Андрей Смирнов
Время чтения: ~20 мин.
Просмотров: 43

Коэффициент мощности

Как компенсируют реактивную составляющую мощности?

Для понижения (компенсации) индуктивного характера реактивной составляющей используют введение емкостной составляющей в нагрузку, которая имеет положительный сдвиг фаз напряжения и тока (ток опережает напряжение). Реализуется это путем подключения параллельно нагрузке конденсаторов необходимой емкости. В результате происходит компенсация, и нагрузка со стороны питающей сети становится активной, с малой долей реактивной составляющей.

Компенсаторная установка на контакторах

Важно, чтобы не происходило перекомпенсации. То есть, даже после компенсации косинус не должен быть выше 0,98 – 0,99, и характер мощности всё равно должен оставаться индуктивным

Ведь компенсация имеет ступенчатый характер (контакторами переключаются трехфазные конденсаторы).

Конденсатор компенсатора реактивной мощности

Однако, для конечного потребителя компенсация реактивной мощности не имеет особого смысла. Польза в её компенсации есть только там, где имеются длинные сети передачи, которые “забиваются” реактивной мощностью, что в итоге снижает их пропускную способность.

Поэтому компенсация реактивной мощности относится к вопросу энергосбережения – она позволяет экономить расход топлива на электростанциях, и выработку бесполезной реактивной энергии, которая в конечном счете преобразуется в тепловую энергию и выбрасывается в атмосферу.

На предприятиях учитывается и активная, и реактивная потребляемые мощности, и при составлении договора оговаривается минимальное значение коэффициента мощности, которое нужно обеспечить. Если косинус упал – включается повышающий коэффициент при оплате.

Коррекция коэффициента мощности

Коррекция коэффициента мощности при помощи конденсаторов

Коррекция коэффициента мощности (англ. power factor correction (PFC)) — процесс приведения потребления конечного устройства, обладающего низким коэффициентом мощности при питании от силовой сети переменного тока, к состоянию, при котором коэффициент мощности соответствует принятым стандартам.

К ухудшению коэффициента мощности (изменению потребляемого тока непропорционально приложенному напряжению) приводят нерезистивные нагрузки: реактивная и нелинейная. Реактивные нагрузки корректируются внешними реактивностями, именно для них определена величина cos⁡φ{\displaystyle \cos \varphi }. Коррекция нелинейной нагрузки технически реализуется в виде той или иной дополнительной схемы на входе устройства.

Данная процедура необходима для равномерного использования мощности фазы и исключения перегрузки нейтрального провода трёхфазной сети. Так, она обязательна для импульсных источников питания мощностью в 100 и более ватт[источник не указан 3397 дней]. Компенсация обеспечивает отсутствие всплесков тока потребления на вершине синусоиды питающего напряжения и равномерную нагрузку на силовую линию.

Разновидности коррекции коэффициента мощности

  • Коррекция реактивной составляющей полной мощности потребления устройства. Выполняется путём включения в цепь реактивного элемента, производящего обратное действие. Например, для компенсации действия электродвигателя переменного тока, обладающего высокой индуктивной реактивной составляющей полной мощности, параллельно цепи питания включается конденсатор. В масштабах предприятия для компенсации реактивной мощности применяются батареи конденсаторов и других компенсирующих устройств.
  • Коррекция нелинейности потребления тока в течение периода колебаний питающего напряжения. Если нагрузка потребляет ток непропорционально приложенному напряжению, для повышения коэффициента мощности требуется схема пассивного (PPFC) или активного корректора коэффициента мощности (APFC). Простейшим пассивным корректором коэффициента мощности является дроссель с большой индуктивностью, включённый последовательно с питаемой нагрузкой. Дроссель выполняет сглаживание импульсного потребления нагрузки и выделение низшей, то есть основной, гармоники потребления тока, что и требуется (правда, это достигается в ущерб форме напряжения, поступающего на вход устройства). Активная коррекция коэффициента мощности ценой некоторого усложнения схемы устройства способна обеспечивать наилучшее качество коррекции, приближая коэффициент мощности к 1.

Заблуждения о законе сохранения энергии

Закон сохранения энергии, не подвергаемый сомнению, гласит: «энергия ни откуда не возникает и никуда не исчезает», а мы все еще продолжаем говорить о «сбережении энергии»!! Заблуждения возникают тогда, когда мы рассуждаем о законе сохранения, игнорируя другие законы термодинамики, в частности закон, гласящий, что энтропия («низкосортная» энергия) постоянно увеличивается. В математическом смысле «полная» энергия не имеет значения для потребителя энергии, следовательно, он должен заботиться об эффективности ее преобразования и сохранения. Точно так же, несмотря на то, что мы можем доказать математически, что потери реактивной мощности не являются реальными потерями и реактивная энергия вообще не тратится, у нас есть целый ряд причин для коррекции реактивной мощности. Это проще объяснить на основе физических аналогий.

Мнимая польза

Производится ряд «приборов», предлагаемых через Интернет, продавцы которых утверждают, что они сократят счета за электричество, корректируя коэффициент мощности в домашней электросети. Их рекламируют под разными названиями. В связи с этим потребители часто спрашивают, уменьшит ли компенсация реактивной мощности счета за электричество? Действительно, коррекция λ снижает потребление полного тока и соответственно уменьшает Q. Однако в настоящее время в жилых домах реактивная мощность не тарифицируется. Знание основ электротехники позволяет избежать участи жертв такого обмана.

Гармонические искажения

В настоящее время большая часть бытовой техники является для электросети нелинейной нагрузкой.
Телевизоры, компьютеры, мониторы, муз. центры, адаптеры, зарядные устройства, энергосберегающие лампочки и многие другие бытовые приборы
имеют выпрямитель или импульсный блок питания, искажающий форму тока.
В результате, дополнительно к основной частоте 50 гц, в сети появляются высшие кратные гармоники — 100 гц, 150 гц, 200 гц, 250 гц и.т.д…
Высшие гармоники тока на активной нагрузке выделяют активную мощность, но энергетически не связаны с источником (генератором)
и являются потерями для энергосистемы.
Мощность высших гармоник, как и реактивная, будет рассеиваться на активном сопротивлении проводов, кабелей,
трансформаторов и линий электропередач в виде тепла и других негативных явлений в силовых установках сети (паразитный резонанс, вихревые токи и.т.д…).
Коэффициент мощности для нелинейных нагрузок определится из коэффициента гармоник соотношением:

DPF (Distortion Power Factor) — это тот же PF, но только для гармонических искажений, без учёта сдвига фаз.
THD (Total Harmonic Distortion) — коэффициент гармоник,
равный отношению суммы квадратов тока или напряжения высших гармоник к квадрату тока (напряжения) основной гармоники.

В этом случае коэффициент мощности можно выразить, как отношение действующего значения тока основной гармоники
к действующему значению тока в нагрузке.

Многие бытовые потребители снабжены симисторным регулятором мощности,
который не только вносит гармонические искажения тока, но и сдвигает фазу основной гармоники тока, что приводит к дополнительным (фазовым) потерям.
То есть, в таких случаях, коэффициент мощности определится не только коэффициентом искажений, но и сдвигом фазы основной гармоники.

Здесь cosφ1 — косинус угла сдвига фазы тока основной (первой) гармоники относительно напряжения сети.

Современные пылесосы и стиральные машины с симисторными регуляторами оборотов вносят весь комплекс искажений тока по причине наличия электродвигателя,
как реактивной составляющей в нагрузке.
Тогда угол сдвига фаз для основной гармоники в расчётах увеличится с учётом общего сдвига тока индуктивностями обмоток двигателя.

Более существенные гармонические искажения в электросети возникают при использовании мощных сварочных преобразователей — инверторов,
которые могут искажать не только форму тока, но и напряжения в сети.
А это внесёт дополнительные потери мощности для всех других потребителей этой сети.

В общем случае для любых нагрузок, независимо от степени искажений и угла сдвига фаз, коэффициент мощности PF можно определить, как соотношение P/S,
вычислив активную P и полную S мощности интегрированием тока и напряжения во времени,
которое способны произвести современные цифровые измерительные приборы на основе микроконтроллеров.

Потребляемая (активная) мощность P — это среднее значение мощности в нагрузке за период,
т.е среднеарифметическое всех мгновенных значений UI.
Полная мощность — это произведение среднеквадратичных значений напряжения сети и тока нагрузки.
Тогда коэффициент мощности вычисляется следующим образом:

В целях компенсации гармонических искажений, в электрические потребители, содержащие нелинейные элементы в силовых цепях,
устанавливают специальные Корректоры Коэффициента Мощности (ККМ) — Power Factor Correction (PFC),
которые могут быть как пассивными (фильтры L или LC), так и активными.
Активные PFC — это преобразователи, способные приблизить форму тока в нагрузке к синусоидальной,
тем самым устранив (по возможности) высшие гармоники из общего спектра колебаний тока.

Замечания и предложения принимаются и приветствуются!

Мощность и прогресс светодиодных ламп

По мере развития технологии производства лед-светильников совершенствовалась их энергоэффективность. Наряду с ростом мощности улучшался и ее удельный коэффициент, иначе называемый косинусом фи. Для расчета его величины применяется формула:

cosφ=P/S

Где P – реальная величина потребляемой нагрузки (затраченной на полезную работу), а S – полная мощность (по паспортным данным). Чем она выше, тем больше коэффициент КПД источника света, а, следовательно, и его энергоэффективность. Его значение в зависимости от экземпляра светильника может варьироваться в широких пределах от 0 до 1. У лучших светодиодных ламп он может достигать 0,95 и выше.

Не затраченная на полезную работу электроэнергия носит название реактивной мощности (в противоположность коэффициенту фи). Как правило, это обычные теплопотери. Например, у стандартной лампы накаливания этот параметр может достигать 95%. Это значит, что всего лишь 5% потребляемой мощности преобразуется в световое излучение, а основная – тратится на нагрев окружающего пространства!

Совершенно иная картина у светодиодных светильников. Их коэффициент мощности начинается как минимум с 0,85. Благодаря этому для достижения заданной яркости, сравнимой со стандартной лампой накала, потребляемую мощность можно снизить на порядок (наглядно это будет показано в ниже приводимых таблицах). Помимо этого показателя, среди их наиболее явных преимуществ выделяются:

  1. Срок службы до 100 тыс. часов.
  2. Максимальная энергоэффективность.
  3. Пожаробезопасность.
  4. Высокое качество цветопередачи.
  5. Широкий спектр температуры цвета.
  6. Экологичность.

Однако, чтобы параметры светодиодных светильников, в том числе коэффициент мощности, соответствовали принятым стандартам, производители должны строго соблюдать технологии изготовления. Поэтому распространенные многочисленные подделки и дешевые изделия фирм-однодневок не могут характеризоваться высоким качеством.

Что такое коэффициент мощности (power factor, PF)

07.07.201613:53

Коэффициент мощности (КМ, Power Factor, PF)  равен отношению потребляемой нагрузкой активной мощности к полной потребляемой мощности. Коэффициент мощности – комплексный показатель, характеризующий потери энергии в электросети, обусловленные фазовыми и нелинейными искажениями тока и напряжения в нагрузке. Чем меньше коэффициент мощности нагрузки, тем больше эта нагрузка нагружает источник и провода. В случае нелинейных нагрузок (например импульсные блоки питания) коэффициент мощности еще и характеризует искажения формы кривой тока- ее отличия от синусоидальной и соответственно содержание высших гармоник.Коэффициент мощности может принимать значения от 0 (худший результат) до 1 (идеальный результат).Типичные значения коэффициента мощности:0.95 — хороший показатель; 0.9 — удовлетворительный показатель; 0.8 — плохой показатель; 0,6-0.7 — импульсный блок питания без корректора коэффициента мощности (блок питания компьютера, некоторые светодиодные и энергосберегающие лампы).Для синусоидального тока и напряжения (линейная нагрузка, например, утюг, электродвигатель, трансформатор, конденсаторные батареи):PF = P/S = cosφ, где,PF — коэффициент мощности.P — Потребляемая (полезная, активная) мощность. P=UIcosφ. Измеряется в ваттах (Вт, международное W)S — Полная мощность. S = UI. Измеряется в Вольт-амперах (ВА, или международное VA).φ — Угол сдвига фаз между током и напряжением, созданный реактивными элементами нагрузок (обмотки электродвигателей, трансформаторов, электромагнитов), в зависимости от значения этого угла (емкостная или индуктивная нагрузка) PF может характеризоваться как опережающий или отстающий.Коэффициент мощности при нелинейных нагрузкахРеактивная составляющая даёт только один из видов нелинейных искажений (фазовый сдвиг). Однако коэффициент мощности реагирует на любую нелинейность нагрузки (нелинейность ВАХ), когда ток меняется непропорционально приложенному напряжению. Например,  коэффициент мощности нагрузки, которая представляет собой последовательно соединённые диод и обычный резистор, составляет около 0,71. Здесь нет никакой реактивной нагрузки, просто нелинейная ВАХ диода приводит к уменьшению коэффициента мощности. В случае активной нелинейной нагрузки коэффициент мощности определяется отношением активной мощности первой гармоники тока к полной мощности, потребляемой нагрузкой (это определение справедливо только в частном случае, когда напряжение имеет чистую синусоидальную форму). Некоторые нагрузки могут значительно искажать и форму напряжения.В случае несинусоидального тока уже следует рассматривать неактивную мощность, состоящую (как минимум) из реактивной и мощности искажения (зависит от коэффициента искажения кривой тока).PF большинства потребителей меняется в зависимости от их режима работы (как правило он меньше на холостом ходу и выше при номинальной нагрузке)Источники информации:Электрические системы и сети: Учебник для вузов.— М.: Энергоатомиздат, 1989, — 592 с: ил. Идельчик В. И. Основы современной энергетики Курс лекций для менеджеров энергетических компаний Под общей редакцией чл.-корр. РАН Е. В. АметистоваЭлектротехника/Ю. М. Борисов, Д. Н. Липатов, Ю. Н. Зорин. Учебник для вузов. — 2-е изд., пере-раб. и доп.—М.: Энергоатомиздат, 1985.— 552 с.https://ru.wikipedia.org/wiki/%D0%9E%D0%B1%D1%81%D1%83%D0%B6%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5:%D0%9A%D0%BE%D1%8D%D1%84%D1%84%D0%B8%D1%86%D0%B8%D0%B5%D0%BD%D1%82_%D0%BC%D0%BE%D1%89%D0%BD%D0%BE%D1­%81%D1%82%D0%B8http://meandr.org/archives/26309http://www.thg.ru/howto/kak_rabotaet_blok_pitaniya/kak_rabotaet_blok_pitaniya-02.htmlhttps://ru.m.wikipedia.org/wiki/%D0%9A%D0%BE%D1%8D%D1%84%D1%84%D0%B8%D1%86%D0%B8%D0%B5%D0%BD%D1%82_%D0%BC%D0%BE%D1%89%D0%BD­%D0%BE%D1%81%D1%82%D0%B8http://tel-spb.ru/pf/http://rateli.ru/books/item/f00/s00/z0000008/st090.shtml с примерами рассчета лишних потерьhttp://www.elec.ru/articles/koefficient-moshnosti-v-setyah-s-nelinejnymi-nagru/http://www.tensy.ru/article08.htmlhttp://www.tensy.ru/article06.htmlhttp://electricalschool.info/main/elsnabg/260-vlijanie-vysshikh-garmonik.html

Просмотров:23755

Коэффициент мощности

Коэффициент использования производственной мощности

Косинус фи является тем параметром, который характеризует деформацию синусоиды тока, используемого от электрической сети переменного тока, согласно картинке ниже. Он является основным критерием, определяющим потери в проводах и на внутреннем сопротивлении сети.


Искажение тока

Косинус фи, основываясь на таблице стандартов энергопотребления, имеет такие показатели:

  1. Отличный – при значениях от 0,95 до 1;
  2. Хороший – при значениях от 0,8 до 0,95;
  3. Удовлетворительный – при значениях от 0,65 до 0,8;
  4. Неудовлетворительный – при значениях ниже 0,65.

Коэффициент мощности асинхронного двигателя и генератора

Поскольку статор и ротор асинхронного двигателя выполнены путем намотки медного провода, то, помимо активной составляющей, имеется индуктивная и емкостная составляющая сопротивления. Соответственно, каждую половину периода колебания с частотой f в сеть возвращается некоторое количество электричества. Негативными последствиями такой операции, помимо паразитного нагрева проводов, является, по сути, вырабатывание генератором электроэнергии, часть которой расходуется впустую, путем циркулирования между генератором и двигателем. Для частных случаев величина реактивных токов является малой, однако если речь идет о больших предприятиях, то величина реактивной мощности может быть настолько велика, что может повлиять на энергосистему целого региона.

Наличие заниженного коэффициента мощности влечет за собой ряд неблагоприятных проявлений:

  • Применение в линиях электропередач проводов большего сечения и использование электрических и трансформаторных станций большей мощности;
  • Снижение коэффициента полезного действия генерирующих и трансформирующих элементов цепи;
  • Снижение полезного напряжения и мощности в проводах.

Мероприятия по увеличению cosφ направлены на:

  1. Максимальное сокращение потерь электрической энергии;
  2. Применение оптимального количества цветных металлов в процессе формирования электропроводящей аппаратуры;
  3. Использование электрических двигателей, трансформаторов, генераторов и других устройств, работающих на переменном токе, с максимальной пользой и для увеличения их срока службы. Соответственно, улучшение коэффициента мощности неизбежно влечет за собой увеличение коэффициента полезного действия питающей сети.

К основным методам по увеличению коэффициента мощности относятся:

  1. Компенсация реактивного компонента путем включения в цепь элемента с обратным действием. Промышленные предприятия, имеющие в питающей сети большой индуктивный компонент, с целью его уменьшения применяют электротехнику, собранную на конденсаторах. В связи с этим циркуляция паразитных составляющих проходит между потребителями и установкой, не принося вред питающей сети;
  2. Осмысленный подход к технологическому процессу и разумное рассредоточение нагрузок с целью увеличения коэффициента мощности.

Для таких целей прибегают к таким мероприятиям:

  • Использование оптимальной нагрузки на электрические двигатели в процессе эксплуатации;
  • Исключить использование оборудования, потребляющего индуктивную мощность, без нагрузки или в режиме холостого хода;
  • Использование электрических двигателей с другими характеристиками.

Разобравшись, что такое коэффициент мощности, и осознав техпроцессы, проходящие в питающей сети, при наличии паразитных мощностей можно обоснованно подходить к вопросу выбора оборудования, отвечающего характеристикам этой сети. Второстепенный, на первый взгляд, показатель косинус фи является важным критерием, как для поставщиков электрической энергии, так и для различных ее потребителей.

Почему следует повышать коэффициент мощности?

Есть несколько причин для увеличения коэффициента мощности. Вот некоторые преимущества, которые можно получить при улучшении коэффициента мощности.

1.Снижение платы поставщику электроэнергиив связи со следующими факторами:

a) Уменьшение величины максимальной мощности, предъявляемой к оплате.

Напомним, что причиной низкого коэффициента мощности являются индуктивные нагрузки, которым нужна реактивная мощность. Увеличение реактивной мощности приводит к увеличению полной мощности, потребляемой от поставщика электроэнергии.

Таким образом, низкий коэффициент мощности предприятия вынуждает поставщика увеличивать мощность генерации и пропускную способность линии, чтобы справиться с дополнительным потреблением.

При увеличении коэффициента мощности используется меньше реактивной мощности. Это приводит к уменьшению активной мощности, то есть к снижению платы поставщику.

б) Исключение штрафа за коэффициент мощности.

Поставщики электроэнергии обычно выставляют дополнительный счёт потребителям, если их коэффициент мощности меньше 0,95 (если коэффициент мощности потребителя падает ниже 0,85, некоторые поставщики не гарантируют энергоснабжение). Таким образом, при увеличении коэффициента мощности можно избежать повышенных расходов на электроэнергию.

2.Увеличение пропускной способности системы энергоснабжения и уменьшение потерь электроэнергии

При добавлении в систему конденсаторов (являющихся источниками реактивной мощности) увеличивается коэффициент мощности и улучшается пропускная способность системы для активной мощности.

К примеру, трансформатор 1000 кВА с коэффициентом мощности 80% выдаёт мощность 800 кВт (600 квар):

1000 кВА =

Отсюда реактивная мощность – 600 квар.

При увеличении коэффициента мощности до 90% можно получить более высокую активную мощность при той же величине полной мощности:

1000 кВА =

Отсюда реактивная мощность – 436 квар.

Активная мощность системы увеличивается до 900 кВт, при этом потребляемая от поставщика реактивная мощность составляет только 436 квар.

Нескорректированный коэффициент мощности приводит к потерям мощности системы распределения электроэнергии. При увеличении коэффициента мощности эти потери уменьшаются. В связи с продолжающимся ростом стоимости энергии повышение энергоэффективности предприятия имеет очень большое значение. При уменьшении потерь в системе появляется возможность подключения к ней дополнительной нагрузки.

3. Увеличение уровня напряжения в энергосистеме, уменьшение нагрева и более эффективная работа электродвигателей

Как уже говорилось, нескорректированный коэффициент мощности приводит к потерям мощности в системе распределения электроэнергии. При этом может снижаться уровень напряжения. Чрезмерное падение напряжения может стать причиной перегрева и преждевременного выхода из строя электродвигателей и других индуктивных устройств.

Поэтому при увеличении коэффициента мощности падение напряжения на фидерных кабелях и связанные с этим проблемы минимизируются. Двигатели будут меньше нагреваться и работать более эффективно, также несколько увеличатся их мощность и пусковой момент.

Низкий коэффициент мощности и его последствия

Рассмотренное запаздывание тока относительно напряжения — это не хорошее явление. Как оно может сказаться на ваших лампочках или проводке?

во-первых, это повышенное потребление электроэнергии


Часть энергии будет просто «болтаться» в катушке, при этом не принося никакой пользы. Правда не пугайтесь, ваш бытовой счетчик реактивную энергию не считает и платить вы за нее не будете.

Например, если вы включите в розетку инструмент или светильник с полной мощностью 100Ва, на блоке питания которого будет указано cos ϕ=0,5. То прибор учета накрутит вам только на половину от этой величины, то есть 50Вт.

Зато по проводам питания будет проходить вся нагрузка, разогревая их бесполезной работой.

величина тока в проводке увеличится

Вот известное наглядное видео, демонстрирующее последствия этого для проводки.

для эл.станций и трансформаторов оно вредно перегрузкой

Казалось бы, выбрось катушку и вся проблема исчезнет. Однако делать этого нельзя.

В большинстве светильников, лампы работают не отдельно, а в паре с источниками питания. И в этих самых источниках, как раз таки присутствуют разнообразные катушки.

Катушки просто необходимы как функциональная часть всей схемы и избавиться от них не получится. Например в тех же дроссельных лампах ДРЛ, ДНАТ, люминесцентных и т.п.

Поэтому характеристика коэфф. мощности, здесь больше относится к блоку питания, нежели к самой лампе. Данный cos ϕ может принимать значение от ноля до единицы.

Ноль означает, что полезная работа не совершается. Единица — вся энергия идет на совершение полезной работы.

Чем выше коэффициент мощности, тем ниже потери электроэнергии. Вот таблица косинуса фи для различных потребителей:

Что такое реактивная мощность?

Коэффициент мощности cos фи (φ) определяется как отношение полезной мощности к полной. Математически это определение часто записывают в виде кВт/кВА, где числитель – активная (действительная) мощность, а знаменатель – кажущаяся (активная + реактивная, полная) мощность. И хотя определение выглядит весьма простым, само понятие реактивной мощности весьма зачастую туманно и запутанно даже для людей с неплохой технической подготовкой.

Объяснение понятия реактивной мощности основывается на том, что в системе переменного тока в случае, когда напряжение и ток возрастают и уменьшаются одновременно, передается только активная мощность, а когда между током и напряжением есть сдвиг во времени (сдвиг по фазе), передается как активная, так и реактивная мощность. Однако, при расчете среднего за период значения, присутствует только среднее значение активной мощности, которое приводит к «чистой» передаче энергии из одной точки в другую, тогда как среднее значение реактивной мощности равно нулю, независимо от  структуры и режима работы системы.

В случае реактивной мощности количество энергии, протекающее в одном направлении равно количеству энергии, протекающему в противоположном направлении (иначе говоря, реактивные элементы сети – конденсаторы, индуктивности и др. – обмениваются реактивной энергией). Это означает, что реактивная мощность не производится и не потребляется.

Но, в действительности, мы наблюдаем потери реактивной мощности и внедряем много различного оборудования для ее компенсации, чтобы уменьшить потребление электроэнергии и затраты.

Способы увеличения «косинуса фи»

Вышеперечисленные последствия низкого cos φ с достаточной убедительностью говорят о том, что необходимо вести борьбу за высокий cos φ. К мерам увеличения cos φ относятся:

  1. Правильный выбор типа, мощности и скорости вновь устанавливаемых двигателей;
  2. Увеличение загрузки двигателей;
  3. Недопущение работы двигателей вхолостую продолжительное время;
  4. Правильный и высококачественный ремонт двигателей;
  5. Применение статических (то есть неподвижных, невращающихся) конденсаторов.

Малый вес конденсаторов, отсутствие вращающихся частей, незначительные потери энергии в них, легкость обслуживания, безопасность и надежность в работе дают возможность широкого применения статических конденсаторов для повышения cos φ двигателей.

Подбирая величину емкости при параллельном соединении и емкости, можно добиться уменьшения угла сдвига фаз между напряжением и общим током при неизменной активной и реактивной мощности, потребляемой ветвью с индуктивностью. Этот угол можно сделать равным нулю. Тогда ток, текущий на общем участке цепи, будет иметь наименьшую величину и совпадать по фазе с напряжением сети.

Это явление называется компенсацией сдвига фаз и широко используется на практике. По экономическим соображениям невыгодно доводить угол φ до нуля, практически целесообразно иметь cos φ = 0,9 – 0,95.

Рассмотрим расчет емкости конденсаторов, которые нужно включить параллельно индуктивной нагрузке, чтобы повысить cos φ до заданной величины.

На рисунке 1, а изображена схема включения индуктивной нагрузки в сеть переменного тока. Для увеличения коэффициента мощности параллельно потребителю включена батарея конденсаторов. Векторная диаграмма начинается с построения вектора напряжения U. Ток I1 вследствие индуктивного характера нагрузки отстает по фазе от напряжения сети на угол φ1. Необходимо уменьшить угол сдвига фаз между напряжением U и общим током до величины φ. Иначе говоря, увеличить коэффициент мощности от значения cos φ1 до значения cos φ.

Рисунок 1. Увеличение cos φ при помощи статических конденсаторов:а – схема включения; б – векторная диаграмма

Отрезок ос, представляющий активную слагающую тока I1, равен:

ос = I1 × cos φ1 = оа × cos φ1 .

Пользуясь выражением мощности переменного тока

P = U × I × cos φ ,

отрезок ос выразим так:

Ток на общем участке цепи I равен геометрической сумме тока нагрузки I1 и тока конденсатора IC.

Из треугольника оас и овс имеем:

ас = ос × tg φ1 ;bс = ос × tg φ .

Из диаграммы получаем:

ab = od – ac – bc = ос × tg φ1 – ос × tg φ = oc × (tg φ1 – tg φ) .

Так как

abIC

Вместе с этим, как было указано выше,

IC = U × ω × C .

Следовательно,

Пример 1. Электрические двигатели шахты потребляют мощность 2000 кВт при напряжении 6 кВ и cos φ1 = 0,6. Требуется найти емкость конденсаторов, которую нужно подключить на шины установки, чтобы увеличить cos φ до 0,9 при f = 50 Гц.

Решение.

cos φ1 = 0,6;     φ1 = 53°10’;     tg φ1 = 1,335;

cos φ = 0,9;     φ = 25°50’;     tg φ = 0,484;

Норматив и толкование значения

У КИМ нет нормативных значений. В каждом отдельно взятом случае будут свои границы желаемой эффективности, тем более, если речь идет о человеческих ресурсах. Однако по значению показателя можно сделать определенные выводы:

  • низкое значение говорит о неэффективном управлении и нерациональном подходе к организации внутренних процессов на предприятии. Для улучшения положения необходимо вовлекать дополнительное оборудование и менять схему работы;
  • при значении коэффициента более 0,7 (70% эффективности) можно повысить производительность собственными силами без привлечения дополнительных ресурсов;
  • показатель, равный 1 (100%), свидетельствует о полной загруженности ресурсов, и для увеличения объемов производства нужно дополнительное оборудование.

В западных странах хорошим показателем является величина обобщенного коэффициента 80-82%. Можно использовать эти данные для сравнения КИМ в целом по предприятию.

Значение коэффициента не может быть более 100. В противном случае необходимо будет повышать производительность оборудования на единицы времени или пересматривать сменность работ.

Важно! На значение КИМ могут влиять внешние факторы, такие как волантильность спроса, появление новых конкурентов, форс-мажорные обстоятельства. Чтобы оставаться конкурентоспособным, предприятию следует постоянно совершенствовать свою работу, улучшать и обновлять оборудование, повышать производительность труда

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации