Андрей Смирнов
Время чтения: ~20 мин.
Просмотров: 20

Гироскоп в телефоне что это?

Минусы ДГУ

Вязкостное демпфирование.

Для гашения выходного момента силы относительно оси двухстепенного гироузла можно использовать вязкостное демпфирование. Кинематическая схема такого устройства представлена на рис. 5; она отличается от схемы на рис. 4 тем, что здесь нет противодействующей пружины, а вязкостный демпфер увеличен. Когда такое устройство поворачивается с постоянной угловой скоростью вокруг входной оси, выходной момент гироузла заставляет рамку прецессировать вокруг выходной оси. За вычетом эффектов инерционной реакции (с инерцией рамки связано в основном лишь некоторое запаздывание отклика) этот момент уравновешивается моментом сил вязкостного сопротивления, создаваемым демпфером. Момент демпфера пропорционален угловой скорости вращения рамки относительно корпуса, так что выходной момент гироузла тоже пропорционален этой угловой скорости. Поскольку этот выходной момент пропорционален входной угловой скорости (при малых выходных углах рамки), выходной угол рамки увеличивается по мере того, как корпус поворачивается вокруг входной оси. Стрелка, движущаяся по шкале (рис. 5), указывает угол поворота рамки. Показания пропорциональны интегралу угловой скорости вращения относительно входной оси в инерциальном пространстве, и поэтому устройство, схема которого представлена на рис. 5, называется интегрирующим двухстепенным гиродатчиком.

На рис. 6 изображен интегрирующий гиродатчик, ротор (гиромотор) которого заключен в герметично запаянный стакан, плавающий в демпфирующей жидкости. Сигнал угла поворота плавающей рамки относительно корпуса вырабатывается индукционным датчиком угла. Положение поплавкового гироузла в корпусе задает датчик момента в соответствии с поступающими на него электрическими сигналами. Интегрирующие гиродатчики обычно устанавливают на элементах, снабженных сервоприводом и управляемых выходными сигналами гироскопа. При таком расположении выходной сигнал датчика момента можно использовать как команду на поворот объекта в инерциальном пространстве. См. также ГИРОКОМПАС.

Описание и схема

Схема гироскопа. Стрелки реакции вокруг выходной оси (синие) соответствуют силам, действующим вокруг входной оси (зеленые), и наоборот.

Гироскоп — это инструмент, состоящий из колеса, установленного на двух или трех карданных шарнирах, обеспечивающих поворотные опоры, позволяющие колесу вращаться вокруг одной оси. Набор из трех карданов, один установленный на другом с ортогональными осями поворота, может использоваться, чтобы позволить колесу, установленному на самом внутреннем кардане, иметь ориентацию, остающуюся независимой от ориентации в пространстве его опоры.

В случае гироскопа с двумя стабилизаторами внешний стабилизатор, который является рамой гироскопа, установлен так, чтобы поворачиваться вокруг оси в своей собственной плоскости, определяемой опорой. Этот внешний стабилизатор имеет одну степень свободы вращения, а его ось — нет. Второй стабилизатор, внутренний стабилизатор, установлен в раме гироскопа (внешний стабилизатор) с возможностью поворота вокруг оси в своей собственной плоскости, которая всегда перпендикулярна оси вращения рамы гироскопа (внешний стабилизатор). Этот внутренний стабилизатор имеет две степени свободы вращения.

Ось прялки определяет ось вращения. Ротор вынужден вращаться вокруг оси, которая всегда перпендикулярна оси внутреннего подвеса. Таким образом, ротор обладает тремя степенями свободы вращения, а его ось — двумя. Колесо реагирует на силу, приложенную к входной оси, силой реакции на выходную ось.

Поведение гироскопа легче всего оценить, рассмотрев переднее колесо велосипеда. Если колесо отклонено от вертикали так, что верхняя часть колеса перемещается влево, передний обод колеса также поворачивается влево. Другими словами, вращение одной оси вращающегося колеса вызывает вращение третьей оси.

Гироскоп Маховик будет выброшен или сопротивляться о выходной оси в зависимости от того , выходных шарниры имеют свободную или фиксированную конфигурацию. Примеры некоторых свободные выходных-карданные устройства были бы ссылки отношения гироскопов используются для смысла или измерить тангаж, крен и рыскание отношения углов в космическом корабле или самолете.

Анимация гироскопического колеса в действии

Центр тяжести ротора может находиться в фиксированном положении. Ротор одновременно вращается вокруг одной оси и может колебаться вокруг двух других осей, и он может свободно вращаться в любом направлении вокруг фиксированной точки (за исключением собственного сопротивления, вызванного вращением ротора). Некоторые гироскопы имеют механические эквиваленты, заменяющие один или несколько элементов. Например, вращающийся ротор может быть подвешен в жидкости, а не установлен в карданном подвесе. Гиродин (CMG) является примером устройства с фиксированными выходными-карданные , который используется на космических аппараты для удержания или поддержания желаемого угла пространственного положения или указывающего направление с помощью гироскопической силы сопротивления.

В некоторых особых случаях внешний кардан (или его эквивалент) можно не устанавливать, чтобы ротор имел только две степени свободы. В других случаях центр тяжести ротора может быть смещен относительно оси колебаний, и, таким образом, центр тяжести ротора и центр подвески ротора могут не совпадать.

Механический гироскоп

В 1852 году французский физик, механик и астроном, будущий член Парижской академии наук и член-корреспондент Петербургской академии наук, Жан Бернар Леон Фуко описал созданный им прибор, который он назвал гироскопом (от греч. gyros — «круг», gyrou — «кружусь», «вращаюсь» и scopeo — «смотрю», «наблюдаю»). Как показал Фуко, с его помощью можно автономно определять направление движения объекта и его скорость.

Как уже было сказано, изобретение гироскопа стало в известном смысле результатом изучения поведения древнейшей детской игрушки — волчка. Если раскрутить волчок относительно оси симметрии, то выясняется, что он оказывает энергичное сопротивление попытке изменить положение оси вращения, его ось вращения устойчиво сохраняет свое положение при наклонах основания или толчках. Именно в силу этого свойства вращающийся волчок не падает, а его ось описывает конус вокруг вертикали; это движение называется регулярной прецессией тяжелого твердого тела. Можно показать, что ось волчка в конце концов устанавливается параллельно земной оси. Этим и объясняется применение «волчка» в гироскопах.

В гироскопе Фуко ротор (волчок) был установлен в карданов подвес с вертикальной осью наружной рамки. Фуко указал на три возможности использования гироскопа:

  • если быстровращающийся ротор имеет три степени свободы, то его ось вращения сохраняет неизменную ориентацию в инерциальном пространстве, что позволяет с помощью такого прибора наблюдать вращение Земли;

  • если внутреннюю рамку жестко связать с наружной так, чтобы ось ротора могла поворачиваться лишь в горизонтальной плоскости, то эта ось стремится установиться в плоскость меридиана;

  • если наружную рамку жестко связать с корпусом, а внутренней рамке дать свободу вращения относительно ее оси и установить ось ротора в плоскость меридиана, то она стремится установиться параллельно оси вращения Земли.

     Гироскопы за последние сто пятьдесят лет прошли в своем развитии четыре больших этапа принципиальных преобразований, каждый из которых непосредственно связан с историей развития физики и технологий

Свободно вращающийся гироскоп под воздействием внешней силы отклоняется не внаправлении этой силы, а перпендикулярно ей — прецессирует. В авиации, например, это свойство позволяет судить о движении самолета в пространстве в отсутствие ориентиров. Прецессия возникает, например, если крыло самолета, в котором установлен гироскоп, начинает крениться

Тогда пилот на приборной доске видит угол поперечного крена, что очень важно, если нет никаких ориентиров. Кроме того, он видит продольный крен, от носа до хвоста

Если гироскоп связан с акселерометрами (приборами, измеряющими скорость самолета), то может функционировать как автопилот, то есть автоматически поддерживать самолет на курсе.

Что такое гироскоп и для чего он нужен, принцип работы

Начнем с того, что гироскоп – это механическое или электромеханическое устройство, способное определять собственный угол наклона относительно земной поверхности. Если сравнивать его с другими подобными устройствами, изобретен он был относительно поздно, а именно в 1817 году. Основной элемент конструкции гироскопа представляет собой вращающийся вокруг вертикальной оси ротор-волчок, причем его ось может изменять положение в пространстве, а скорость вращения волчка значительно превышает скорость поворота оси его вращения. Благодаря этому волчок всегда сохраняет свое положение независимо от действующих на него извне сил, в чём и заключается весь принцип работы гироскопа.

Первоначально это нехитрое устройство использовалось в качестве учебного пособия. Практическое применение ему нашли только спустя 60 лет, когда инженер Обри додумался устанавливать его в торпеды для стабилизации их курса. Сегодня это полезное изобретение, будучи многократно усовершенствованным, широко применяется в самых разных механизмах. Для точного определения положения в пространстве гироскопы используются в морских судах, самолетах, космических аппаратах, ракетах, симуляторах, радиоуправляемых устройствах вроде квадрокоптеров и, конечно же, в смартфонах.

Как работает гироскоп

Обычный гироскоп состоит из инерционного предмета, который быстро вращается вокруг своей оси. Тем самым он сохраняет свое направление, а смещение контролируемого объекта измеряется по изменению положения подвесов. В смартфоны такой волчок явно не поместиться, вместо него используется МЭМС.

Преобразование механического движения в электрический сигнал

В самом простом одноосевом гироскопе есть две подвижные массы, двигающиеся в противоположных направлениях (на картинке изображены синим цветом). Как только прикладывается внешняя угловая скорость, на массу действует сила Кориолиса, которая направлена перпендикулярно их движению (отмечена оранжевым цветом).

Под действием силы Кориолиса происходит смещение масс на величину пропорциональную прикладываемой скорости. Изменение положения масс меняет расстояние между подвижными электродами (роторами) и неподвижными (статорами), что приводит к изменению емкости конденсатора и соответственно напряжения на его обкладках, а это уже электрический сигнал. Вот такие множественные сигналы и распознаются гироскопом MEMS, определяя направление и скорость движения.

Вычисление ориентации смартфона

Микроконтроллер получает сведения о напряжении и преобразует их в угловую скорость в данный момент. Величину угловой скорости можно определять с заданной точностью, например до 0,001 градусов в секунду. Чтобы определить насколько градусов вокруг оси повернули устройство, необходимо мгновенную скорость умножить на время между двумя показаниями датчика. Если использовать трехосевой гироскоп, то получим данные о поворотах относительно всех трех осей, то есть таким образом определить ориентацию смартфона в пространстве.

Здесь стоит отметить, что для получения значений углов, необходимо интегрировать первоначальные уравнения, в которые входят угловые скорости. При каждом интегрировании увеличивается погрешность. Если вычислять положение только при помощи гироскопа, то со временем рассчитываемые значения станут некорректными.

Поэтому в смартфонах для точного определения ориентации в пространстве необходимы данные еще и акселерометра. Этот датчик измеряет линейное ускорение, но не реагирует на повороты. Оба датчика способны полностью описать все виды движения. Основное преимущество гироскопа над акселерометром в том, что он реагирует на движение в любом направлении.

Функции гироскопа в смартфонах

Гироскоп вывел игровой процесс на новый уровень. Вращая устройство в пространстве, пользователь может управлять автомобилем, вести игровой поединок, искать персонажей и многое другое.

Если говорить о стандартных приложениях, наиболее показательными преимущества гироскопа выглядят, например, в приложении калькулятор. В портретной ориентации пользователю доступны стандартные действия: сложение, вычитание, умножение и деление. Повернув телефон на 90 градусов, можно получить большой выбор тригонометрических функций на все случаи жизни.

Разумеется, с автоматической работы датчика гораздо удобнее смотреть видео в YouTube и листать фотографии. Еще датчик можно использовать, чтобы сделать из телефона строительный уровень — д
ля этого нужно скачать специальное приложение.

По сути, недостатков у гироскопа нет. Конечно, иногда появляется дискомфорт при просмотре картинок или чтении, когдапри изменении позы человека и устройства возможны нежеланные изменения ориентации экрана. Решение простое — отключить автоповорот в настройках.

Почти все современные мобильные устройства оборудованы различными датчиками. Зачастую в телефоны встраиваются магнитометрические и термальные датчики, а также приборы, реагирующие на освещенность и изменение расстояния (приближение или удаление). Кроме того, любой гаджет оснащен акселерометром и гироскопом. Все эти элементы являются составной частью микроэлектромеханической системы, которая относится к категории «MEMS».

Каждый имеющийся в устройстве датчик имеет свою индивидуальную функцию. В данном случае гироскоп не является исключением.

Многие продвинутые пользователи считают, что гироскоп и акселерометр выполняют одну и ту же функцию, но это не так. Два этих, на первый взгляд одинаковых, прибора имеют большое различие как по характеристикам, так и по функциональности.

Гироскоп, или гиродатчик, является сенсорным прибором, который способен фиксировать расположение определенного объекта в пространстве касательно трех плоскостей. В свою очередь, акселерометром, или G-сенсором, называется прибор, имеющий возможность измерять проекцию мнимого ускорения.

Получается, что встроенный в коммуникатор акселерометр отвечает за поворот картинки экрана, когда гиродатчик реагирует даже на незначительные колебания устройства независимо от его расположения.

Также нужно учитывать, что если телефон обустроен двумя такими датчиками, то восприимчивость гаджета к незначительным и самым быстрым перемещениям увеличивается в несколько раз.

Одним из первых гаджетов, в который был встроен гироскоп, является Айфон. Именно этот коммуникатор с гиродатчиком открыл своим пользователям абсолютно новые и увлекательные возможности.

Наличие гироскопа в любой модели современного мобильного телефона позволяет обычным его встряхиванием осуществлять следующие действия:

  • отвечать на входящие звонки;
  • перелистывать страницы электронной коники;
  • листать изображения;
  • менять прослушиваемые треки;
  • увеличивать или уменьшать громкость;
  • обновлять блютуз;
  • работать с GPS-навигаторами.

Кроме того, мобильное устройство с таким датчиком имеет еще достаточно много всевозможных и разнообразных функций.

Что такое гироскоп

Юла, она же волчок – известная игрушка. Она при быстром вращении сохраняет устойчивость на одной точке опоры. Это незамысловатое устройство является простейшим примером гироскопа – приспособления, реагирующего на изменения углов ориентации тела, на котором оно установлено, в трех плоскостях. Термин впервые использовал французский физик и математик Жан Фуко.

Гироскопы классифицируют по количеству степеней свободы и по принципу действия (механические и оптические). Вибрационные гиродатчики, подвид механических, широко используются в мобильных устройствах. Применение GPS-навигации отодвинуло на второй план изначальную функцию гироскопов – помощь при ориентации на местности, но эта технология все еще незаменима в современных моделях телефонов.

Отличие от акселерометра

На современных мобильных гаджетах часто установлены оба эти прибора. Ключевое отличие гироскопа от акселерометра и других сенсоров заключается в самом принципе работы данных аппаратов. Первый определяет собственный угол наклона относительно земли, а второй способен измерять линейное ускорение. Преимущество акселерометра – знание ускорения позволяет точно вычислить расстояние, на которое было перемещено устройство.

На практике оба прибора могут как заменять, так и дополнять друг друга. Фактически и тот, и тот лишь регистрируют положение относительно земной поверхности. Как и гироскоп, акселерометр может передавать сведения об ускорении смартфону, на который он установлен.Часто используются оба датчика; они хорошо взаимодействуют. В таблице зафиксированы ключевые особенности приборов.

Акселерометр

Гироскоп

Общие черты

Определяют свое положение, взаимодействуют с другим программным обеспечением

Различия

Определение собственного ускорения

Определяет угол наклона

Измеряет расстояние

Измеряет положение устройства

Принцип работы­

Простыми словами, гироскоп – это волчок, быстро вращающийся вокруг вертикальной оси, закрепленный на раме, которая способна поворачиваться вокруг горизонтальной оси, и закреплена на другой раме, которая поворачивается вокруг третьей оси. Как бы мы ни поворачивали волчок, он всегда имеет возможность все равно находиться в вертикальном положении. Датчики снимают сигнал, как волчок ориентирован относительно рам, а процессор получает информацию и считывает с высокой точностью, как рамы в этом случае должны быть расположены относительно силы тяжести.

Кто и когда изобрёл

Как часто бывает, изобретение это оказалось совсем не новым. В начале XIX века гироскоп изобрёл немецкий физик Иоганн Готтлиб Фридрих фон Боненбергер.

В середине XIX века изобретение Боненбергера доработал француз Фуко – тот самый, создатель знаменитого маятника. Тогдашние приборы использовали сложную систему механической балансировки массивного тела, чтобы оно оставалось на месте. А угол наклона тела по отношению к земной оси можно было измерить по изменению положений опор груза. Таким образом, прибор определял направление движения в пространстве через угол наклона к земной оси.

Принцип работы гироскопа в мобильном устройстве несколько иной: чтобы вписаться в миниатюрный чип, используются специальные конденсаторы, которые считывают смещение кристалла внутри чипа и так измеряют его отклонение от оси.

На сегодняшний день гироскоп в телефоне – вещь обязательная. До этого за определение положения отвечали одни только акселерометры – они худо-бедно справлялись, но, как оказалось, можно и лучше. Сегодня используются комбинированные модули из акселерометра и гироскопа, которые позволяют с высокой точностью отслеживать движения и посылать данные на обработку.

Принцип действия датчика

Пользователь, впервые столкнувшийся с термином «акселерометр» в списке характеристик смартфона, может заинтересовать, что это такое, как работает и выглядит. Ответить на эти вопросы несложно –  устройство, получившее название от латинского слова «accelero» («ускоряю»), применяется для измерения кажущегося ускорения.

Определяя этот параметр, датчик помогает программному обеспечению контролировать положение телефона в пространстве и расстояние, на которое был перемещён мобильный гаджет.

Между тем, даже зная, что такое акселерометр, некоторые пользователи не отличают его от гироскопа. На самом деле оба датчика могут измерять одни и те же величины, но полностью заменить друг друга не способны.

При этом гироскоп в телефоне необходим для определения угла поворота гаджета относительно определённой плоскости. А акселерометр требуется для контроля положения в пространстве путём измерения ускорения движения. Совместное использование устройств помогает программному обеспечению гаджета получить более точные результаты.

Рис. 1. Один из примеров работы акселерометра.

Рассматривая действие акселерометра и что это такое по большому счёту, стоит познакомиться с принципом действия классического приспособления:

  1. Основная часть датчика представляет собой инертную массу (например, грузик), прикреплённую к упругому элементу.
  2. Упругая деталь типа пружины фиксируется на неподвижном элементе.
  3. Пружина зафиксирована на неподвижной части конструкции.
  4. Колебания груза подавляются демпфером.
  5. При наклонах, встряске и поворотах гаджета инертная масса реагирует на силу инерции.
  6. Чем больше интенсивность и сила наклона, встряски или поворота, тем сильнее деформируется пружина.
  7. После возвращения массы на место под воздействием пружины уровень смещения относительно обычного положения фиксируется специальным датчиком.

Рис. 2. Конструкция стандартного акселерометра.

С другой стороны, ответ на вопрос по поводу акселерометра в телефоне – что это и как выглядит, будет немного отличаться. В данном случае он представляет собой миниатюрный элемент на плате с расположенной внутри инертной массой и выглядит обычно как маленький чёрный квадрат.

Основной принцип работы элемента мало отличается от стандартного – при изменении положения инертной массы определяется величина смещения, по которому рассчитываются показатели положения гаджета. Такие датчики стоят практически на любом виде мобильной техники – на телефоне или планшете.

Рис. 3. Внешний вид датчика для смартфона.

Гироскоп в Энциклопедическом словаре:

Гироскоп — (от гиро… и скоп) — твердое тело, быстро вращающееся вокругимеющейся у него оси вращения. При этом ось вращения гироскопа должнаиметь возможность свободно поворачиваться в пространстве, для чегогироскоп обычно закрепляют в т. н. кардановом подвесе (рис.). Основноесвойство гироскопа с 3 степенями свободы состоит в том, что его осьустойчиво сохраняет приданное ей первоначальное направление (напр., накакую-нибудь звезду). Если же на такой гироскоп начинает действовать сила,то его ось отклоняется не в сторону действия силы, а в направлении,перпендикулярном к ней. в результате гироскоп начинает прецессировать (см.Прецессия). Свойство гироскопа широко используется в различныхнавигационных приборах — гирокомпасе, гировертикали и др., а также длястабилизации движения самолетов (автопилот), ракет, морских судов, торпеди др.

Устройство гироскопа

Прибор гироскоп был изобретен еще в 19 веке. Его работа заключается во вращении твердых тел с высокой скоростью вокруг оси. Самым простым и наглядным примером работы агрегата является простая игрушка юла. Когда мы раскручиваем ее, она вращается вокруг оси до тех пока на нее не начинают воздействовать внешние силы.

Гироскоп в свою очередь не подвержен такому воздействию и сохраняет устойчивость благодаря гораздо большей силе вращения, чем у юлы. Таким образом, вы можете поворачивать аппарат как угодно, но его ось останется неизменно вертикальной.

Самый первый гироскоп был механическим, однако дальше, с развитием науки он стал лазерным и оптическим. В электромеханике сегодня такие приборы используются в виде микроэлектромеханических датчиков. Именно таким образом он умещается в телефон, сложную навигационную систему кораблей, самолетов и вертолетов.

Таким образом, в современном мире люди живут, что называется на высоких скоростях. Однако для упрощения и увеличения качества жизни в бытовой обиход входят все больше приборов, которые ранее использовались только для высоких технологий. Одним из таких примеров, является гироскоп в телефоне. Что это за устройство, давно знают капитаны морских судов и подводных лодок, пилоты и космонавты. В современном гаджете такое устройство появилось относительно недавно, но уже прочно закрепилось среди важных и полезных функций.

Видео о принципе работы приборов для ориентации в пространстве

В данном ролике Роман Лодин расскажет, с помощью чего гироскопу и акселерометру удается определить свое местоположение и чем отличаются эти два прибора:

Сообщение об ошибке

Принцип работы

Прибор сам по себе является лазером и состоит из активной среды и резонатора, при работе происходит генерация излучения в двух направлениях. Работа лазерного гироскопа основана на эффекте Саньяка, два луча генерируются в резонаторе лазерного гироскопа и, если прибор вращается, то происходит генерация волн разной частоты для разных направлений из-за различных эффективных длин резонатора для разных направлений обхода (вследствие вращения). Описать разность частот в гироскопе, вызванную вращением, можно с помощью формулы:

Δν=4AΩLλ,{\displaystyle \Delta \nu ={4A\Omega \over L\lambda },}

где A{\displaystyle A} — площадь, охватываемая лучом, L{\displaystyle L} — периметр резонатора, Ω{\displaystyle \Omega } — угловая скорость вращения гироскопа, λ{\displaystyle \lambda } — длина волны.

Резонатор лазерного гироскопа может быть достаточно сложным, но обычно это — кольцевой резонатор с тремя или четырьмя зеркалами, резонатор может быть выполнен как моноблочная конструкция, так и состоять из отдельных элементов. Часто резонатор выполняется в форме треугольника или квадрата. Размер гироскопа может быть от нескольких сантиметров до нескольких метров.

В лазерном гироскопе создаётся и поддерживается стоячая волна, а её узлы и пучности в идеальном случае связаны с инерциальной системой отсчёта. Таким образом, положение узлов и пучностей волны не меняется относительно инерциальной системы отсчёта, а при повороте резонатора (корпуса гироскопа) относительно стоячей волны на фотоприёмниках получаются движущиеся по ним интерференционные полосы. По ним измеряют угол поворота, считая количество пробегающих интерференционных полос.

Разрешение лазерного гироскопа (ЛГ) тем меньше, чем больше площадь резонатора, ограниченная лучами лазера.

Основные датчики в смартфонах и планшетах

(accelerometer, датчик ориентации, датчик ускорения)

Гироскоп

(gyroscope)

Гироскоп мы также не обнаружили в
,

,

,

,

ZTE Blade GF3,

,

А вот, где есть пресловутый датчик:

OnePlus One

Гироскоп мы также обнаружили в
Samsung Galaxy S III DUOS,

,

.

И не стоит сомневаться, что гироскоп и солидный набор других датчиков содержится в ТОПовых решениях вроде
,
,
,
,
и других лучших современных смартфонах.

Удивительно, но в LG G4S и Asus FonePad 8 (про который мы уже писали — подробный обзор Asus FonePad 8) гироскопа в списке датчиков не видно, зато полно вспомогательных сенсоров:

Справедливости ради, нужно отметить, что вспомогательные датчики, рассмотренные нами в самом конце статьи, могут нивелировать отсутствие гироскопического датчика, но, мы полагаем, не полностью.

Применение.

Гироскоп чаще всего применяется как чувствительный элемент указывающих гироскопических приборов и как датчик угла поворота или угловой скорости для устройств автоматического управления. В некоторых случаях, например в гиростабилизаторах, гироскопы используются как генераторы момента силы или энергии.См. также МАХОВИК.

Основные области применения гироскопов – судоходство, авиация и космонавтика (см. ИНЕРЦИАЛЬНАЯ НАВИГАЦИЯ). Почти каждое морское судно дальнего плавания снабжено гирокомпасом для ручного или автоматического управления судном, некоторые оборудованы гиростабилизаторами. В системах управления огнем корабельной артиллерии много дополнительных гироскопов, обеспечивающих стабильную систему отсчета или измеряющих угловые скорости. Без гироскопов невозможно автоматическое управление торпедами. Самолеты и вертолеты оборудуются гироскопическими приборами, которые дают надежную информацию для систем стабилизации и навигации. К таким приборам относятся авиагоризонт, гировертикаль, гироскопический указатель крена и поворота. Гироскопы могут быть как указывающими приборами, так и датчиками автопилота. На многих самолетах предусматриваются гиростабилизированные магнитные компасы и другое оборудование – навигационные визиры, фотоаппараты с гироскопом, гиросекстанты. В военной авиации гироскопы применяются также в прицелах воздушной стрельбы и бомбометания.

Гироскопы разного назначения (навигационные, силовые) выпускаются разных типоразмеров в зависимости от условий работы и требуемой точности. В гироскопических приборах диаметр ротора составляет 4–20 см, причем меньшее значение относится к авиационно-космическим приборам. Диаметры же роторов судовых гиростабилизаторов измеряются метрами.

Примечания

  1. L. Foucault (1852) «Sur les phénomènes d’orientation des corps tournants entraînés par un axe fixe à la surface de la terre, » Comptes rendus hebdomadaires des séances de l’Académie des Sciences (Paris), vol. 35, pages 424—427.
  2. , с. 190-197.
  3. Lynch D.D. HRG Development at Delco, Litton, and Northrop Grumman //Proceedings of Anniversary Workshop on Solid-State Gyroscopy (19-21 May, 2008. Yalta, Ukraine). — Kyiv-Kharkiv. ATS of Ukraine. 2009. — ISBN 978-966-02-5248-6.
  4. Sarapuloff S.A. 15 Years of Solid-State Gyrodynamics Development in the USSR and Ukraine: Results and Perspectives of Applied Theory //Proc. of the National Technical Meeting of US Institute of Navigation (ION) (Santa Monica, Calif., USA. January 14-16,1997). — P.151-164.
  5. ↑ , с. 62-64.
  6. Ландау, Л. Д., Лифшиц, Е. М. Теория поля. — Издание 8-е, стереотипное. — М.: Физматлит, 2006. — 534 с. — («Теоретическая физика», том II). — ISBN 5-9221-0056-4.
  7. , с. 255-256.
  8. , с. 170-171.

Заключение по основным датчикам

Итак, наличие у смартфона или планшета исключительно акселерометра говорит о том, что это устройство самого низкого ценового диапазона и умеет только «вращать экран». Это удел дешевых смартфонов и планшетов. Конечно, есть вероятность, что производитель не дал вменяемой информации о типах используемых датчиков – в этом случае нужно начинать читать обзоры, в которых подробно изучается аппаратная начинка устройства с помощью приложения System Info for Android, к примеру.

Наличие у смартфона акселерометра, геомагнитного датчика, датчика приближения и освещенности, говорит о его достаточной оснащенности, но он все еще не очень хорош для управления квадракоптером или игр, где управление наклоном/поворотом возложено на перемещение смартфона пользователем. Эту проблему решает гироскоп – устройства с гироскопом точно отслеживают малейшие отклонения.

Наличие всех вышеперечисленных сенсоров, большого набора вспомогательных датчиков (рассмотрены в конце статьи) и большинства нижеперечисленных сенсоров свидетельствует в пользу того, что перед вами продвинутый аппарат, использование которого станет удовольствием, а его возможности превзойдут все ваши ожидания – это лучшие планшеты и смартфоны.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации