 65%. При невозможности организовать это условие, прибегают к ионизации воздуха.
  • Для улучшения процесса стекания, рабочие поверхности пропитывают поверхностно-активными смазками.
  • Запрещено производить выгрузку сыпучего сырья из целлюлозных, ПВХ и полиэтиленовых пакетов в емкости, температура жидкости в которых выше температуры их воспламенения. В таких случаях используют шнековые установки.

Во избежание возникновения взрывов (вследствие образования искры), следует предотвращать образование взрывоопасных смесей, не допускать скопления пыли, регулярно чистить оборудование от пылевоздушных смесей.

Молнии

Основная статья: Молния

В результате движения воздушных потоков, насыщенных водяными парами, образуются грозовые облака, являющиеся носителями статического электричества. Электрические разряды образуются между разноименными заряженными облаками или, чаще, между заряженным облаком и озоновым слоем земли, с последующим разрядом на землю. При достижении критической разности потенциалов происходит разряд молнии между облаками, на земле или в околокосмическом слое планеты. Для защиты от молний устанавливаются молниеотводы, проводящие разряд напрямую в землю.

Помимо молний, грозовые облака могут вызывать на изолированных металлических предметах опасные электрические потенциалы из-за электростатической индукции.

В 1872 году экспедицией под руководством географа Генри Ганнетта была покорена 13-я по высоте гора штата Монтана (США). Ей дали название Электрический пик

, так как у первопроходцев-покорителей, находящихся на вершине, после грозы начали сыпаться искры из пальцев рук и волос на голове.

Результаты тестирования

Для получения результатов по эффективности защиты была протестирована серия операционных усилителей с использованием стандарта МЭК (IEC‑61000–4-2) в части требований по устойчивости к электростатическим разрядам. В таблице 4 показано, какие компоненты предохраняют те или иные схемы защиты. Несмотря на то, что стандарт предусматривает испытания тремя воздействиями импульса перенапряжения уровнем ±8 кВ, все представленные схемы (чтобы обеспечить достаточный технологический запас по степени защиты) прошли тестирование при 100 импульсах воздействия уровнем ±9 кВ.

Таблица 4. Список устройств и соответствующих им конфигураций защиты, которые прошли испытания на соответствие стандарту IEC-­61000­-4-­2

Наименование

продукта

Основная характеристика, полоса пропускания

Элементы защиты

R, Ом

C, пФ

D, V_WM

AD823

С входным каскадом на полевых транзисторах

220

100

16 МГц

68

36

ADA4077

Малошумящий, рецизионный

220

100

3,9 МГц

68

36

ADA4084

Low noise

220

100

15,9 МГц

68

36

ADA4522

Малошумящий, рецизионный

220

100

2,7 МГц

68

36

ADA4528

Малошумящий, рецизионный

220

100

3 МГц

68

36

ADA4610

Малошумящий, рецизионный

220

100

15,4 МГц

68

36

ADA4622

Малошумящий, рецизионный

220

100

8 МГц

68

36

ADA4625

Low noise, JFET

220

100

18 МГц

68

36

ADA4661

Прецизионный

220

100

4 МГц

68

36

LT1490

Микромощный

220

100

200 кГц

68

36

LT6016

Маломощный, прецизионный, OTT

220

100

3,2 МГц

68

36

LT6018

Малошумящий, прецизионный

220

100

15 МГц

68

36

LT1636

Микромощный, OTT

220

100

200 кГц

220

36

LT1638

Микромощный, OTT

220

100

1,1 МГц

68

36

LT1494

Микромощный, прецизионный, OTT

220

100

100 Гц

68

36

Согласно стандарту МЭК, требуется, чтобы заземление генератора испытательного импульса было подключено к заземлению усилителя через два резистора номиналом 470 кОм параллельно с конденсатором емкостью 30 пФ. Используемая тестовая установка выполнена более жесткой, потому что заземление генератора испытательного сигнала было напрямую связано с заземлением усилителя. Для дополнительной аутентичности эти результаты были также проверены и с помощью описанной выше схемы заземления в соответствии с требованиями МЭК. Имейте в виду, что усилители имеют очень разные внутренние структуры — то, что пригодно для устройств из предложенного списка, может работать или нет для других. Рекомендуется, чтобы при использовании иных операционных усилителей или других защитных компонентов они предварительно были тщательно протестированы.

Используемые компоненты защиты:

  • Резисторы: серия ERJ-P6, типоразмер 0805, производство компании Panasonic.
  • Конденсаторы: керамические, типоразмера 0805, диэлектрик C0G/NPO, номинальное рабочее напряжение 100 В, производства компании Yageo.
  • TVS-диоды: CDSOD323‑T36SC, производство компании Bourns (двунаправленные, напряжение 36 В, с малым током утечки, нормированные для защиты от электростатического контактного разряда, электрических быстрых переходных процессов (пачек) и устойчивые к выбросам напряжения в рамках требований соответствующих стандартов).
  • Варисторы для защиты от разрядов статического электричества: многослойные варисторы серии MLA, типоразмер 0603, рабочее напряжение 26 В, производство компании Bourns.

Как снять статическое электричество с человека

Самое простейшее средство защиты от него — заземление оборудования. В условиях производства используются для этой цели экраны и иные приспособления. В жидких веществах применяются специальные растворители и присадки. Активно используются антистатические растворы. Это вещества с низкой молекулярной массой. Молекулы в антистатике легко перемещаются и вступают в реакцию с влагой, содержащейся в воздухе. За счет этой характеристики с человека снимается статика.

Если обувь оператора на токонепроводящей подошве, он должен обязательно прикоснуться к заземлению. Тогда уход статического тока в землю нельзя будет остановить, но человек получит сильный или слабый удар. Действие статического тока мы чувствуем после ходьбы по коврам и паласам. Удары током получают водители, выходящие из машины. От этой проблемы избавиться легко: достаточно прикоснуться к двери рукой, сидя на месте. Заряд стечет в землю.

Хорошо помогает проведение ионизации. Делается это с помощью антистатической планки. Она имеет много иголок из специальных сплавов. Под действием тока в 4-7кВ воздух вокруг разлагается на ионы. Используются и воздушные ножи. Они представляют собой антистатическую планку, через которую вдувается воздух и очищает поверхность. Заряды статики активно образуются при разбрызгивании жидкостей, обладающих диэлектрическими свойствами. Поэтому для снижения действия электронов нельзя допускать падающей струи.

Желательно использовать антистатический линолеум на полу и чаще проводить уборку с помощью средств бытовой химии. На предприятиях, связанных с обработкой тканей или бумаги, проблему избавления от статики решают смачиванием материалов. Повышение влажности не дает накапливаться вредному электричеству.

Чтобы снять статику, необходимо:

  • увлажнять воздух в помещении;
  • обрабатывать ковры и паласы антистатиками;
  • протирать сиденья в машине и в комнатах антистатическими салфетками;
  • чаще увлажнять кожу на себе;
  • отказаться от синтетической одежды;
  • носить обувь на кожаной подошве;
  • предотвращать появление статики на белье после стирки.

Хорошо увлажняют атмосферу комнатные цветы, кипящий чайник, специальные приспособления. Антистатические составы продаются в магазинах бытовой химии. Они распыляются над ковровой поверхностью. Можно изготовить антистатик самостоятельно. Для этого берут смягчитель ткани (1 колпачок), выливают в бутылку. Затем емкость наполняется чистой водой, которую разбрызгивают над поверхностью ковра. Салфетки, смоченные антистатиком, нейтрализуют заряды на обивке сидений.

Увлажнение кожи производится лосьоном после душа. Руки протираются несколько раз в день. Следует поменять одежду на натуральную. Если она заряжается, обработать антистатиками. Рекомендуется носить обувь с кожаной подошвой или ходить по дому босиком. Перед стиркой желательно насыпать на одежду ¼ стакана соды (пищевой). Она снимает разряды электричества и смягчает ткань. При полоскании белья можно добавить в машину уксус (¼ стакана). Сушить белье лучше на свежем воздухе.

Все перечисленные меры помогают нейтрализовать статические проблемы.

Мешают файлы от мессенджеров Whatsapp и Viber

Когда мы принимаем или отправляем сообщения через Ватцап или Вайбер, то эти файлы автоматически сохраняются в определенные папки. Фото, водео, звуковые сообщения. Мы их не замечаем, но они есть. Вот нужно их найти и удалить! И места в памяти телефона станет значительно больше!

4.Напряжённость и потенциал проводника

Пусть есть какое-то электрическое поле, в которое поместили заряженную поверхность.

Таким образом, нормальная составляющая напряжённости электрического поля на заряженной поверхности испытывает скачок.

Т.е. касательная составляющая электрического поля на границе непрерывна. Последних два выражения называются граничными уровнями.

Выясним, как они изменяются, если одна из сред проводима.

Таким образом, поле всегда ⊥ поверхности проводника. Если напряжённость
перпендикулярна поверхности проводника, то поверхность проводника это
эквипотенциальная поверхность, а т.к. поля внутри проводника нет, то такой же
потенциал и внутри ⇒ проводник представляет собой эквипотенциальный объём.

Закон Кулона

Закон Кулона был открыт экспериментально: в опытах с использованием крутильных весов измерялись силы взаимодействия заряженных шаров.

Закон Кулона формулируется так:
сила взаимодействия ​\( F \)​ двух точечных неподвижных электрических зарядов в вакууме прямо пропорциональна их модулям ​\( q_1 \)​ и \( q_2 \) и обратно пропорциональна квадрату расстояния между ними ​\( r \)​:

где ​\( k=\frac{1}{4\pi\varepsilon_0}=9\cdot10^9 \)​ (Н·м2)/Кл2 – коэффициент пропорциональности,
​\( \varepsilon_0=8.85\cdot10^{-12} \)​ Кл2/(Н·м2) – электрическая постоянная.

Коэффициент ​\( k \)​ численно равен силе, с которой два точечных заряда величиной 1 Кл каждый взаимодействуют в вакууме на расстоянии 1 м.

Сила Кулона направлена вдоль прямой, соединяющей взаимодействующие заряды. Заряды взаимодействуют друг с другом с силами, равными по величине и противоположными по направлению.

Значение силы Кулона зависит от среды, в которой они находятся. В этом случае формула закона:

где ​\( \varepsilon \)​ – диэлектрическая проницаемость среды.

Закон Кулона применим к взаимодействию

  • неподвижных точечных зарядов;
  • равномерно заряженных тел сферической формы.

В этом случае ​\( r \)​ – расстояние между центрами сферических поверхностей.

Важно!
Если заряженное тело протяженное, то его необходимо разбить на точечные заряды, рассчитать силы их попарного взаимодействия и найти равнодействующую этих сил (принцип суперпозиции)

Статическое электричество в человеческой жизни

В современной жизни человек каждый день сталкивается с влиянием статического электричества. Иногда это может раздражать, кого-то даже пугать, а некоторые просто не обращают внимания на подобные вещи. Но всегда необходимо знать, как возможно избежать незначительных и неприятный последствий действия электростатических явлений.

Замечание 2

Известно, что абсолютно все физические вещества в своём составе имеют молекулы и атомы.

В частицах всегда находится одинаковое количество протонов и нейтронов. Протоны обладают положительным зарядом, электроны – исключительно отрицательным, то есть имеют прямо противоположную полярность и в результате взаимно притягиваются.

Атом в любых условиях находится в равновесии. Но электроны могут изменять свою позицию, тогда появляются отрицательные и положительные ионы. Ионы самостоятельно не способны перемещаться, следовательно, когда их общий заряд уменьшается или увеличивается, наблюдается дисбаланс, то есть статическое электричество. Электростатический заряд с одинаковой полярностью отталкивается, с противоположной автоматически притягивается.

В промышленных крупных производствах при работе с прочными листовыми пластиками (их разъединение и соединение), в бумажном и текстильном производстве (сматывание и разматывание рулонов бумаги и ткани) всегда возникает явления электризации. В мукомольной среде, в изготовлении сахара, в колбасной промышленности (при фильтровании, измельчении, просеивании, пересыпании веществ) также наблюдается статическое электричество.

Со статическим электричеством встречаются и на таких производствах:

  • в химическом при производстве пластмасс;
  • в радиоэлектронной сфере при изготовлении и транспортировке микросхем и приборов;
  • в офисных помещениях, где расположены компьютеры, телевизоры и другая оргтехника.

В многоэтажных домах источником электрического заряда выступают любые электроприборы, синтетическая одежда, подушки из синтетики и шторы, полиэтиленовые пакеты, даже обычная расческа из пластика. Отвод ненужного статического электричества с человека на масштабных производствах осуществляют посредством устройств в виде электропроводящих полов, трапов и площадок. Также с помощью средств индивидуальной защиты возможно обеспечить себя от действия электростатики (обувь на кожаной подошве, антистатические халаты) Дома желательно два раза в день увлажнять воздух, разместив на батареи отопления влажные полотенца. Можно использовать различные антистатики для тканей и тела. Для волос также желательно выбрать гребень из дерева.

Препятствующие возникновению статического электричества вещества называют антистатиками.

Антистатиком может быть и обычная угольная сажа, поэтому, чтобы избавиться от действия электростатики, в состав любой пропитки необходимо добавить ламповую сажу. Для этих же целей подобные материалы можно дополнить 3% натуральными волокнами, а иногда и тонкими металлическими нитями.

Опасность статического электричества

Под влияние статэлектричества отмечается нарушение эксплуатации механизмов и технических устройств. Если работы проводятся во взрывоопасных производствах, то отмечается искрообразование.

На основании поведенных исследований установлено, что подобные явления могут привести к возгоранию и даже вызвать взрыв. Только грамотная защита поможет исключить проявление этих негативных явлений.  Главная опасность, возникающая от зарядов — это возникновение электроразряда.

Накапливанию способствует создание сухого воздуха, а также железобетонные конструкции сооружений. Причем полярность отмечается, как отрицательная, так и положительная.

Если во внешней окружающей среде создается сухость, то накопление заряда возможно в 10 тысяч вольт. Когда человек ходит в синтетических носках по ковру, то в общей сложности накапливает до 6 тысяч В.  Но оказание вреда, в этом случае будет несущественным, так как здесь не столь высокий показатель мощности.

Природное явление — это электрический разряд в виде молний. При этом происходит выделение больших мощностей и в результате появляются существенные разрушения.

Правила защиты

Защита от воздействия накопленных зарядов, в зависимости от видов производств устанавливается в соответствие с регламентом.

Если промышленность химическая:

  1. У резервуаров трубопроводов, предназначенных для разгрузки, специально устанавливаются устройства для снятия заряда.
  2. Чтобы обезопасить персонал при выполнении технологических операций используются нейтрализаторы индукционные и погружного типа, спецнасадки для отвода потока и емкости для релаксации.
  3. Обязательно следует обеспечить контроль за тем, чтобы жидкости не разбрызгивались по сторонам.

Как осуществляется отвод разрядов от средств передвижения и персонала:

  1. Изготовление механизмов предусмотрено из материалов, проводящих электроток.
  2. Предусмотрено выполнение основания полового покрытия из токопроводящих материалов в помещениях, где передвигаются цистерны.
  3. Персонал должен быть обеспечен специальной обувью.
  4. В емкостях, где осуществляется хранение взрывоопасных смесей, не допускается производство работ и нахождение в одежде из синтетических тканей.

Способы защиты от статики на производстве

Обеспечение защиты от зарядов статэлектричества на производстве осуществляется, разрабатываем комплекса мероприятий.

Перечень мероприятий:

  1. Свойства материалов повышаются, что обеспечивает рассеивание зарядов.
  2. Понижение показателя скорости при обработке металлических изделий, что значительно снижает уровень образования опасного фактора.
  3. Заземление должно быть выполнено в соответствие с регламентом.
  4. Устойчивость машин и механизмов к разрядам увеличивается.
  5. В рабочую зону не должен попадать электрический поток.

Основной способ — это отвод заряда в землю. Это оптимально помогает снизить уровень вредного фактора, а выполнение осуществляется по контуру.

Определение статического электричества

Согласно определению, статическое электричество как эффект – опасное явление, угрожающее здоровью и практической деятельности любого человека. Чтобы осмыслить и понять его природу, следует вспомнить, что все известные вещества состоят из молекул, а последние из мельчайших частичек, называемых атомами. В их центре находится ядро с протонами и нейтронами, а вокруг него по различным орбитам вращаются группы электронов. Суммарный заряд этих частиц соответствует тому же показателю для протонов, поэтому атом в целом нейтрален.

У некоторых веществ отрицательно заряженные электроны настолько удалены от центра, что при малейшем нарушении энергетического баланса они смещаются со своих постоянных орбит. Это, как правило, происходит в результате трения, когда в веществе выделяется небольшое количество тепловой энергии.

Если простые способы не помогли: используем патчер, сбрасываем до заводских настроек

Если ничего не помогло, и вы не знаете, почему игра не устанавливается, предлагаем использовать более сложные методы. Они будут действенными не на всех моделях смартфонов и планшетов, но большинство пользователей Андроид получали нужный результат.

Используем Lucky Patcher

Чтобы выполнить все инструкции, нужно предварительно получить ROOT-права, а затем сделать следующее:

  1. Установите приложение Lucky Patcher.
  2. В нижней панели найдите раздел «Инструменты».
  3. В появившемся меню найдите и выберите пункт «Патчи Андроида».
  4. На экране появится еще одно подменю с настройками. Среди них нужно найти пункт «Отключить проверку подписи в package manager-e», а затем нажать на него.
  5. Нажмите на кнопку «Пропатчить».
  6. По завершению этого действия телефон перезагрузиться.
  7. Снова закачайте ПО. Теперь оно должно установиться.

Сбрасываем устройство до заводских настроек

Если игры на андроид не устанавливаются все равно, нужно использовать самый радикальный метод – сброс до заводских настроек. Смартфон вернется к тем настройкам, которые были у него сразу после покупки, поэтому создание резервных копий должно предшествовать установке.

Как выполнить сброс? Следуйте этой инструкции:

  1. Зайдите в «Настройки».
  2. Найдите вкладку «Восстановление и сброс».
  3. Выберите «Сброс настроек», а затем подтвердите свой выбор.

Многие пользователи, которые сталкивались с тем, что на экране устройства выбивало «Приложение не установлено», смогли решить проблемы одним из вышеперечисленных способов.

Если игра не установилась даже после всех вышеописанных действий, стоит обратиться в сервисный центр. Возможно, на устройстве повреждены системные файлы. Мастера выполнят перепрошивку устройства.

Пожаловаться на контент

Диэлектрики в электрическом поле

Диэлектриками называют вещества, не проводящие электрический ток. Диэлектриками являются стекло, фарфор, резина, дистиллированная вода, газы.

В диэлектриках нет свободных зарядов, все заряды связаны. В молекуле диэлектрика суммарный отрицательный заряд электронов равен положительному заряду ядра. Различают полярные и неполярные диэлектрики.

В молекулах полярных диэлектриков ядра и электроны расположены так, что центры масс положительных и отрицательных зарядов не совпадают и находятся на некотором расстоянии друг от друга. То есть молекулы представляют собой диполи независимо от наличия внешнего электрического поля. В отсутствие внешнего электрического поля из-за теплового движения молекул диполи расположены хаотично, поэтому суммарная напряженность поля всех диполей диэлектрика равна нулю.

Если в отсутствие внешнего электрического поля центры масс положительных и отрицательных зарядов в молекуле диэлектрика совпадают, то он называется неполярным. Пример такого диэлектрика – молекула водорода. Если такой диэлектрик поместить во внешнее электрическое поле, то направления векторов сил, действующих на положительные и отрицательные заряды, будут противоположными. В результате молекула деформируется и превращается в диполь. При внесении диэлектрика в электрическое поле происходит его поляризация.

Поляризация диэлектрика – процесс смещения в противоположные стороны разноименных связанных зарядов, входящих в состав атомов и молекул вещества в электрическом поле.

Если диэлектрик неполярный, то в его молекулах происходит смещение положительных и отрицательных зарядов. На поверхности диэлектрика появятся поверхностные связанные заряды. Связанными эти заряды называют потому, что они не могут свободно перемещаться отдельно друг от друга.

Внутри диэлектрика суммарный заряд равен нулю, а на поверхностях заряды не скомпенсированы и создают внутри диэлектрика поле, вектор напряженности которого направлен противоположно вектору напряженности внешнего поля. Это значит, что внутри диэлектрика поле имеет меньшую напряженность, чем в вакууме.

Физическая величина, равная отношению модуля напряженности электрического поля в вакууме к модулю напряженности электрического поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества:

В полярном диэлектрике во внешнем электрическом поле происходит поворот диполей, и они выстраиваются вдоль линий напряженности.

Если внесенный в электрическое поле диэлектрик разрезать, то его части будут электрически нейтральны.

Заключение: о защите цепи в двух словах

Если вам кажется, что RC-фильтр или TVS-диод выглядят так, будто их просто добавляют в схему после решения всех «важных» вопросов, вы глубоко ошибаетесь и сильно рискуете. Вспомните все упомянутые в этой статье моменты, оказывающие влияние на производительность системы и уровень защиты, — должную компоновку, правильный выбор, используемые аналоговые входные каскады и стандарт МЭК, требованиям которого необходимо соответствовать. Если вы вспомните об этом на раннем этапе, то на заключительной стадии, скорее всего, вам не придется экстренно перепроектировать свою систему.

Как уже было сказано, эта статья далека от детального обзора. В частности, тема чувствительности будет более подробно рассмотрена в последующих статьях. Другие проблемы в конструкции приемника базовой станции включают алгоритмы автоматической регулировки усиления (automatic gain control, AGC), оценку канала и алгоритмы выравнивания. Мы планируем дополнить эту статью серией технических публикаций, чтобы упростить процесс проектирования и сделать более понятной всю систему приемника в целом.

Автор статьи благодарит Международную электротехническую комиссию (МЭК) за разрешение на воспроизведение информации из ее международных стандартов.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации